from functools import partial import jax from typing import Any, Callable, Sequence, Optional, NewType from jax import lax, random, vmap, numpy as jnp from jax.experimental.ode import odeint import flax from flax.training import train_state from flax import traverse_util from flax.core import freeze, unfreeze from flax import linen as nn from flax import serialization import optax import tensorflow_datasets as tfds import numpy as np from tqdm import tqdm import os # Define loss @jax.jit def cross_entropy_loss(logits, labels): one_hot_labels = jax.nn.one_hot(labels, num_classes=10) return -jnp.mean(jnp.sum(one_hot_labels * logits, axis=-1)) # Metric computation @jax.jit def compute_metrics(logits, labels): loss = cross_entropy_loss(logits=logits, labels=labels) accuracy = jnp.mean(jnp.argmax(logits, -1) == labels) metrics = { 'loss': loss, 'accuracy': accuracy, } return metrics def get_datasets(): """Load MNIST train and test datasets into memory.""" ds_builder = tfds.builder('mnist') ds_builder.download_and_prepare() train_ds = tfds.as_numpy(ds_builder.as_dataset(split='train', batch_size=-1)) test_ds = tfds.as_numpy(ds_builder.as_dataset(split='test', batch_size=-1)) train_ds['image'] = jnp.float32(train_ds['image']) / 255. test_ds['image'] = jnp.float32(test_ds['image']) / 255. return train_ds, test_ds def create_train_state(model, rng, learning_rate): """Creates initial 'TrainState'.""" params = model.init(rng, jnp.ones([1, 28, 28, 1]))['params'] tx = optax.adam(learning_rate) return train_state.TrainState.create( apply_fn=model.apply, params=params, tx=tx ) # Training step @jax.jit def train_step(state, batch): """Train for a single step.""" def loss_fn(params): logits = apply({'params': params}, batch['image']) loss = cross_entropy_loss(logits=logits, labels=batch['label']) return loss, logits grad_fn = jax.value_and_grad(loss_fn, has_aux=True) (_, logits), grads = grad_fn(state.params) state = state.apply_gradients(grads=grads) metrics = compute_metrics(logits=logits, labels=batch['label']) return state, metrics # Evaluation step @jax.jit def eval_step(params, batch): logits = apply({'params': params}, batch['image']) return compute_metrics(logits=logits, labels=batch['label']) # Train function def train_epoch(model, state, train_ds, batch_size, epoch, rng): """Train for a single epoch""" train_ds_size = len(train_ds['image']) steps_per_epoch = train_ds_size // batch_size perms = jax.random.permutation(rng, len(train_ds['image'])) perms = perms[:steps_per_epoch * batch_size] # skip incomplete batch perms = perms.reshape((steps_per_epoch, batch_size)) batch_metrics = [] for perm in tqdm(perms): batch = {k: v[perm, ...] for k, v in train_ds.items()} state, metrics = train_step(model, state, batch) batch_metrics.append(metrics) # compute mean of metrics across each batch in epoch. batch_metrics_np = jax.device_get(batch_metrics) epoch_metrics_np = { k: np.mean([metrics[k] for metrics in batch_metrics_np]) for k in batch_metrics_np[0] } print('train epoch: %d, loss: %.4f, accuracy: %.2f' % ( epoch, epoch_metrics_np['loss'], epoch_metrics_np['accuracy'] * 100 )) return state # Eval function def eval_model(params, test_ds): metrics = eval_step(params, test_ds) metrics = jax.device_get(metrics) summary = jax.tree_map(lambda x: x.item(), metrics) return summary['loss'], summary['accuracy'] def train_and_evaluate(learning_rate, n_epoch, batch_size): train_ds, test_ds = get_datasets() rng = jax.random.PRNGKey(0) rng, init_rng = jax.random.split(rng) state = create_train_state(init_rng, learning_rate) del init_rng # Must not be used anymore. for epoch in tqdm(range(1, n_epoch + 1)): rng, input_rng = jax.random.split(rng) state = train_epoch(state, train_ds, batch_size, epoch, input_rng) test_loss, test_accuracy = eval_model(state.params, test_ds) print(' test epoch: %d, loss: %.2f, accuracy: %.2f' % ( epoch, test_loss, test_accuracy * 100 ))