from src.models.pairwise_model import * from src.features.text_utils import * import regex as re from src.models.bm25_utils import BM25Gensim from src.models.qa_model import * from tqdm.auto import tqdm tqdm.pandas() from datasets import load_dataset df_wiki_windows = load_dataset("foxxy-hm/e2eqa-wiki", data_files="processed/wikipedia_20220620_cleaned_v2.csv")["train"].to_pandas() df_wiki = load_dataset("foxxy-hm/e2eqa-wiki", data_files="wikipedia_20220620_short.csv")["train"].to_pandas() df_wiki.title = df_wiki.title.apply(str) entity_dict = load_dataset("foxxy-hm/e2eqa-wiki", data_files="processed/entities.json")["train"].to_dict() new_dict = dict() for key, val in entity_dict.items(): val = val[0].replace("wiki/", "").replace("_", " ") entity_dict[key] = val key = preprocess(key) new_dict[key.lower()] = val entity_dict.update(new_dict) title2idx = dict([(x.strip(), y) for x, y in zip(df_wiki.title, df_wiki.index.values)]) qa_model = QAEnsembleModel("nguyenvulebinh/vi-mrc-large", ["models/qa_model_robust.bin"], entity_dict) pairwise_model_stage1 = PairwiseModel("nguyenvulebinh/vi-mrc-base")#.half() pairwise_model_stage1.load_state_dict(torch.load("models/pairwise_v2.bin", map_location=torch.device('cpu'))) pairwise_model_stage1.eval() pairwise_model_stage2 = PairwiseModel("nguyenvulebinh/vi-mrc-base")#.half() pairwise_model_stage2.load_state_dict(torch.load("models/pairwise_stage2_seed0.bin", map_location=torch.device('cpu'))) bm25_model_stage1 = BM25Gensim("models/bm25_stage1/", entity_dict, title2idx) bm25_model_stage2_full = BM25Gensim("models/bm25_stage2/full_text/", entity_dict, title2idx) bm25_model_stage2_title = BM25Gensim("models/bm25_stage2/title/", entity_dict, title2idx) def get_answer_e2e(question): #Bm25 retrieval for top200 candidates query = preprocess(question).lower() top_n, bm25_scores = bm25_model_stage1.get_topk_stage1(query, topk=200) titles = [preprocess(df_wiki_windows.title.values[i]) for i in top_n] texts = [preprocess(df_wiki_windows.text.values[i]) for i in top_n] #Reranking with pairwise model for top10 question = preprocess(question) ranking_preds = pairwise_model_stage1.stage1_ranking(question, texts) ranking_scores = ranking_preds * bm25_scores #Question answering best_idxs = np.argsort(ranking_scores)[-10:] ranking_scores = np.array(ranking_scores)[best_idxs] texts = np.array(texts)[best_idxs] best_answer = qa_model(question, texts, ranking_scores) if best_answer is None: return "Chịu" bm25_answer = preprocess(str(best_answer).lower(), max_length=128, remove_puncts=True) #Entity mapping if not check_number(bm25_answer): bm25_question = preprocess(str(question).lower(), max_length=128, remove_puncts=True) bm25_question_answer = bm25_question + " " + bm25_answer candidates, scores = bm25_model_stage2_title.get_topk_stage2(bm25_answer, raw_answer=best_answer) titles = [df_wiki.title.values[i] for i in candidates] texts = [df_wiki.text.values[i] for i in candidates] ranking_preds = pairwise_model_stage2.stage2_ranking(question, best_answer, titles, texts) if ranking_preds.max() >= 0.1: final_answer = titles[ranking_preds.argmax()] else: candidates, scores = bm25_model_stage2_full.get_topk_stage2(bm25_question_answer) titles = [df_wiki.title.values[i] for i in candidates] + titles texts = [df_wiki.text.values[i] for i in candidates] + texts ranking_preds = np.concatenate( [pairwise_model_stage2.stage2_ranking(question, best_answer, titles, texts), ranking_preds]) final_answer = "wiki/"+titles[ranking_preds.argmax()].replace(" ","_") else: final_answer = bm25_answer.lower() return final_answer