--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.86 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.8175 - Accuracy: 0.86 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1414 | 1.0 | 113 | 2.0686 | 0.52 | | 1.3917 | 2.0 | 226 | 1.4505 | 0.56 | | 1.109 | 3.0 | 339 | 1.0342 | 0.71 | | 0.6752 | 4.0 | 452 | 0.8531 | 0.74 | | 0.5346 | 5.0 | 565 | 0.7352 | 0.74 | | 0.3598 | 6.0 | 678 | 0.5552 | 0.82 | | 0.32 | 7.0 | 791 | 0.5660 | 0.84 | | 0.1663 | 8.0 | 904 | 0.5829 | 0.84 | | 0.0369 | 9.0 | 1017 | 0.7868 | 0.83 | | 0.0235 | 10.0 | 1130 | 0.8371 | 0.84 | | 0.0087 | 11.0 | 1243 | 0.7114 | 0.84 | | 0.0064 | 12.0 | 1356 | 0.7578 | 0.84 | | 0.0046 | 13.0 | 1469 | 0.7859 | 0.83 | | 0.0042 | 14.0 | 1582 | 0.8681 | 0.86 | | 0.0032 | 15.0 | 1695 | 0.8926 | 0.86 | | 0.0031 | 16.0 | 1808 | 0.8339 | 0.84 | | 0.0029 | 17.0 | 1921 | 0.7772 | 0.86 | | 0.0025 | 18.0 | 2034 | 0.8376 | 0.86 | | 0.0025 | 19.0 | 2147 | 0.8175 | 0.86 | | 0.0024 | 20.0 | 2260 | 0.8175 | 0.86 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1