--- license: apache-2.0 base_model: facebook/hubert-base-ls960 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: hubert-classifier results: [] --- # hubert-classifier This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4637 - Accuracy: 0.5230 - Precision: 0.4945 - Recall: 0.5230 - F1: 0.4700 - Binary: 0.6634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Binary | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| | No log | 1.72 | 50 | 4.2179 | 0.0484 | 0.0065 | 0.0484 | 0.0105 | 0.3058 | | No log | 3.45 | 100 | 3.8319 | 0.1017 | 0.0846 | 0.1017 | 0.0618 | 0.3634 | | No log | 5.17 | 150 | 3.5448 | 0.1864 | 0.1327 | 0.1864 | 0.1311 | 0.4274 | | No log | 6.9 | 200 | 3.3129 | 0.2470 | 0.2063 | 0.2470 | 0.1855 | 0.4671 | | No log | 8.62 | 250 | 3.1207 | 0.3123 | 0.3090 | 0.3123 | 0.2599 | 0.5150 | | No log | 10.34 | 300 | 2.9535 | 0.3826 | 0.3524 | 0.3826 | 0.3277 | 0.5644 | | No log | 12.07 | 350 | 2.8121 | 0.4310 | 0.3894 | 0.4310 | 0.3695 | 0.5983 | | No log | 13.79 | 400 | 2.6726 | 0.4431 | 0.3939 | 0.4431 | 0.3775 | 0.6075 | | No log | 15.52 | 450 | 2.5597 | 0.4818 | 0.4413 | 0.4818 | 0.4206 | 0.6370 | | 3.4474 | 17.24 | 500 | 2.4637 | 0.5230 | 0.4945 | 0.5230 | 0.4700 | 0.6634 | | 3.4474 | 18.97 | 550 | 2.3747 | 0.5400 | 0.5111 | 0.5400 | 0.4920 | 0.6760 | | 3.4474 | 20.69 | 600 | 2.3113 | 0.5545 | 0.5212 | 0.5545 | 0.5067 | 0.6872 | | 3.4474 | 22.41 | 650 | 2.2492 | 0.5714 | 0.5475 | 0.5714 | 0.5274 | 0.7007 | | 3.4474 | 24.14 | 700 | 2.2053 | 0.5738 | 0.5511 | 0.5738 | 0.5336 | 0.7015 | | 3.4474 | 25.86 | 750 | 2.1757 | 0.5714 | 0.5477 | 0.5714 | 0.5283 | 0.7015 | | 3.4474 | 27.59 | 800 | 2.1491 | 0.5908 | 0.5574 | 0.5908 | 0.5468 | 0.7140 | | 3.4474 | 29.31 | 850 | 2.1403 | 0.5932 | 0.5625 | 0.5932 | 0.5506 | 0.7167 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.15.1