import gradio as gr from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch # Load your model and tokenizer model_name = "fohake/cert" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # Define the prediction function def predict(text): inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probabilities = torch.nn.functional.softmax(logits, dim=-1) predicted_class = torch.argmax(probabilities, dim=-1).item() confidence = probabilities[0][predicted_class].item() return {"class": predicted_class, "confidence": confidence} # Create the Gradio interface iface = gr.Interface( fn=predict, inputs=gr.inputs.Textbox(lines=2, placeholder="Enter text here..."), outputs="json", title="Text Classification with CERT", description="Enter a piece of text to classify it using the CERT model." ) if __name__ == "__main__": iface.launch()