--- library_name: transformers license: mit base_model: neuralmind/bert-base-portuguese-cased tags: - generated_from_trainer model-index: - name: bbau-semeval25_fold2 results: [] --- # bbau-semeval25_fold2 This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4474 - Precision Samples: 1.0 - Recall Samples: 0.0 - F1 Samples: 0.0 - Precision Macro: 1.0 - Recall Macro: 0.3636 - F1 Macro: 0.3636 - Precision Micro: 1.0 - Recall Micro: 0.0 - F1 Micro: 0.0 - Precision Weighted: 1.0 - Recall Weighted: 0.0 - F1 Weighted: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | No log | 1.0 | 5 | 0.6293 | 0.0783 | 0.3868 | 0.1220 | 0.4983 | 0.5865 | 0.3159 | 0.0751 | 0.375 | 0.1252 | 0.3532 | 0.375 | 0.1464 | | 0.6408 | 2.0 | 10 | 0.5789 | 0.0787 | 0.2286 | 0.1079 | 0.7311 | 0.4717 | 0.3440 | 0.0839 | 0.2054 | 0.1192 | 0.5702 | 0.2054 | 0.0796 | | 0.6408 | 3.0 | 15 | 0.5425 | 0.0708 | 0.0583 | 0.0554 | 0.9220 | 0.3953 | 0.3740 | 0.0706 | 0.0536 | 0.0609 | 0.8686 | 0.0536 | 0.0258 | | 0.552 | 4.0 | 20 | 0.5135 | 0.1125 | 0.0271 | 0.0396 | 0.9759 | 0.3864 | 0.3719 | 0.0952 | 0.0357 | 0.0519 | 0.9634 | 0.0357 | 0.0110 | | 0.552 | 5.0 | 25 | 0.4912 | 1.0 | 0.0 | 0.0 | 1.0 | 0.3636 | 0.3636 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.5007 | 6.0 | 30 | 0.4745 | 1.0 | 0.0 | 0.0 | 1.0 | 0.3636 | 0.3636 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.5007 | 7.0 | 35 | 0.4624 | 1.0 | 0.0 | 0.0 | 1.0 | 0.3636 | 0.3636 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.4713 | 8.0 | 40 | 0.4543 | 1.0 | 0.0 | 0.0 | 1.0 | 0.3636 | 0.3636 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.4713 | 9.0 | 45 | 0.4493 | 1.0 | 0.0 | 0.0 | 1.0 | 0.3636 | 0.3636 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.4567 | 10.0 | 50 | 0.4474 | 1.0 | 0.0 | 0.0 | 1.0 | 0.3636 | 0.3636 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1