--- library_name: transformers license: mit base_model: microsoft/Phi-3.5-mini-instruct tags: - axolotl - generated_from_trainer model-index: - name: Phi-3.5-mini-instruct-Code50000-Test results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: microsoft/Phi-3.5-mini-instruct model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer chat_template: phi_3 load_in_8bit: false load_in_4bit: false strict: false datasets: - path: flydust/CodeGen_50000_Test type: chat_template field_messages: conversations # The key in the message turn that contains the role. Default is "role". message_field_role: from # The key in the message turn that contains the content. Default is "content". message_field_content: value # Optional[Dict[str, List]]. Roles mapping for the messages. roles: user: ["human", "user"] assistant: ["gpt", "assistant", "ai"] system: ["system"] dataset_prepared_path: last_run_prepared val_set_size: 0.001 output_dir: axolotl_out/Phi-3.5-mini-instruct-Code50000-Test sequence_len: 4096 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true wandb_project: SynDa wandb_entity: wandb_watch: wandb_name: Phi-3.5-mini-instruct-Code50000-Test wandb_log_model: hub_model_id: flydust/Phi-3.5-mini-instruct-Code50000-Test gradient_accumulation_steps: 4 micro_batch_size: 1 num_epochs: 2 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 2e-5 train_on_inputs: false group_by_length: false bf16: true fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: # Disable flash attention flash_attention: true # sdp_attention: falses # eager_attention: true warmup_ratio: 0.1 evals_per_epoch: 10 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# Phi-3.5-mini-instruct-Code50000-Test This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1712 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 21 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4415 | 0.0093 | 1 | 0.4636 | | 0.2376 | 0.1019 | 11 | 0.2367 | | 0.2014 | 0.2037 | 22 | 0.2002 | | 0.1824 | 0.3056 | 33 | 0.1895 | | 0.1728 | 0.4074 | 44 | 0.1817 | | 0.1764 | 0.5093 | 55 | 0.1786 | | 0.1822 | 0.6111 | 66 | 0.1766 | | 0.1661 | 0.7130 | 77 | 0.1750 | | 0.171 | 0.8148 | 88 | 0.1740 | | 0.1577 | 0.9167 | 99 | 0.1741 | | 0.1615 | 1.0162 | 110 | 0.1722 | | 0.1551 | 1.1181 | 121 | 0.1720 | | 0.1676 | 1.2199 | 132 | 0.1724 | | 0.1583 | 1.3218 | 143 | 0.1714 | | 0.164 | 1.4236 | 154 | 0.1713 | | 0.1581 | 1.5255 | 165 | 0.1717 | | 0.1496 | 1.6273 | 176 | 0.1707 | | 0.1563 | 1.7292 | 187 | 0.1710 | | 0.1518 | 1.8310 | 198 | 0.1707 | | 0.1687 | 1.9329 | 209 | 0.1712 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.1+cu124 - Datasets 2.20.0 - Tokenizers 0.19.1