# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """JAX-based Dormand-Prince ODE integration with adaptive stepsize. Integrate systems of ordinary differential equations (ODEs) using the JAX autograd/diff library and the Dormand-Prince method for adaptive integration stepsize calculation. Provides improved integration accuracy over fixed stepsize integration methods. For details of the mixed 4th/5th order Runge-Kutta integration method, see https://doi.org/10.1090/S0025-5718-1986-0815836-3 Adjoint algorithm based on Appendix C of https://arxiv.org/pdf/1806.07366.pdf """ from functools import partial import operator as op import jax import jax.numpy as jnp from jax import core from jax import custom_derivatives from jax import lax from jax._src.util import safe_map, safe_zip from jax.flatten_util import ravel_pytree from jax.tree_util import tree_map from jax import linear_util as lu map = safe_map zip = safe_zip def ravel_first_arg(f, unravel): return ravel_first_arg_(lu.wrap_init(f), unravel).call_wrapped @lu.transformation def ravel_first_arg_(unravel, y_flat, *args): y = unravel(y_flat) ans = yield (y,) + args, {} ans_flat, _ = ravel_pytree(ans) yield ans_flat def interp_fit_dopri(y0, y1, k, dt): # Fit a polynomial to the results of a Runge-Kutta step. dps_c_mid = jnp.array([ 6025192743 / 30085553152 / 2, 0, 51252292925 / 65400821598 / 2, -2691868925 / 45128329728 / 2, 187940372067 / 1594534317056 / 2, -1776094331 / 19743644256 / 2, 11237099 / 235043384 / 2]) y_mid = y0 + dt * jnp.dot(dps_c_mid, k) return jnp.asarray(fit_4th_order_polynomial(y0, y1, y_mid, k[0], k[-1], dt)) def fit_4th_order_polynomial(y0, y1, y_mid, dy0, dy1, dt): a = -2.*dt*dy0 + 2.*dt*dy1 - 8.*y0 - 8.*y1 + 16.*y_mid b = 5.*dt*dy0 - 3.*dt*dy1 + 18.*y0 + 14.*y1 - 32.*y_mid c = -4.*dt*dy0 + dt*dy1 - 11.*y0 - 5.*y1 + 16.*y_mid d = dt * dy0 e = y0 return a, b, c, d, e def initial_step_size(fun, t0, y0, order, rtol, atol, f0): # Algorithm from: # E. Hairer, S. P. Norsett G. Wanner, # Solving Ordinary Differential Equations I: Nonstiff Problems, Sec. II.4. scale = atol + jnp.abs(y0) * rtol d0 = jnp.linalg.norm(y0 / scale) d1 = jnp.linalg.norm(f0 / scale) h0 = jnp.where((d0 < 1e-5) | (d1 < 1e-5), 1e-6, 0.01 * d0 / d1) y1 = y0 + h0 * f0 f1 = fun(y1, t0 + h0) d2 = jnp.linalg.norm((f1 - f0) / scale) / h0 h1 = jnp.where((d1 <= 1e-15) & (d2 <= 1e-15), jnp.maximum(1e-6, h0 * 1e-3), (0.01 / jnp.max(d1 + d2)) ** (1. / (order + 1.))) return jnp.minimum(100. * h0, h1) def runge_kutta_step(func, y0, f0, t0, dt): # Dopri5 Butcher tableaux alpha = jnp.array([1 / 5, 3 / 10, 4 / 5, 8 / 9, 1., 1., 0]) beta = jnp.array([ [1 / 5, 0, 0, 0, 0, 0, 0], [3 / 40, 9 / 40, 0, 0, 0, 0, 0], [44 / 45, -56 / 15, 32 / 9, 0, 0, 0, 0], [19372 / 6561, -25360 / 2187, 64448 / 6561, -212 / 729, 0, 0, 0], [9017 / 3168, -355 / 33, 46732 / 5247, 49 / 176, -5103 / 18656, 0, 0], [35 / 384, 0, 500 / 1113, 125 / 192, -2187 / 6784, 11 / 84, 0] ]) c_sol = jnp.array([35 / 384, 0, 500 / 1113, 125 / 192, -2187 / 6784, 11 / 84, 0]) c_error = jnp.array([35 / 384 - 1951 / 21600, 0, 500 / 1113 - 22642 / 50085, 125 / 192 - 451 / 720, -2187 / 6784 - -12231 / 42400, 11 / 84 - 649 / 6300, -1. / 60.]) def body_fun(i, k): ti = t0 + dt * alpha[i-1] yi = y0 + dt * jnp.dot(beta[i-1, :], k) ft = func(yi, ti) return k.at[i, :].set(ft) k = jnp.zeros((7, f0.shape[0]), f0.dtype).at[0, :].set(f0) k = lax.fori_loop(1, 7, body_fun, k) y1 = dt * jnp.dot(c_sol, k) + y0 y1_error = dt * jnp.dot(c_error, k) f1 = k[-1] return y1, f1, y1_error, k def abs2(x): if jnp.iscomplexobj(x): return x.real ** 2 + x.imag ** 2 else: return x ** 2 def error_ratio(error_estimate, rtol, atol, y0, y1): err_tol = atol + rtol * jnp.maximum(jnp.abs(y0), jnp.abs(y1)) err_ratio = error_estimate / err_tol return jnp.mean(abs2(err_ratio)) def optimal_step_size(last_step, mean_error_ratio, safety=0.9, ifactor=10.0, dfactor=0.2, order=5.0): """Compute optimal Runge-Kutta stepsize.""" mean_error_ratio = jnp.max(mean_error_ratio) dfactor = jnp.where(mean_error_ratio < 1, 1.0, dfactor) err_ratio = jnp.sqrt(mean_error_ratio) factor = jnp.maximum(1.0 / ifactor, jnp.minimum(err_ratio**(1.0 / order) / safety, 1.0 / dfactor)) return jnp.where(mean_error_ratio == 0, last_step * ifactor, last_step / factor) def odeint(func, y0, t, *args, rtol=1.4e-8, atol=1.4e-8, mxstep=jnp.inf): """Adaptive stepsize (Dormand-Prince) Runge-Kutta odeint implementation. Args: func: function to evaluate the time derivative of the solution `y` at time `t` as `func(y, t, *args)`, producing the same shape/structure as `y0`. y0: array or pytree of arrays representing the initial value for the state. t: array of float times for evaluation, like `jnp.linspace(0., 10., 101)`, in which the values must be strictly increasing. *args: tuple of additional arguments for `func`, which must be arrays scalars, or (nested) standard Python containers (tuples, lists, dicts, namedtuples, i.e. pytrees) of those types. rtol: float, relative local error tolerance for solver (optional). atol: float, absolute local error tolerance for solver (optional). mxstep: int, maximum number of steps to take for each timepoint (optional). Returns: Values of the solution `y` (i.e. integrated system values) at each time point in `t`, represented as an array (or pytree of arrays) with the same shape/structure as `y0` except with a new leading axis of length `len(t)`. """ def _check_arg(arg): if not isinstance(arg, core.Tracer) and not core.valid_jaxtype(arg): msg = ("The contents of odeint *args must be arrays or scalars, but got " "\n{}.") raise TypeError(msg.format(arg)) converted, consts = custom_derivatives.closure_convert(func, y0, t[0], *args) return _odeint_wrapper(converted, rtol, atol, mxstep, y0, t, *args, *consts) @partial(jax.jit, static_argnums=(0, 1, 2, 3)) def _odeint_wrapper(func, rtol, atol, mxstep, y0, ts, *args): y0, unravel = ravel_pytree(y0) func = ravel_first_arg(func, unravel) out = _odeint(func, rtol, atol, mxstep, y0, ts, *args) return jax.vmap(unravel)(out) @partial(jax.custom_vjp, nondiff_argnums=(0, 1, 2, 3)) def _odeint(func, rtol, atol, mxstep, y0, ts, *args): func_ = lambda y, t: func(y, t, *args) def scan_fun(carry, target_t): def cond_fun(state): i, _, _, t, dt, _, _ = state return (t < target_t) & (i < mxstep) & (dt > 0) def body_fun(state): i, y, f, t, dt, last_t, interp_coeff = state next_y, next_f, next_y_error, k = runge_kutta_step(func_, y, f, t, dt) next_t = t + dt error_ratios = error_ratio(next_y_error, rtol, atol, y, next_y) new_interp_coeff = interp_fit_dopri(y, next_y, k, dt) dt = optimal_step_size(dt, error_ratios) new = [i + 1, next_y, next_f, next_t, dt, t, new_interp_coeff] old = [i + 1, y, f, t, dt, last_t, interp_coeff] return map(partial(jnp.where, jnp.all(error_ratios <= 1.)), new, old) _, *carry = lax.while_loop(cond_fun, body_fun, [0] + carry) _, _, t, _, last_t, interp_coeff = carry relative_output_time = (target_t - last_t) / (t - last_t) y_target = jnp.polyval(interp_coeff, relative_output_time) return carry, y_target # ODEfunc with NFE counter will give auxilarly output for nfe. # Below code is modified to skip that output. f0 = func_(y0, ts[0]) dt = initial_step_size(func_, ts[0], y0, 4, rtol, atol, f0) interp_coeff = jnp.array([y0] * 5) init_carry = [y0, f0, ts[0], dt, ts[0], interp_coeff] _, ys = lax.scan(scan_fun, init_carry, ts[1:]) return jnp.concatenate((y0[None], ys)) def _odeint_fwd(func, rtol, atol, mxstep, y0, ts, *args): ys = _odeint(func, rtol, atol, mxstep, y0, ts, *args) return ys, (ys, ts, args) def _odeint_rev(func, rtol, atol, mxstep, res, g): ys, ts, args = res def aug_dynamics(augmented_state, t, *args): """Original system augmented with vjp_y, vjp_t and vjp_args.""" y, y_bar, *_ = augmented_state # `t` here is negatice time, so we need to negate again to get back to # normal time. See the `odeint` invocation in `scan_fun` below. y_dot, vjpfun = jax.vjp(func, y, -t, *args) return (-y_dot, *vjpfun(y_bar)) y_bar = g[-1] ts_bar = [] t0_bar = 0. def scan_fun(carry, i): y_bar, t0_bar, args_bar = carry # Compute effect of moving measurement time # `t_bar` should not be complex as it represents time t_bar = jnp.dot(func(ys[i], ts[i], *args), g[i]).real t0_bar = t0_bar - t_bar # Run augmented system backwards to previous observation _, y_bar, t0_bar, args_bar = odeint( aug_dynamics, (ys[i], y_bar, t0_bar, args_bar), jnp.array([-ts[i], -ts[i - 1]]), *args, rtol=rtol, atol=atol, mxstep=mxstep) y_bar, t0_bar, args_bar = tree_map(op.itemgetter(1), (y_bar, t0_bar, args_bar)) # Add gradient from current output y_bar = y_bar + g[i - 1] return (y_bar, t0_bar, args_bar), t_bar init_carry = (g[-1], 0., tree_map(jnp.zeros_like, args)) (y_bar, t0_bar, args_bar), rev_ts_bar = lax.scan( scan_fun, init_carry, jnp.arange(len(ts) - 1, 0, -1)) ts_bar = jnp.concatenate([jnp.array([t0_bar]), rev_ts_bar[::-1]]) return (y_bar, ts_bar, *args_bar) _odeint.defvjp(_odeint_fwd, _odeint_rev)