--- library_name: transformers language: - sv - en --- # Lynx 2B (micro) ![Mascot](assets/lynx_mascot.png) ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Funded, Developed and shared by:** [42 Labs](https://www.42labs.ai) - **Model type:** Auto-regressive transformer - **Language(s) (NLP):** Swedish and English - **License:** Gemma terms of use - **Finetuned from model:** [Gemma 2B, 1.1 instruct](https://huggingface.co/google/gemma-1.1-2b-it) ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model ```python import torch from transformers import pipeline from transformers import TextStreamer from transformers import AutoTokenizer from transformers import AutoModelForCausalLM model_name = 'four-two-labs/lynx-micro' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, device_map='cuda', torch_dtype=torch.bfloat16, use_flash_attention_2=True, # Remove if flash attention isn't available ) pipe = pipeline( 'text-generation', model=model, tokenizer=tokenizer, streamer=TextStreamer(tokenizer=tokenizer) ) messages = [ #{'role': 'user', 'content': 'Lös ekvationen 2x^2-5 = 9'}, #{'role': 'user', 'content': 'Vad är fel med denna mening: "Hej! Jag idag bra mår."'}, #{'role': 'user', 'content': """Översätt till svenska: Hayashi, the Japanese government spokesperson, said Monday that Tokyo is answering the Chinese presence around the islands with vessels of its own.\n\n“We ensure a comprehensive security system for territorial waters by deploying Coast Guard patrol vessels that are consistently superior to other party’s capacity,” Hayashi said.\n\nAny Japanese-Chinese incident in the Senkakus raises the risk of a wider conflict, analysts note, due to Japan’s mutual defense treaty with the United States.\n\nWashington has made clear on numerous occasions that it considers the Senkakus to be covered by the mutual defense pact."""}, #{'role': 'user', 'content': """Vad handlar texten om?\n\nHayashi, the Japanese government spokesperson, said Monday that Tokyo is answering the Chinese presence around the islands with vessels of its own.\n\n“We ensure a comprehensive security system for territorial waters by deploying Coast Guard patrol vessels that are consistently superior to other party’s capacity,” Hayashi said.\n\nAny Japanese-Chinese incident in the Senkakus raises the risk of a wider conflict, analysts note, due to Japan’s mutual defense treaty with the United States.\n\nWashington has made clear on numerous occasions that it considers the Senkakus to be covered by the mutual defense pact."""}, #{'role': 'user', 'content': """Skriv en sci-fi novell som utspelar sig över millenium på en planet runt ett binärt stjärnsystem."""}, {'role': 'user', 'content': 'Hur många helikoptrar kan en människa äta på en gång?'}, ] r = pipe( messages, max_length=4096, do_sample=False, eos_token_id=tokenizer.vocab[''] ) ``` ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]