---
library_name: transformers
license: mit
base_model: microsoft/Phi-3.5-mini-instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: Phi-3.5-mini-instruct-Code50000-Test
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
base_model: microsoft/Phi-3.5-mini-instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
chat_template: phi_3
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: flydust/CodeGen_50000_Test
type: chat_template
field_messages: conversations
# The key in the message turn that contains the role. Default is "role".
message_field_role: from
# The key in the message turn that contains the content. Default is "content".
message_field_content: value
# Optional[Dict[str, List]]. Roles mapping for the messages.
roles:
user: ["human", "user"]
assistant: ["gpt", "assistant", "ai"]
system: ["system"]
dataset_prepared_path: last_run_prepared
val_set_size: 0.001
output_dir: axolotl_out/Phi-3.5-mini-instruct-Code50000-Test
sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: SynDa
wandb_entity:
wandb_watch:
wandb_name: Phi-3.5-mini-instruct-Code50000-Test
wandb_log_model:
hub_model_id: flydust/Phi-3.5-mini-instruct-Code50000-Test
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
# Disable flash attention
flash_attention: true
# sdp_attention: falses
# eager_attention: true
warmup_ratio: 0.1
evals_per_epoch: 10
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```
# Phi-3.5-mini-instruct-Code50000-Test
This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1712
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 21
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.4415 | 0.0093 | 1 | 0.4636 |
| 0.2376 | 0.1019 | 11 | 0.2367 |
| 0.2014 | 0.2037 | 22 | 0.2002 |
| 0.1824 | 0.3056 | 33 | 0.1895 |
| 0.1728 | 0.4074 | 44 | 0.1817 |
| 0.1764 | 0.5093 | 55 | 0.1786 |
| 0.1822 | 0.6111 | 66 | 0.1766 |
| 0.1661 | 0.7130 | 77 | 0.1750 |
| 0.171 | 0.8148 | 88 | 0.1740 |
| 0.1577 | 0.9167 | 99 | 0.1741 |
| 0.1615 | 1.0162 | 110 | 0.1722 |
| 0.1551 | 1.1181 | 121 | 0.1720 |
| 0.1676 | 1.2199 | 132 | 0.1724 |
| 0.1583 | 1.3218 | 143 | 0.1714 |
| 0.164 | 1.4236 | 154 | 0.1713 |
| 0.1581 | 1.5255 | 165 | 0.1717 |
| 0.1496 | 1.6273 | 176 | 0.1707 |
| 0.1563 | 1.7292 | 187 | 0.1710 |
| 0.1518 | 1.8310 | 198 | 0.1707 |
| 0.1687 | 1.9329 | 209 | 0.1712 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.5.1+cu124
- Datasets 2.20.0
- Tokenizers 0.19.1