--- language: - th license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - fruk19/S_asr metrics: - wer model-index: - name: South_asri results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: aicookcook type: fruk19/S_asr config: default split: None args: 'config: th' metrics: - name: Wer type: wer value: 17.85503355704698 --- # South_asri This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the aicookcook dataset. It achieves the following results on the evaluation set: - Loss: 0.1529 - Wer: 17.8550 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 99 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2359 | 1.0 | 3000 | 0.1905 | 22.4242 | | 0.1383 | 2.0 | 6000 | 0.1575 | 18.8403 | | 0.0786 | 3.0 | 9000 | 0.1529 | 17.8550 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.0.1+cu117 - Datasets 2.20.0 - Tokenizers 0.19.1