Back to all models
question-answering mask_token: <mask>
Context
Query this model
🔥 This model is currently loaded and running on the Inference API. ⚠️ This model could not be loaded by the inference API. ⚠️ This model can be loaded on the Inference API on-demand.
JSON Output
API endpoint
								$ curl -X POST \
https://api-inference.huggingface.co/models/fmikaelian/camembert-base-squad
Share Copied link to clipboard

Monthly model downloads

fmikaelian/camembert-base-squad fmikaelian/camembert-base-squad
441 downloads
last 30 days

pytorch

tf

Contributed by

fmikaelian Félix MIKAELIAN
3 models

How to use this model directly from the 🤗/transformers library:

			
Copy to clipboard
from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("fmikaelian/camembert-base-squad") model = AutoModelForQuestionAnswering.from_pretrained("fmikaelian/camembert-base-squad")

camembert-base-squad

Description

A baseline model for question-answering in french (CamemBERT model fine-tuned on french-translated SQuAD 1.1 dataset)

Training hyperparameters

python3 ./examples/question-answering/run_squad.py \
--model_type camembert \
--model_name_or_path camembert-base \
--do_train \
--do_eval \
--do_lower_case \
--train_file SQuAD-v1.1-train_fr_ss999_awstart2_net.json \
--predict_file SQuAD-v1.1-dev_fr_ss999_awstart2_net.json \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir output3 \
--per_gpu_eval_batch_size=3 \
--per_gpu_train_batch_size=3 \
--save_steps 10000

Evaluation results

{"f1": 79.8570684959745, "exact_match": 59.21327108373895}

Usage

from transformers import pipeline

nlp = pipeline('question-answering', model='fmikaelian/camembert-base-squad', tokenizer='fmikaelian/camembert-base-squad')

nlp({
    'question': "Qui est Claude Monet?",
    'context': "Claude Monet, né le 14 novembre 1840 à Paris et mort le 5 décembre 1926 à Giverny, est un peintre français et l’un des fondateurs de l'impressionnisme."
})