--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: mistralai/Mistral-7B-Instruct-v0.1 datasets: - generator model-index: - name: Mistral-7B-v0.1_Emotion results: [] --- # Mistral-7B-v0.1_Emotion This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on the generator dataset. ## Model description https://ai.plainenglish.io/fine-tuning-the-mistral-7b-instruct-v0-1-model-with-the-emotion-dataset-c84c50b553dc Fine tunning: https://github.com/frank-morales2020/MLxDL/blob/main/FineTuning_Mistral_7b_hfdeployment_dataset_Emotion.ipynb Evaluation: https://github.com/frank-morales2020/MLxDL/blob/main/FineTunning_Testing_For_EmotionQADataset.ipynb ## Intended uses & limitations More information needed ## Training and evaluation data https://github.com/frank-morales2020/MLxDL/blob/main/FineTunning_Testing_For_EmotionQADataset.ipynb The following hyperparameters were used during training: ----------- learning_rate: 0.0002 train_batch_size: 3 eval_batch_size: 8 seed: 42 gradient_accumulation_steps: 2 total_train_batch_size: 6 optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 lr_scheduler_type: constant lr_scheduler_warmup_ratio: 0.03 num_epochs: 1 NOTE: test - Accuracy (Eval dataset and predict) for a sample of 2000: 59.45% ----------- The following hyperparameters were used during training: learning_rate: 0.0002 train_batch_size: 3 eval_batch_size: 8 seed: 42 gradient_accumulation_steps: 2 total_train_batch_size: 6 optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 lr_scheduler_type: constant lr_scheduler_warmup_ratio: 0.03 num_epochs: 25 NOTE: test - Accuracy (Eval dataset and predict) for a sample of 2000: 79.95% ----------- The following hyperparameters were used during training: learning_rate: 0.0002 train_batch_size: 3 eval_batch_size: 8 seed: 42 gradient_accumulation_steps: 2 total_train_batch_size: 6 optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 lr_scheduler_type: constant lr_scheduler_warmup_ratio: 0.03 num_epochs: 100 NOTE: test - Accuracy (Eval dataset and predict) for a sample of 2000: TBD ----------- ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 3 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 6 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 25 ### Training results ### Framework versions - PEFT 0.11.1 - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1