import jax print(jax.local_device_count()) import jax.numpy as jnp import flax import flax.linen as nn from flax.core.frozen_dict import FrozenDict, unfreeze from flax.training.common_utils import get_metrics,onehot,shard,shard_prng_key from typing import Any, Optional, Tuple from transformers import ( GPT2Config) import transformers from transformers import GPT2Tokenizer tokenizer = GPT2Tokenizer.from_pretrained("gpt2",pad_token='<|endoftext|>') from datasets import load_dataset,load_metric from model_file import FlaxGPT2ForMultipleChoice import logging logger = logging.getLogger() logger.setLevel(logging.INFO) dataset=load_dataset('cosmos_qa') len_test_dataset=6963 test_dataset=dataset['test'].select(range(len_test_dataset)) def preprocess(example): example['context&question']=example['context']+example['question'] example['first_sentence']=[example['context&question'],example['context&question'],example['context&question'],example['context&question']] example['second_sentence']=example['answer0'],example['answer1'],example['answer2'],example['answer3'] return example test_dataset=test_dataset.map(preprocess) def tokenize(examples): a=tokenizer(examples['first_sentence'],examples['second_sentence'],padding='max_length',truncation=True,max_length=256,return_tensors='jax') a['labels']=examples['label'] return a test_dataset=test_dataset.map(tokenize) remov_col=['id', 'context', 'question', 'answer0', 'answer1', 'answer2', 'answer3', 'labels', 'context&question', 'first_sentence', 'second_sentence'] test_dataset=test_dataset.remove_columns(remov_col) seed=0 total_batch_size=32 model = FlaxGPT2ForMultipleChoice.from_pretrained("flax-community/gpt2-Cosmos",input_shape=(1,4,1)) def glue_train_data_loader(rng,dataset,batch_size): steps_per_epoch=len_test_dataset//batch_size perms=jax.random.permutation(rng,len(dataset)) perms=perms[:steps_per_epoch*batch_size] perms=perms.reshape((steps_per_epoch,batch_size)) for perm in perms: batch=dataset[perm] batch={k:jnp.array(v) for k,v in batch.items()} batch=shard(batch) yield batch rng=jax.random.PRNGKey(seed) dropout_rngs=jax.random.split(rng,jax.local_device_count()) input_id=jnp.array(test_dataset['input_ids']) att_mask=jnp.array(test_dataset['attention_mask']) restored_output=[] rng, input_rng = jax.random.split(rng) for idx,batch in enumerate(glue_train_data_loader(input_rng, test_dataset, total_batch_size)): outputs=model(batch['input_ids'],batch['attention_mask']) final_output=jnp.argmax(outputs,axis=-1) restored_output.append(final_output) #outputs=model(input_id,att_mask) #final_output=jnp.argmax(outputs,axis=-1) logger.info(f"the predction of the test dataset : {restored_output[:30]}")