--- library_name: transformers license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: mdeberta-domain_EN_fold2 results: [] --- # mdeberta-domain_EN_fold2 This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4394 - Accuracy: 0.8207 - Precision: 0.7590 - Recall: 0.7755 - F1: 0.7645 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0408 | 1.0 | 19 | 0.8182 | 0.5931 | 0.8644 | 0.3333 | 0.2482 | | 0.7383 | 2.0 | 38 | 0.6728 | 0.5931 | 0.8644 | 0.3333 | 0.2482 | | 0.6381 | 3.0 | 57 | 0.6066 | 0.7862 | 0.8283 | 0.6696 | 0.6001 | | 0.5638 | 4.0 | 76 | 0.5272 | 0.7931 | 0.7363 | 0.6804 | 0.6422 | | 0.4701 | 5.0 | 95 | 0.4757 | 0.7931 | 0.7324 | 0.6811 | 0.6138 | | 0.4087 | 6.0 | 114 | 0.4957 | 0.8 | 0.7199 | 0.6911 | 0.6670 | | 0.3438 | 7.0 | 133 | 0.5317 | 0.7862 | 0.7128 | 0.6673 | 0.6757 | | 0.281 | 8.0 | 152 | 0.4456 | 0.8069 | 0.7325 | 0.7532 | 0.7376 | | 0.2428 | 9.0 | 171 | 0.4442 | 0.8069 | 0.7445 | 0.7677 | 0.7540 | | 0.2166 | 10.0 | 190 | 0.4394 | 0.8207 | 0.7590 | 0.7755 | 0.7645 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1