#!/usr/bin/env python3
from datasets import load_dataset
from datasets import load_from_disk
from tokenizers import ByteLevelBPETokenizer
from tqdm import tqdm
# load dataset
# dataset = load_dataset("oscar", "unshuffled_deduplicated_hi", split="train")
dataset = load_from_disk("/home/rtx/work/dk/hf/vo")
# Instantiate tokenizer
tokenizer = ByteLevelBPETokenizer(add_prefix_space=True)
def batch_iterator(batch_size=100_000):
for i in range(0, len(dataset), batch_size):
yield dataset[i: i + batch_size]["text"]
# Customized training
tokenizer.train_from_iterator(batch_iterator(), vocab_size=50265, min_frequency=50, special_tokens=[
"",
"",
"",
"",
"",
])
# Save files to disk
tokenizer.save("./tokenizer.json")