foxxy-hm's picture
Update README.md
4eadf32
|
raw
history blame
3.66 kB
metadata
license: cc-by-nc-4.0
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: wav2vec2-base-finetune-vi-v2
    results: []
widget:
  - example_title: SOICT 2023 - SLU public test 1
    src: >-
      https://huggingface.co/foxxy-hm/wav2vec2-base-finetune-vi/raw/main/audio-test/055R7BruAa333g9teFfamQH.wav
  - example_title: SOICT 2023 - SLU public test 2
    src: >-
      https://huggingface.co/foxxy-hm/wav2vec2-base-finetune-vi/raw/main/audio-test/0BLHhoJexE8THB8BrsZxWbh.wav
  - example_title: SOICT 2023 - SLU public test 3
    src: >-
      https://huggingface.co/foxxy-hm/wav2vec2-base-finetune-vi/raw/main/audio-test/1ArUTGWJQ9YALH2xaNhU6GV.wav

wav2vec2-base-finetune-vi-v2

This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vietnamese-250h on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2294
  • Wer: 0.1457

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
13.1354 0.67 500 3.0881 1.0186
2.2088 1.34 1000 0.9805 0.4257
1.122 2.0 1500 0.4928 0.2850
0.7567 2.67 2000 0.4217 0.2466
0.627 3.34 2500 0.3889 0.2212
0.5369 4.01 3000 0.3496 0.2131
0.4485 4.67 3500 0.3239 0.1994
0.4478 5.34 4000 0.3143 0.1944
0.4013 6.01 4500 0.2989 0.1871
0.4542 6.68 5000 0.2996 0.1871
0.351 7.34 5500 0.2719 0.1736
0.3236 8.01 6000 0.2865 0.1702
0.2954 8.68 6500 0.2708 0.1636
0.3533 9.35 7000 0.2712 0.1639
0.2996 10.01 7500 0.2609 0.1621
0.2595 10.68 8000 0.2450 0.1627
0.2914 11.35 8500 0.2748 0.1596
0.253 12.02 9000 0.2496 0.1552
0.2314 12.68 9500 0.2496 0.1549
0.2232 13.35 10000 0.2594 0.1557
0.2206 14.02 10500 0.2485 0.1529
0.2026 14.69 11000 0.2365 0.1522
0.2009 15.35 11500 0.2396 0.1513
0.205 16.02 12000 0.2433 0.1499
0.207 16.69 12500 0.2363 0.1496
0.1895 17.36 13000 0.2280 0.1481
0.1991 18.02 13500 0.2352 0.1481
0.2109 18.69 14000 0.2353 0.1477
0.1959 19.36 14500 0.2294 0.1457

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3