# pytorch_diffusion + derived encoder decoder import math import numpy as np import tqdm import torch import torch.nn as nn from diffusers import DiffusionPipeline from diffusers.configuration_utils import ConfigMixin from diffusers.modeling_utils import ModelMixin def get_timestep_embedding(timesteps, embedding_dim): """ This matches the implementation in Denoising Diffusion Probabilistic Models: From Fairseq. Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ assert len(timesteps.shape) == 1 half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) emb = emb.to(device=timesteps.device) emb = timesteps.float()[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # zero pad emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) return emb def nonlinearity(x): # swish return x * torch.sigmoid(x) def Normalize(in_channels): return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) class Upsample(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") if self.with_conv: x = self.conv(x) return x class Downsample(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: # no asymmetric padding in torch conv, must do it ourselves self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) def forward(self, x): if self.with_conv: pad = (0, 1, 0, 1) x = torch.nn.functional.pad(x, pad, mode="constant", value=0) x = self.conv(x) else: x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) return x class ResnetBlock(nn.Module): def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.norm1 = Normalize(in_channels) self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) if temb_channels > 0: self.temb_proj = torch.nn.Linear(temb_channels, out_channels) self.norm2 = Normalize(out_channels) self.dropout = torch.nn.Dropout(dropout) self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if self.in_channels != self.out_channels: if self.use_conv_shortcut: self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) else: self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) def forward(self, x, temb): h = x h = self.norm1(h) h = nonlinearity(h) h = self.conv1(h) if temb is not None: h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] h = self.norm2(h) h = nonlinearity(h) h = self.dropout(h) h = self.conv2(h) if self.in_channels != self.out_channels: if self.use_conv_shortcut: x = self.conv_shortcut(x) else: x = self.nin_shortcut(x) return x + h class AttnBlock(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b, c, h, w = q.shape q = q.reshape(b, c, h * w) q = q.permute(0, 2, 1) # b,hw,c k = k.reshape(b, c, h * w) # b,c,hw w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] w_ = w_ * (int(c) ** (-0.5)) w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values v = v.reshape(b, c, h * w) w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] h_ = h_.reshape(b, c, h, w) h_ = self.proj_out(h_) return x + h_ class Model(nn.Module): def __init__( self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, use_timestep=True, ): super().__init__() self.ch = ch self.temb_ch = self.ch * 4 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels self.use_timestep = use_timestep if self.use_timestep: # timestep embedding self.temb = nn.Module() self.temb.dense = nn.ModuleList( [ torch.nn.Linear(self.ch, self.temb_ch), torch.nn.Linear(self.temb_ch, self.temb_ch), ] ) # downsampling self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1) curr_res = resolution in_ch_mult = (1,) + tuple(ch_mult) self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() block_in = ch * in_ch_mult[i_level] block_out = ch * ch_mult[i_level] for i_block in range(self.num_res_blocks): block.append( ResnetBlock( in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout ) ) block_in = block_out if curr_res in attn_resolutions: attn.append(AttnBlock(block_in)) down = nn.Module() down.block = block down.attn = attn if i_level != self.num_resolutions - 1: down.downsample = Downsample(block_in, resamp_with_conv) curr_res = curr_res // 2 self.down.append(down) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock( in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout ) self.mid.attn_1 = AttnBlock(block_in) self.mid.block_2 = ResnetBlock( in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout ) # upsampling self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() block_out = ch * ch_mult[i_level] skip_in = ch * ch_mult[i_level] for i_block in range(self.num_res_blocks + 1): if i_block == self.num_res_blocks: skip_in = ch * in_ch_mult[i_level] block.append( ResnetBlock( in_channels=block_in + skip_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout, ) ) block_in = block_out if curr_res in attn_resolutions: attn.append(AttnBlock(block_in)) up = nn.Module() up.block = block up.attn = attn if i_level != 0: up.upsample = Upsample(block_in, resamp_with_conv) curr_res = curr_res * 2 self.up.insert(0, up) # prepend to get consistent order # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1) def forward(self, x, t=None): # assert x.shape[2] == x.shape[3] == self.resolution if self.use_timestep: # timestep embedding assert t is not None temb = get_timestep_embedding(t, self.ch) temb = self.temb.dense[0](temb) temb = nonlinearity(temb) temb = self.temb.dense[1](temb) else: temb = None # downsampling hs = [self.conv_in(x)] for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](hs[-1], temb) if len(self.down[i_level].attn) > 0: h = self.down[i_level].attn[i_block](h) hs.append(h) if i_level != self.num_resolutions - 1: hs.append(self.down[i_level].downsample(hs[-1])) # middle h = hs[-1] h = self.mid.block_1(h, temb) h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # upsampling for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks + 1): h = self.up[i_level].block[i_block](torch.cat([h, hs.pop()], dim=1), temb) if len(self.up[i_level].attn) > 0: h = self.up[i_level].attn[i_block](h) if i_level != 0: h = self.up[i_level].upsample(h) # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h class Encoder(nn.Module): def __init__( self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, z_channels, double_z=True, **ignore_kwargs, ): super().__init__() self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels # downsampling self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1) curr_res = resolution in_ch_mult = (1,) + tuple(ch_mult) self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() block_in = ch * in_ch_mult[i_level] block_out = ch * ch_mult[i_level] for i_block in range(self.num_res_blocks): block.append( ResnetBlock( in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout ) ) block_in = block_out if curr_res in attn_resolutions: attn.append(AttnBlock(block_in)) down = nn.Module() down.block = block down.attn = attn if i_level != self.num_resolutions - 1: down.downsample = Downsample(block_in, resamp_with_conv) curr_res = curr_res // 2 self.down.append(down) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock( in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout ) self.mid.attn_1 = AttnBlock(block_in) self.mid.block_2 = ResnetBlock( in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout ) # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d( block_in, 2 * z_channels if double_z else z_channels, kernel_size=3, stride=1, padding=1 ) def forward(self, x): # assert x.shape[2] == x.shape[3] == self.resolution, "{}, {}, {}".format(x.shape[2], x.shape[3], self.resolution) # timestep embedding temb = None # downsampling hs = [self.conv_in(x)] for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](hs[-1], temb) if len(self.down[i_level].attn) > 0: h = self.down[i_level].attn[i_block](h) hs.append(h) if i_level != self.num_resolutions - 1: hs.append(self.down[i_level].downsample(hs[-1])) # middle h = hs[-1] h = self.mid.block_1(h, temb) h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h class Decoder(nn.Module): def __init__( self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, z_channels, give_pre_end=False, **ignorekwargs, ): super().__init__() self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels self.give_pre_end = give_pre_end # compute in_ch_mult, block_in and curr_res at lowest res in_ch_mult = (1,) + tuple(ch_mult) block_in = ch * ch_mult[self.num_resolutions - 1] curr_res = resolution // 2 ** (self.num_resolutions - 1) self.z_shape = (1, z_channels, curr_res, curr_res) print("Working with z of shape {} = {} dimensions.".format(self.z_shape, np.prod(self.z_shape))) # z to block_in self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock( in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout ) self.mid.attn_1 = AttnBlock(block_in) self.mid.block_2 = ResnetBlock( in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout ) # upsampling self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() block_out = ch * ch_mult[i_level] for i_block in range(self.num_res_blocks + 1): block.append( ResnetBlock( in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout ) ) block_in = block_out if curr_res in attn_resolutions: attn.append(AttnBlock(block_in)) up = nn.Module() up.block = block up.attn = attn if i_level != 0: up.upsample = Upsample(block_in, resamp_with_conv) curr_res = curr_res * 2 self.up.insert(0, up) # prepend to get consistent order # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1) def forward(self, z): # assert z.shape[1:] == self.z_shape[1:] self.last_z_shape = z.shape # timestep embedding temb = None # z to block_in h = self.conv_in(z) # middle h = self.mid.block_1(h, temb) h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # upsampling for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks + 1): h = self.up[i_level].block[i_block](h, temb) if len(self.up[i_level].attn) > 0: h = self.up[i_level].attn[i_block](h) if i_level != 0: h = self.up[i_level].upsample(h) # end if self.give_pre_end: return h h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h class VectorQuantizer(nn.Module): """ Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix multiplications and allows for post-hoc remapping of indices. """ # NOTE: due to a bug the beta term was applied to the wrong term. for # backwards compatibility we use the buggy version by default, but you can # specify legacy=False to fix it. def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=True): super().__init__() self.n_e = n_e self.e_dim = e_dim self.beta = beta self.legacy = legacy self.embedding = nn.Embedding(self.n_e, self.e_dim) self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) self.remap = remap if self.remap is not None: self.register_buffer("used", torch.tensor(np.load(self.remap))) self.re_embed = self.used.shape[0] self.unknown_index = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": self.unknown_index = self.re_embed self.re_embed = self.re_embed + 1 print( f"Remapping {self.n_e} indices to {self.re_embed} indices. " f"Using {self.unknown_index} for unknown indices." ) else: self.re_embed = n_e self.sane_index_shape = sane_index_shape def remap_to_used(self, inds): ishape = inds.shape assert len(ishape) > 1 inds = inds.reshape(ishape[0], -1) used = self.used.to(inds) match = (inds[:, :, None] == used[None, None, ...]).long() new = match.argmax(-1) unknown = match.sum(2) < 1 if self.unknown_index == "random": new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device) else: new[unknown] = self.unknown_index return new.reshape(ishape) def unmap_to_all(self, inds): ishape = inds.shape assert len(ishape) > 1 inds = inds.reshape(ishape[0], -1) used = self.used.to(inds) if self.re_embed > self.used.shape[0]: # extra token inds[inds >= self.used.shape[0]] = 0 # simply set to zero back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds) return back.reshape(ishape) def forward(self, z, temp=None, rescale_logits=False, return_logits=False): assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel" assert rescale_logits == False, "Only for interface compatible with Gumbel" assert return_logits == False, "Only for interface compatible with Gumbel" # reshape z -> (batch, height, width, channel) and flatten z = rearrange(z, "b c h w -> b h w c").contiguous() z_flattened = z.view(-1, self.e_dim) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z d = ( torch.sum(z_flattened**2, dim=1, keepdim=True) + torch.sum(self.embedding.weight**2, dim=1) - 2 * torch.einsum("bd,dn->bn", z_flattened, rearrange(self.embedding.weight, "n d -> d n")) ) min_encoding_indices = torch.argmin(d, dim=1) z_q = self.embedding(min_encoding_indices).view(z.shape) perplexity = None min_encodings = None # compute loss for embedding if not self.legacy: loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2) else: loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2) # preserve gradients z_q = z + (z_q - z).detach() # reshape back to match original input shape z_q = rearrange(z_q, "b h w c -> b c h w").contiguous() if self.remap is not None: min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis min_encoding_indices = self.remap_to_used(min_encoding_indices) min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten if self.sane_index_shape: min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3]) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def get_codebook_entry(self, indices, shape): # shape specifying (batch, height, width, channel) if self.remap is not None: indices = indices.reshape(shape[0], -1) # add batch axis indices = self.unmap_to_all(indices) indices = indices.reshape(-1) # flatten again # get quantized latent vectors z_q = self.embedding(indices) if shape is not None: z_q = z_q.view(shape) # reshape back to match original input shape z_q = z_q.permute(0, 3, 1, 2).contiguous() return z_q class VQModel(ModelMixin, ConfigMixin): def __init__( self, ch, out_ch, num_res_blocks, attn_resolutions, in_channels, resolution, z_channels, n_embed, embed_dim, remap=None, sane_index_shape=False, # tell vector quantizer to return indices as bhw ch_mult=(1, 2, 4, 8), dropout=0.0, double_z=True, resamp_with_conv=True, give_pre_end=False, ): super().__init__() # register all __init__ params with self.register self.register( ch=ch, out_ch=out_ch, num_res_blocks=num_res_blocks, attn_resolutions=attn_resolutions, in_channels=in_channels, resolution=resolution, z_channels=z_channels, n_embed=n_embed, embed_dim=embed_dim, remap=remap, sane_index_shape=sane_index_shape, ch_mult=ch_mult, dropout=dropout, double_z=double_z, resamp_with_conv=resamp_with_conv, give_pre_end=give_pre_end, ) # pass init params to Encoder self.encoder = Encoder( ch=ch, out_ch=out_ch, num_res_blocks=num_res_blocks, attn_resolutions=attn_resolutions, in_channels=in_channels, resolution=resolution, z_channels=z_channels, ch_mult=ch_mult, dropout=dropout, resamp_with_conv=resamp_with_conv, double_z=double_z, give_pre_end=give_pre_end, ) self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25, remap=remap, sane_index_shape=sane_index_shape) # pass init params to Decoder self.decoder = Decoder( ch=ch, out_ch=out_ch, num_res_blocks=num_res_blocks, attn_resolutions=attn_resolutions, in_channels=in_channels, resolution=resolution, z_channels=z_channels, ch_mult=ch_mult, dropout=dropout, resamp_with_conv=resamp_with_conv, give_pre_end=give_pre_end, ) def encode(self, x): h = self.encoder(x) h = self.quant_conv(h) return h def decode(self, h, force_not_quantize=False): # also go through quantization layer if not force_not_quantize: quant, emb_loss, info = self.quantize(h) else: quant = h quant = self.post_quant_conv(quant) dec = self.decoder(quant) return dec class DiagonalGaussianDistribution(object): def __init__(self, parameters, deterministic=False): self.parameters = parameters self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) self.logvar = torch.clamp(self.logvar, -30.0, 20.0) self.deterministic = deterministic self.std = torch.exp(0.5 * self.logvar) self.var = torch.exp(self.logvar) if self.deterministic: self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device) def sample(self): x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device) return x def kl(self, other=None): if self.deterministic: return torch.Tensor([0.]) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, dim=[1, 2, 3]) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean, 2) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar, dim=[1, 2, 3]) def nll(self, sample, dims=[1,2,3]): if self.deterministic: return torch.Tensor([0.]) logtwopi = np.log(2.0 * np.pi) return 0.5 * torch.sum( logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, dim=dims) def mode(self): return self.mean class AutoencoderKL(ModelMixin, ConfigMixin): def __init__( self, ch, out_ch, num_res_blocks, attn_resolutions, in_channels, resolution, z_channels, embed_dim, remap=None, sane_index_shape=False, # tell vector quantizer to return indices as bhw ch_mult=(1, 2, 4, 8), dropout=0.0, double_z=True, resamp_with_conv=True, give_pre_end=False, ): super().__init__() # register all __init__ params with self.register self.register( ch=ch, out_ch=out_ch, num_res_blocks=num_res_blocks, attn_resolutions=attn_resolutions, in_channels=in_channels, resolution=resolution, z_channels=z_channels, embed_dim=embed_dim, remap=remap, sane_index_shape=sane_index_shape, ch_mult=ch_mult, dropout=dropout, double_z=double_z, resamp_with_conv=resamp_with_conv, give_pre_end=give_pre_end, ) # pass init params to Encoder self.encoder = Encoder( ch=ch, out_ch=out_ch, num_res_blocks=num_res_blocks, attn_resolutions=attn_resolutions, in_channels=in_channels, resolution=resolution, z_channels=z_channels, ch_mult=ch_mult, dropout=dropout, resamp_with_conv=resamp_with_conv, double_z=double_z, give_pre_end=give_pre_end, ) # pass init params to Decoder self.decoder = Decoder( ch=ch, out_ch=out_ch, num_res_blocks=num_res_blocks, attn_resolutions=attn_resolutions, in_channels=in_channels, resolution=resolution, z_channels=z_channels, ch_mult=ch_mult, dropout=dropout, resamp_with_conv=resamp_with_conv, give_pre_end=give_pre_end, ) self.quant_conv = torch.nn.Conv2d(2*z_channels, 2*embed_dim, 1) self.post_quant_conv = torch.nn.Conv2d(embed_dim, z_channels, 1) def encode(self, x): h = self.encoder(x) moments = self.quant_conv(h) posterior = DiagonalGaussianDistribution(moments) return posterior def decode(self, z): z = self.post_quant_conv(z) dec = self.decoder(z) return dec def forward(self, input, sample_posterior=True): posterior = self.encode(input) if sample_posterior: z = posterior.sample() else: z = posterior.mode() dec = self.decode(z) return dec, posterior class LatentDiffusion(DiffusionPipeline): def __init__(self, vqvae, bert, tokenizer, unet, noise_scheduler): super().__init__() self.register_modules(vqvae=vqvae, bert=bert, tokenizer=tokenizer, unet=unet, noise_scheduler=noise_scheduler) def __call__(self, prompt, batch_size=1, generator=None, torch_device=None, eta=0.0, guidance_scale=1.0, num_inference_steps=50): # eta corresponds to η in paper and should be between [0, 1] if torch_device is None: torch_device = "cuda" if torch.cuda.is_available() else "cpu" self.unet.to(torch_device) self.vqvae.to(torch_device) self.bert.to(torch_device) if guidance_scale != 1.0: uncond_input = self.tokenizer([""], padding="max_length", max_length=77, return_tensors='pt').to(torch_device) uncond_embeddings = self.bert(uncond_input.input_ids)[0] # get text embedding text_input = self.tokenizer(prompt, padding="max_length", max_length=77, return_tensors='pt').to(torch_device) text_embedding = self.bert(text_input.input_ids)[0] num_trained_timesteps = self.noise_scheduler.num_timesteps inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps) image = self.noise_scheduler.sample_noise( (batch_size, self.unet.in_channels, self.unet.image_size, self.unet.image_size), device=torch_device, generator=generator, ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation ( -> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_image -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_image_direction -> "direction pointingc to x_t" # - pred_prev_image -> "x_t-1" for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps): # 1. predict noise residual if guidance_scale == 1.0: timesteps = torch.tensor([inference_step_times[t]] * image.shape[0], device=torch_device) context = text_embedding image_in = image else: image_in = torch.cat([image] * 2) timesteps = torch.tensor([inference_step_times[t]] * image.shape[0], device=torch_device) context = torch.cat([uncond_embeddings, text_embedding]) with torch.no_grad(): pred_noise_t = self.unet(image_in, timesteps, context=context) if guidance_scale != 1.0: pred_noise_t_uncond, pred_noise_t = pred_noise_t.chunk(2) pred_noise_t = pred_noise_t_uncond + guidance_scale * (pred_noise_t - pred_noise_t_uncond) # 2. get actual t and t-1 train_step = inference_step_times[t] prev_train_step = inference_step_times[t - 1] if t > 0 else -1 # 3. compute alphas, betas alpha_prod_t = self.noise_scheduler.get_alpha_prod(train_step) alpha_prod_t_prev = self.noise_scheduler.get_alpha_prod(prev_train_step) beta_prod_t = 1 - alpha_prod_t beta_prod_t_prev = 1 - alpha_prod_t_prev # 4. Compute predicted previous image from predicted noise # First: compute predicted original image from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf pred_original_image = (image - beta_prod_t.sqrt() * pred_noise_t) / alpha_prod_t.sqrt() # Second: Clip "predicted x_0" # pred_original_image = torch.clamp(pred_original_image, -1, 1) # Third: Compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) std_dev_t = (beta_prod_t_prev / beta_prod_t).sqrt() * (1 - alpha_prod_t / alpha_prod_t_prev).sqrt() std_dev_t = eta * std_dev_t # Fourth: Compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf pred_image_direction = (1 - alpha_prod_t_prev - std_dev_t**2).sqrt() * pred_noise_t # Fifth: Compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf pred_prev_image = alpha_prod_t_prev.sqrt() * pred_original_image + pred_image_direction # 5. Sample x_t-1 image optionally if η > 0.0 by adding noise to pred_prev_image # Note: eta = 1.0 essentially corresponds to DDPM if eta > 0.0: noise = self.noise_scheduler.sample_noise(image.shape, device=image.device, generator=generator) prev_image = pred_prev_image + std_dev_t * noise else: prev_image = pred_prev_image # 6. Set current image to prev_image: x_t -> x_t-1 image = prev_image image = 1 / 0.18215 * image image = self.vqvae.decode(image) image = torch.clamp((image+1.0)/2.0, min=0.0, max=1.0) return image