from datasets import load_dataset, concatenate_datasets from tokenizers import ByteLevelBPETokenizer from transformers import AutoConfig from pythainlp.tokenize import word_tokenize language = "th" model_config = "roberta-base" model_dir = model_config + f"-pretrained-{language}" config = AutoConfig.from_pretrained(model_config) config.save_pretrained(f"{model_dir}") # load dataset # only the train subset for tokenizing purposes raw_dataset = load_dataset( "oscar", f"unshuffled_deduplicated_{language}", split="train" ) # Instantiate tokenizer tokenizer = ByteLevelBPETokenizer() ## For Thai NLP Library, please feel free to check https://pythainlp.github.io/docs/2.3/api/tokenize.html def th_tokenize(text): result = " ".join(word_tokenize(text, engine="newmm", keep_whitespace=False)) return result def batch_iterator(batch_size=1000): for i in range(0, len(raw_dataset), batch_size): yield [th_tokenize(text) for text in raw_dataset[i : i + batch_size]["text"]] # Customized training tokenizer.train_from_iterator( batch_iterator(), vocab_size=50265, min_frequency=2, special_tokens=["", "", "", "", "",], ) # Save files to disk tokenizer.save(f"./tokenizer.json")