--- license: apache-2.0 tags: - generated_from_trainer datasets: - rotten_tomatoes metrics: - accuracy base_model: bert-base-cased model-index: - name: bert-finetuned-rottentomatoes results: - task: type: text-classification name: Text Classification dataset: name: rotten_tomatoes type: rotten_tomatoes config: default split: validation args: default metrics: - type: accuracy value: 0.8442776735459663 name: Accuracy --- # bert-finetuned-rottentomatoes This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the rotten_tomatoes dataset. It achieves the following results on the evaluation set: - Loss: 0.9971 - Accuracy: 0.8443 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1626 | 1.0 | 1067 | 0.8012 | 0.8340 | | 0.1048 | 2.0 | 2134 | 0.9137 | 0.8405 | | 0.0472 | 3.0 | 3201 | 0.9971 | 0.8443 | ### Framework versions - Transformers 4.27.2 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2