import matplotlib import numpy as np import torch def colorize_depth_maps( depth_map, min_depth, max_depth, cmap="Spectral", valid_mask=None ): """ Colorize depth maps. """ assert len(depth_map.shape) >= 2, "Invalid dimension" if isinstance(depth_map, torch.Tensor): depth = depth_map.detach().squeeze().numpy() elif isinstance(depth_map, np.ndarray): depth = depth_map.copy().squeeze() # reshape to [ (B,) H, W ] if depth.ndim < 3: depth = depth[np.newaxis, :, :] # colorize cm = matplotlib.colormaps[cmap] depth = ((depth - min_depth) / (max_depth - min_depth)).clip(0, 1) img_colored_np = cm(depth, bytes=False)[:, :, :, 0:3] # value from 0 to 1 img_colored_np = np.rollaxis(img_colored_np, 3, 1) if valid_mask is not None: if isinstance(depth_map, torch.Tensor): valid_mask = valid_mask.detach().numpy() valid_mask = valid_mask.squeeze() # [H, W] or [B, H, W] if valid_mask.ndim < 3: valid_mask = valid_mask[np.newaxis, np.newaxis, :, :] else: valid_mask = valid_mask[:, np.newaxis, :, :] valid_mask = np.repeat(valid_mask, 3, axis=1) img_colored_np[~valid_mask] = 0 if isinstance(depth_map, torch.Tensor): img_colored = torch.from_numpy(img_colored_np).float() elif isinstance(depth_map, np.ndarray): img_colored = img_colored_np return img_colored def scale_depth_to_model(depth, camera_type='ortho'): """ Scale depth from the original range. """ assert camera_type == 'ortho' or camera_type == 'persp' w, h = depth.shape if camera_type == 'ortho': original_min = 9000 original_max = 17000 target_min = 2000 target_max = 62000 mask = depth != 0 # Scale depth to [0, 1] depth_normalized = np.zeros([w, h]) depth_normalized[mask] = (depth[mask] - original_min) / (original_max - original_min) # Scale depth to [2000, 60000] scaled_depth = np.zeros([w, h]) scaled_depth[mask] = depth_normalized[mask] * (target_max - target_min) + target_min else: original_min = 4000 original_max = 13000 target_min = 2000 target_max = 62000 mask = depth != 0 # Scale depth to [0, 1] depth_normalized = np.zeros([w, h]) depth_normalized[mask] = (depth[mask] - original_min) / (original_max - original_min) # Scale depth to [2000, 60000] scaled_depth = np.zeros([w, h]) scaled_depth[mask] = depth_normalized[mask] * (target_max - target_min) + target_min scaled_depth[scaled_depth > 62000] = 0 scaled_depth = scaled_depth / 65535. # [0, 1] return scaled_depth def rescale_depth_to_world(scaled_depth, camera_type='ortho'): """ Rescale depth from the scaled range back to the original range. """ assert camera_type == 'ortho' or camera_type == 'persp' scaled_depth = scaled_depth * 65535. w, h = scaled_depth.shape if camera_type == 'ortho': original_min = 9000 original_max = 17000 target_min = 2000 target_max = 62000 mask = scaled_depth != 0 rescaled_depth_norm = np.zeros([w, h]) # Rescale depth to [0, 1] rescaled_depth_norm[mask] = (scaled_depth[mask] - target_min) / (target_max - target_min) # Rescale depth to [9000, 17000] rescaled_depth = np.zeros([w, h]) rescaled_depth[mask] = rescaled_depth_norm[mask] * (original_max - original_min) + original_min else: original_min = 4000 original_max = 13000 target_min = 2000 target_max = 62000 mask = scaled_depth != 0 rescaled_depth_norm = np.zeros([w, h]) # Rescale depth to [0, 1] rescaled_depth_norm[mask] = (scaled_depth[mask] - target_min) / (target_max - target_min) # Rescale depth to [9000, 17000] rescaled_depth = np.zeros([w, h]) rescaled_depth[mask] = rescaled_depth_norm[mask] * (original_max - original_min) + original_min return rescaled_depth