import jax print(jax.local_device_count()) import jax.numpy as jnp import flax import flax.linen as nn from flax.core.frozen_dict import FrozenDict, unfreeze from typing import Any, Optional, Tuple from transformers import ( GPT2Config) import transformers from transformers import GPT2Tokenizer tokenizer = GPT2Tokenizer.from_pretrained("gpt2",pad_token='<|endoftext|>') from datasets import load_dataset,load_metric from datasets import Dataset from model_file import FlaxGPT2ForMultipleChoice import logging logger = logging.getLogger() logger.setLevel(logging.INFO) run_dataset=Dataset.from_csv('......') def preprocess(example): example['context&question']=example['context']+example['question'] example['first_sentence']=[example['context&question'],example['context&question'],example['context&question'],example['context&question']] example['second_sentence']=example['answer0'],example['answer1'],example['answer2'],example['answer3'] return example run_dataset=run_dataset.map(preprocess) def tokenize(examples): a=tokenizer(examples['first_sentence'],examples['second_sentence'],padding='max_length',truncation=True,max_length=256,return_tensors='jax') a['labels']=examples['label'] return a run_dataset=run_dataset.map(tokenize) remov_col=['id', 'context', 'question', 'answer0', 'answer1', 'answer2', 'answer3', 'labels', 'context&question', 'first_sentence', 'second_sentence'] run_dataset=run_dataset.remove_columns(remov_col) model = FlaxGPT2ForMultipleChoice.from_pretrained("flax-community/gpt2-Cosmos",input_shape=(1,4,1)) input_id=jnp.array(run_dataset['input_ids']) att_mask=jnp.array(run_dataset['attention_mask']) outputs=model(input_id,att_mask) final_output=jnp.argmax(outputs,axis=-1) logger.info(f"the predction of the dataset : {final_output}")