{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7df6b43f8080>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1729357115117326378, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE0wKz0URou6qKLcOOHzVzQj2BI7EPf7twAAgD8AAIA/TVV8PaQwCjjaXEG7kASJN69Ztbs8aQg6AACAPwAAgD/6hTw+IRGmvGA1ajs2c8e5J00avvsonroAAIA/AACAP8BhET6hTKk9aihcvmtEhb7PlMi89m2dvQAAAAAAAAAAqjmQvvxLBD9um4Y+6UeDvhK8GT1jdlW7AAAAAAAAAABaKrM9j0pTukIpjLoGYUe27/p3O+7tpDkAAIA/AAAAAM1pq732EFO6pSjousLW27WV9xq74pMFOgAAgD8AAIA/M+N1vFzLRrqidTW4WgREs9QOkLiAn043AACAPwAAgD8zeH090mPqu8XUOb2Q5w67LTU9PeWv8DsAAIA/AACAP5rw0zxIP6i6MpdbO8YLMjh+U9s5v/AIugAAgD8AAIA/5kDaPRRqi7ryiS27oiqpteleJjstakk6AACAPwAAgD9g0AA+cdwXPN/mg755vGK+TrSBPFlNOj8AAIA/AAAAAM0v3jx7tqG6RwA/Oa2O0rWIiBu6kNNauAAAgD8AAIA/AB/ePOGujbrwmG255dkWttwdEru3/IU1AACAPwAAgD+aN8C8w+FTum8KgLo5KYy17z9FOjnwljkAAIA/AACAP03P1r3ac9M+k/tYPWvIor5MZ5+8gxz5PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHZPGEPDpGMAWyUTSoDjAF0lEdAlcKQFgUlA3V9lChoBkdAZzF4Fiay8mgHTegDaAhHQJXDplTWGyp1fZQoaAZHQF1i8SPEKmdoB03oA2gIR0CVxUQiiZfEdX2UKGgGR0Bg9bI/7iyZaAdN6ANoCEdAlcdHTuv2XnV9lChoBkdAYBtB42S+xmgHTegDaAhHQJXKrOoo/iZ1fZQoaAZHQF+Uqmj0tiBoB03oA2gIR0CV1GvugHu7dX2UKGgGR0BgcoDmr8ziaAdN6ANoCEdAlduFhb4agnV9lChoBkdAZlnp22XsxGgHTegDaAhHQJXjzmSyMUB1fZQoaAZHQGOas7uDzy1oB03oA2gIR0CV5E2UB4lhdX2UKGgGR0BibrJuEVWTaAdN6ANoCEdAlecuxSpBHHV9lChoBkdAZNcvwEyLymgHTegDaAhHQJXnqEpRXOp1fZQoaAZHQGEuRcu8K5VoB03oA2gIR0CWBYuieumrdX2UKGgGR0BvbYlD4QBgaAdNWANoCEdAlgkumR/3FnV9lChoBkdAZDwzHjp9qmgHTegDaAhHQJYJVC8e0Xx1fZQoaAZHQEvjFyaNMoNoB00bAWgIR0CWCrzmfXf7dX2UKGgGR0BYtlpXZGrkaAdN6ANoCEdAlgywm/nGKnV9lChoBkdAXS+76Hj6vmgHTegDaAhHQJYVFr9ETg51fZQoaAZHQGBZp/G2kSFoB03oA2gIR0CWGHt0mtyQdX2UKGgGR0AqLqiXY150aAdL/WgIR0CWGSH9WIXTdX2UKGgGR0BhG1s+FDfFaAdN6ANoCEdAlhm5sbedkXV9lChoBkdAaAKFPi1iOWgHTegDaAhHQJYb5K8L8aZ1fZQoaAZHQGT9lgc94eNoB03oA2gIR0CWHq4nF5v+dX2UKGgGR0Bie6A6Mir1aAdN6ANoCEdAliLfECNjsnV9lChoBkdAYkIZTho/RmgHTegDaAhHQJYsBepn6Ed1fZQoaAZHQGSYvBJqZc9oB03oA2gIR0CWMlsPatcOdX2UKGgGR0BkoqPp6hQFaAdN6ANoCEdAljkfpMYdhnV9lChoBkdAZnlsRg7YCmgHTegDaAhHQJY7BsJpnHx1fZQoaAZHQGOYc7ZFoctoB03oA2gIR0CWO1jcVQANdX2UKGgGR0BeI3IEKVpsaAdN6ANoCEdAlliahg3Lm3V9lChoBkdAX0TJuEVWS2gHTegDaAhHQJZb8YR/ViF1fZQoaAZHQGW1cMVk+X9oB03oA2gIR0CWXU8RL9MsdX2UKGgGR0BeaT3RG+bmaAdN6ANoCEdAll8ac7Qsw3V9lChoBkdAYNWOrhisn2gHTegDaAhHQJZm+W0JF9d1fZQoaAZHQGHUrMC9ytFoB03oA2gIR0CWaYOpbUw0dX2UKGgGR0BiWpuMuOCHaAdN6ANoCEdAlmoJUxVQynV9lChoBkdAZDoPFvQ4TGgHTegDaAhHQJZqfgFX7tR1fZQoaAZHQGXHHgpBomJoB03oA2gIR0CWa+csDnvEdX2UKGgGR0BhUTq6e5FxaAdN6ANoCEdAlm2xUrCm/HV9lChoBkdAYzOasp5NXmgHTegDaAhHQJZwyJcgQpZ1fZQoaAZHQGG8yLyc0+FoB03oA2gIR0CWebqdH2AYdX2UKGgGR0Bi3Vdmg8KYaAdN6ANoCEdAloEZ9qk/KXV9lChoBkdAZC4DvmYBvWgHTegDaAhHQJaLPhrFfiR1fZQoaAZHQF4zjS5RTCNoB03oA2gIR0CWjYeNkvsadX2UKGgGR0BluNBKL877aAdN6ANoCEdAlo3q4Ds+mnV9lChoBkdAZUKw1zhgmmgHTegDaAhHQJaqfKW9lEt1fZQoaAZHQGGZG9YfW+ZoB03oA2gIR0CWrnijtXxOdX2UKGgGR0Bma4Qrc0tRaAdN6ANoCEdAlq/7wrlNlHV9lChoBkdAYQ/OzposZ2gHTegDaAhHQJayIn9ehPF1fZQoaAZHQGAomzru6VdoB03oA2gIR0CWvnA7PppwdX2UKGgGR0BmeGA3DNyHaAdN6ANoCEdAlsHkWhysCHV9lChoBkdAXUnQb+98JGgHTegDaAhHQJbCe3OObRZ1fZQoaAZHQGJXVg6U7jloB03oA2gIR0CWwv+GoJiRdX2UKGgGR0BiCiIJqqOtaAdN6ANoCEdAlsSXjIaLoHV9lChoBkdAYGrSro4dZWgHTegDaAhHQJbGkvSMLnd1fZQoaAZHQF1fV1Oj7ANoB03oA2gIR0CWyhT9bX6JdX2UKGgGR0ByNzWI42jxaAdN1gFoCEdAls6gKKHfuXV9lChoBkdAYpoo73fygGgHTegDaAhHQJbSwLYwqRV1fZQoaAZHQGIGQ7T2FnJoB03oA2gIR0CW2MqGlANYdX2UKGgGR0Bo3OLzf779aAdN6ANoCEdAlt+lINEw4HV9lChoBkdAYtTBDXvphWgHTegDaAhHQJbhp1ZDArR1fZQoaAZHQGOAvC/GlyloB03oA2gIR0CW4fbSJCSidX2UKGgGR0BgXtXT3IuHaAdN6ANoCEdAlwATRIBikXV9lChoBkdAZPgsPrfLtGgHTegDaAhHQJcFPLfUF0R1fZQoaAZHQGF2RmCiAUdoB03oA2gIR0CXB18/D+BIdX2UKGgGR0BkX/xx1gYxaAdN6ANoCEdAlxA6O1fE43V9lChoBkdAYtXjFyaNM2gHTegDaAhHQJcTDC1qnFZ1fZQoaAZHQGBfgctGus9oB03oA2gIR0CXE6SAH3UQdX2UKGgGR0BwPRptaY/naAdNaQNoCEdAlxQNN34bj3V9lChoBkdAZbl9F4LThGgHTegDaAhHQJcUHhS9/SZ1fZQoaAZHQFlut2s7uD1oB03oA2gIR0CXFZsOXmeUdX2UKGgGRz/w8CT2WY4RaAdNCgFoCEdAlxW2BnSOR3V9lChoBkdAZrBTkyULUmgHTegDaAhHQJcXWtSydFx1fZQoaAZHQHAR/hhpg1FoB01vA2gIR0CXGIdrwe/6dX2UKGgGR0BG7Q5eZ5RkaAdL/GgIR0CXIzs9B8hLdX2UKGgGR0BGWTpPhybQaAdL/mgIR0CXI1M495hSdX2UKGgGR0Bjugood+5OaAdN6ANoCEdAlyWSIk7fYXV9lChoBkdAZFP7aZhKDmgHTegDaAhHQJcrMg/1QIl1fZQoaAZHQGX/RGUfPopoB03oA2gIR0CXMWtm+TNddX2UKGgGR0BkKb79AHE/aAdN6ANoCEdAlzNJCKJl8XV9lChoBkdAZo8IOYplSWgHTegDaAhHQJczkaFVT751fZQoaAZHQGTh2Yv38GdoB03oA2gIR0CXToW5paicdX2UKGgGR0A7CpFkQPI5aAdL+mgIR0CXUtB5X2dvdX2UKGgGR0Bi2rgqEvkBaAdN6ANoCEdAl1ew/s3Q2XV9lChoBkdAW0M4gieNDWgHTegDaAhHQJdg8FQl8gJ1fZQoaAZHQHFx3zH0btJoB02tAWgIR0CXYZAbyYoidX2UKGgGR0Bktpaq0dBCaAdN6ANoCEdAl2M8dDIBBHV9lChoBkdAYygZDRc/uGgHTegDaAhHQJdjsLQXyiF1fZQoaAZHQGUdkEcKgI1oB03oA2gIR0CXZXWRigCfdX2UKGgGR0BmH/qqwQlKaAdN6ANoCEdAl2WO9zwMIHV9lChoBkdAYUH6mfoRqWgHTegDaAhHQJdnCfBeok11fZQoaAZHQGO+PH93r2RoB03oA2gIR0CXaDXCj1wpdX2UKGgGR0BFgCtzS1E3aAdNBgFoCEdAl2/LzoUzsXV9lChoBkdAZ9JRHf/FSGgHTegDaAhHQJdwLlp48lp1fZQoaAZHQGKPyWqtHQRoB03oA2gIR0CXcDy2QXANdX2UKGgGR0BjwTr1M/QjaAdN6ANoCEdAl3GyAlOXV3V9lChoBkdAQST5VOsT4GgHTRUBaAhHQJd2YvoNd7h1fZQoaAZHQGg+c4PwuuloB03oA2gIR0CXdx5B1LamdX2UKGgGR0Buwb/MnqmkaAdNkgFoCEdAl3no2S+xnnV9lChoBkdASaQp+c6Nl2gHS+VoCEdAl3yxMewLVnV9lChoBkdAYD0KP4mCy2gHTegDaAhHQJd+tXMhX8x1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}