--- base_model: - unsloth/Qwen2.5-3B-Instruct - unsloth/Qwen2.5-3B library_name: transformers tags: - mergekit - merge --- # merged_output_ties_1_4 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [unsloth/Qwen2.5-3B](https://huggingface.co/unsloth/Qwen2.5-3B) as a base. ### Models Merged The following models were included in the merge: * [unsloth/Qwen2.5-3B-Instruct](https://huggingface.co/unsloth/Qwen2.5-3B-Instruct) * triples/merged_model * genstruct/merged_model * kg/merged_model ### Configuration The following YAML configuration was used to produce this model: ```yaml models: # Base instructed model - model: unsloth/Qwen2.5-3B-Instruct parameters: weight: 1 density: 1 # Merged LoRA models - model: genstruct/merged_model parameters: weight: 1.0 density: 1.0 # - model: summary/merged_model # parameters: # weight: 1.0 # density: 1.0 - model: kg/merged_model parameters: weight: 1.0 density: 1.0 #### THIS BREAKS KG!!! # - model: pII/merged_model # parameters: # weight: 1.0 # density: 1.0 # #### Breaks KG! # - model: preference/merged_model # parameters: # weight: 1.0 # density: 1.0 - model: triples/merged_model parameters: weight: 1.0 density: 1.0 # - model: suitable/merged_model # parameters: # weight: 1.0 # density: 1.0 # - model: feedback/merged_model # parameters: # weight: 1.0 # density: 1.0 # Merge configuration merge_method: ties base_model: unsloth/Qwen2.5-3B parameters: normalize: true int8_mask: true dtype: bfloat16 # # Tokenizer configuration # tokenizer_source: Qwen/Qwen1.5-14B-Chat # tokenizer_parameters: # trust_remote_code: true # # Output configuration # output: # precision: bfloat16 # model_format: safetensors # max_shard_size: "4GB" # # Training configuration (for potential fine-tuning) # training: # learning_rate: 2e-5 # warmup_steps: 100 # gradient_checkpointing: true # gradient_accumulation_steps: 4 # # Hardware optimization # hardware: # mixed_precision: true # cuda_memory_fraction: 0.95 # optimize_model_memory: true ```