--- license: cc-by-4.0 language: - hak pipeline_tag: automatic-speech-recognition --- # Model Card for whisper-large-v3-taiwanese-hakka This model is a fine-tuned version of the Taiwanese Hakka [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3), which uses the ids of each dialect as prompts during training, to experiment whether the addition of prompts to the finetune of whisper when using multiple dialects will give better results. ## Dialect and Id - 四縣: htia_sixian - 海陸: htia_hailu - 大埔: htia_dapu - 饒平: htia_raoping - 詔安: htia_zhaoan - 南四縣: htia_nansixian ### Training process The training of the model was performed with the following hyperparameters - Batch size: 32 - Epochs: 3 - Warmup Steps: 50 - Total Steps: 42549 - Learning rate: 7e-5 - Data augmentation: No ### How to use ```python import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "formospeech/whisper-large-v3-taiwanese-hakka" dialect_id = "htia_sixian" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=30, batch_size=16, torch_dtype=torch_dtype, device=device, ) generate_kwargs = {"language": "Chinese", "prompt_ids": torch.from_numpy(processor.get_prompt_ids(dialect_id)).to(device)} transcription = pipe("path/to/my_audio.wav", generate_kwargs=generate_kwargs) print(transcription.replace(f" {dialect_id}", "")) ```