--- library_name: transformers license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer model-index: - name: deberta-large-semeval25_EN08_fold5 results: [] --- # deberta-large-semeval25_EN08_fold5 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 7.7182 - Precision Samples: 0.1208 - Recall Samples: 0.8208 - F1 Samples: 0.2037 - Precision Macro: 0.3884 - Recall Macro: 0.6861 - F1 Macro: 0.2590 - Precision Micro: 0.1199 - Recall Micro: 0.7958 - F1 Micro: 0.2083 - Precision Weighted: 0.2373 - Recall Weighted: 0.7958 - F1 Weighted: 0.2493 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | 8.4241 | 1.0 | 73 | 9.1963 | 0.1263 | 0.4598 | 0.1863 | 0.8558 | 0.3082 | 0.2345 | 0.1268 | 0.3514 | 0.1863 | 0.5821 | 0.3514 | 0.1117 | | 9.9703 | 2.0 | 146 | 8.5160 | 0.1313 | 0.6118 | 0.1989 | 0.7084 | 0.4108 | 0.2495 | 0.1110 | 0.5495 | 0.1848 | 0.4273 | 0.5495 | 0.1497 | | 8.6571 | 3.0 | 219 | 8.3760 | 0.1104 | 0.6956 | 0.1813 | 0.5869 | 0.4853 | 0.2363 | 0.1057 | 0.6366 | 0.1814 | 0.3062 | 0.6366 | 0.1831 | | 9.387 | 4.0 | 292 | 8.1585 | 0.1134 | 0.7748 | 0.1885 | 0.5228 | 0.6063 | 0.2487 | 0.1050 | 0.7447 | 0.1840 | 0.2682 | 0.7447 | 0.2017 | | 8.4583 | 5.0 | 365 | 8.1996 | 0.1173 | 0.7660 | 0.1960 | 0.4457 | 0.6482 | 0.2512 | 0.1156 | 0.7417 | 0.2001 | 0.2496 | 0.7417 | 0.2253 | | 6.3786 | 6.0 | 438 | 7.6840 | 0.1057 | 0.8007 | 0.1802 | 0.4090 | 0.6701 | 0.2410 | 0.1031 | 0.7838 | 0.1822 | 0.2405 | 0.7838 | 0.2289 | | 8.2131 | 7.0 | 511 | 7.8402 | 0.1154 | 0.8003 | 0.1953 | 0.3992 | 0.6695 | 0.2514 | 0.1125 | 0.7688 | 0.1963 | 0.2317 | 0.7688 | 0.2324 | | 6.8285 | 8.0 | 584 | 7.7532 | 0.1177 | 0.8106 | 0.1991 | 0.3970 | 0.6775 | 0.2552 | 0.1173 | 0.7808 | 0.2040 | 0.2350 | 0.7808 | 0.2416 | | 5.5413 | 9.0 | 657 | 7.7258 | 0.1201 | 0.8140 | 0.2027 | 0.3872 | 0.6811 | 0.2571 | 0.1187 | 0.7838 | 0.2062 | 0.2364 | 0.7838 | 0.2474 | | 5.9931 | 10.0 | 730 | 7.7182 | 0.1208 | 0.8208 | 0.2037 | 0.3884 | 0.6861 | 0.2590 | 0.1199 | 0.7958 | 0.2083 | 0.2373 | 0.7958 | 0.2493 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1