diff --git "a/training.log" "b/training.log" --- "a/training.log" +++ "b/training.log" @@ -1,4571 +1,4695 @@ -2019-08-19 16:50:00,801 ---------------------------------------------------------------------------------------------------- -2019-08-19 16:50:00,801 Model: "SequenceTagger( +2023-04-05 22:32:47,867 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:32:47,868 Model: "SequenceTagger( (embeddings): StackedEmbeddings( - (list_embedding_0): BytePairEmbeddings(model=bpe-en-100000-50) + (list_embedding_0): BytePairEmbeddings(model=0-bpe-en-100000-50) (list_embedding_1): FlairEmbeddings( (lm): LanguageModel( - (drop): Dropout(p=0.25) + (drop): Dropout(p=0.25, inplace=False) (encoder): Embedding(275, 100) (rnn): LSTM(100, 1024) - (decoder): Linear(in_features=1024, out_features=275, bias=True) ) ) (list_embedding_2): FlairEmbeddings( (lm): LanguageModel( - (drop): Dropout(p=0.25) + (drop): Dropout(p=0.25, inplace=False) (encoder): Embedding(275, 100) (rnn): LSTM(100, 1024) - (decoder): Linear(in_features=1024, out_features=275, bias=True) ) ) ) (word_dropout): WordDropout(p=0.05) (locked_dropout): LockedDropout(p=0.5) (embedding2nn): Linear(in_features=2148, out_features=2148, bias=True) - (rnn): LSTM(2148, 256, bidirectional=True) - (linear): Linear(in_features=512, out_features=5196, bias=True) + (rnn): LSTM(2148, 256, batch_first=True, bidirectional=True) + (linear): Linear(in_features=512, out_features=4852, bias=True) + (loss_function): CrossEntropyLoss() )" -2019-08-19 16:50:00,801 ---------------------------------------------------------------------------------------------------- -2019-08-19 16:50:00,801 Corpus: "Corpus: 75187 train + 9603 dev + 9479 test sentences" -2019-08-19 16:50:00,801 ---------------------------------------------------------------------------------------------------- -2019-08-19 16:50:00,801 Parameters: -2019-08-19 16:50:00,801 - learning_rate: "0.1" -2019-08-19 16:50:00,801 - mini_batch_size: "32" -2019-08-19 16:50:00,801 - patience: "3" -2019-08-19 16:50:00,801 - anneal_factor: "0.5" -2019-08-19 16:50:00,801 - max_epochs: "150" -2019-08-19 16:50:00,801 - shuffle: "True" -2019-08-19 16:50:00,801 - train_with_dev: "True" -2019-08-19 16:50:00,801 ---------------------------------------------------------------------------------------------------- -2019-08-19 16:50:00,802 Model training base path: "resources/taggers/release-frame-fast-0" -2019-08-19 16:50:00,802 ---------------------------------------------------------------------------------------------------- -2019-08-19 16:50:00,802 Device: cuda:0 -2019-08-19 16:50:00,802 ---------------------------------------------------------------------------------------------------- -2019-08-19 16:50:00,802 Embeddings storage mode: cpu -2019-08-19 16:50:00,804 ---------------------------------------------------------------------------------------------------- -2019-08-19 16:50:00,962 epoch 1 - iter 0/2650 - loss 8.52185535 throughput (samples/sec): 55006.67 -2019-08-19 16:50:45,973 epoch 1 - iter 265/2650 - loss 1.68050930 throughput (samples/sec): 188.81 -2019-08-19 16:51:28,202 epoch 1 - iter 530/2650 - loss 1.43546006 throughput (samples/sec): 201.38 -2019-08-19 16:52:12,565 epoch 1 - iter 795/2650 - loss 1.32177486 throughput (samples/sec): 191.62 -2019-08-19 16:52:53,502 epoch 1 - iter 1060/2650 - loss 1.24814261 throughput (samples/sec): 207.67 -2019-08-19 16:53:35,571 epoch 1 - iter 1325/2650 - loss 1.19266758 throughput (samples/sec): 202.11 -2019-08-19 16:54:17,545 epoch 1 - iter 1590/2650 - loss 1.14994578 throughput (samples/sec): 202.57 -2019-08-19 16:55:04,341 epoch 1 - iter 1855/2650 - loss 1.11177424 throughput (samples/sec): 181.59 -2019-08-19 16:55:47,008 epoch 1 - iter 2120/2650 - loss 1.08253310 throughput (samples/sec): 199.25 -2019-08-19 16:56:31,390 epoch 1 - iter 2385/2650 - loss 1.05545362 throughput (samples/sec): 191.55 -2019-08-19 16:57:14,178 ---------------------------------------------------------------------------------------------------- -2019-08-19 16:57:14,178 EPOCH 1 done: loss 1.0332 - lr 0.1000 -2019-08-19 16:57:14,179 BAD EPOCHS (no improvement): 0 -2019-08-19 16:57:14,179 ---------------------------------------------------------------------------------------------------- -2019-08-19 16:57:14,233 epoch 2 - iter 0/2650 - loss 0.86784875 throughput (samples/sec): 171516.40 -2019-08-19 16:57:25,980 epoch 2 - iter 265/2650 - loss 0.81080838 throughput (samples/sec): 728.89 -2019-08-19 16:57:38,525 epoch 2 - iter 530/2650 - loss 0.80621785 throughput (samples/sec): 682.22 -2019-08-19 16:57:50,191 epoch 2 - iter 795/2650 - loss 0.79707456 throughput (samples/sec): 733.70 -2019-08-19 16:58:01,793 epoch 2 - iter 1060/2650 - loss 0.79285750 throughput (samples/sec): 737.86 -2019-08-19 16:58:13,734 epoch 2 - iter 1325/2650 - loss 0.78786233 throughput (samples/sec): 716.33 -2019-08-19 16:58:25,684 epoch 2 - iter 1590/2650 - loss 0.77946093 throughput (samples/sec): 716.39 -2019-08-19 16:58:37,498 epoch 2 - iter 1855/2650 - loss 0.77242163 throughput (samples/sec): 724.56 -2019-08-19 16:58:49,390 epoch 2 - iter 2120/2650 - loss 0.76609618 throughput (samples/sec): 719.11 -2019-08-19 16:59:00,543 epoch 2 - iter 2385/2650 - loss 0.75965044 throughput (samples/sec): 767.31 -2019-08-19 16:59:12,317 ---------------------------------------------------------------------------------------------------- -2019-08-19 16:59:12,318 EPOCH 2 done: loss 0.7534 - lr 0.1000 -2019-08-19 16:59:12,318 BAD EPOCHS (no improvement): 0 -2019-08-19 16:59:12,318 ---------------------------------------------------------------------------------------------------- -2019-08-19 16:59:12,367 epoch 3 - iter 0/2650 - loss 0.60228997 throughput (samples/sec): 188379.25 -2019-08-19 16:59:23,750 epoch 3 - iter 265/2650 - loss 0.68359405 throughput (samples/sec): 751.72 -2019-08-19 16:59:35,567 epoch 3 - iter 530/2650 - loss 0.67901548 throughput (samples/sec): 723.84 -2019-08-19 16:59:47,871 epoch 3 - iter 795/2650 - loss 0.67506286 throughput (samples/sec): 695.78 -2019-08-19 17:00:00,283 epoch 3 - iter 1060/2650 - loss 0.67232615 throughput (samples/sec): 689.68 -2019-08-19 17:00:12,723 epoch 3 - iter 1325/2650 - loss 0.66832767 throughput (samples/sec): 687.41 -2019-08-19 17:00:25,054 epoch 3 - iter 1590/2650 - loss 0.66422820 throughput (samples/sec): 694.03 -2019-08-19 17:00:37,380 epoch 3 - iter 1855/2650 - loss 0.66097289 throughput (samples/sec): 694.32 -2019-08-19 17:00:49,653 epoch 3 - iter 2120/2650 - loss 0.65781732 throughput (samples/sec): 697.09 -2019-08-19 17:01:02,036 epoch 3 - iter 2385/2650 - loss 0.65379953 throughput (samples/sec): 691.48 -2019-08-19 17:01:13,999 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:01:13,999 EPOCH 3 done: loss 0.6513 - lr 0.1000 -2019-08-19 17:01:13,999 BAD EPOCHS (no improvement): 0 -2019-08-19 17:01:13,999 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:01:14,048 epoch 4 - iter 0/2650 - loss 0.52035195 throughput (samples/sec): 196651.12 -2019-08-19 17:01:25,830 epoch 4 - iter 265/2650 - loss 0.59877114 throughput (samples/sec): 726.23 -2019-08-19 17:01:38,316 epoch 4 - iter 530/2650 - loss 0.59589098 throughput (samples/sec): 685.53 -2019-08-19 17:01:50,370 epoch 4 - iter 795/2650 - loss 0.59561691 throughput (samples/sec): 709.96 -2019-08-19 17:02:02,668 epoch 4 - iter 1060/2650 - loss 0.59466463 throughput (samples/sec): 696.08 -2019-08-19 17:02:14,496 epoch 4 - iter 1325/2650 - loss 0.59254019 throughput (samples/sec): 724.03 -2019-08-19 17:02:26,228 epoch 4 - iter 1590/2650 - loss 0.59082262 throughput (samples/sec): 729.74 -2019-08-19 17:02:38,243 epoch 4 - iter 1855/2650 - loss 0.58917507 throughput (samples/sec): 712.62 -2019-08-19 17:02:50,457 epoch 4 - iter 2120/2650 - loss 0.58643451 throughput (samples/sec): 700.72 -2019-08-19 17:03:02,336 epoch 4 - iter 2385/2650 - loss 0.58356540 throughput (samples/sec): 720.56 -2019-08-19 17:03:14,200 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:03:14,200 EPOCH 4 done: loss 0.5802 - lr 0.1000 -2019-08-19 17:03:14,200 BAD EPOCHS (no improvement): 0 -2019-08-19 17:03:14,201 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:03:14,247 epoch 5 - iter 0/2650 - loss 0.58826411 throughput (samples/sec): 210478.43 -2019-08-19 17:03:26,409 epoch 5 - iter 265/2650 - loss 0.55661753 throughput (samples/sec): 704.05 -2019-08-19 17:03:38,671 epoch 5 - iter 530/2650 - loss 0.55266627 throughput (samples/sec): 698.35 -2019-08-19 17:03:49,994 epoch 5 - iter 795/2650 - loss 0.54958417 throughput (samples/sec): 755.35 -2019-08-19 17:04:01,412 epoch 5 - iter 1060/2650 - loss 0.54773470 throughput (samples/sec): 749.01 -2019-08-19 17:04:13,748 epoch 5 - iter 1325/2650 - loss 0.54470934 throughput (samples/sec): 693.65 -2019-08-19 17:04:25,341 epoch 5 - iter 1590/2650 - loss 0.54130804 throughput (samples/sec): 737.75 -2019-08-19 17:04:36,845 epoch 5 - iter 1855/2650 - loss 0.53863266 throughput (samples/sec): 743.14 -2019-08-19 17:04:48,570 epoch 5 - iter 2120/2650 - loss 0.53578216 throughput (samples/sec): 729.38 -2019-08-19 17:05:00,695 epoch 5 - iter 2385/2650 - loss 0.53435228 throughput (samples/sec): 706.26 -2019-08-19 17:05:13,144 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:05:13,144 EPOCH 5 done: loss 0.5319 - lr 0.1000 -2019-08-19 17:05:13,144 BAD EPOCHS (no improvement): 0 -2019-08-19 17:05:13,145 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:05:13,189 epoch 6 - iter 0/2650 - loss 0.48283404 throughput (samples/sec): 210148.88 -2019-08-19 17:05:25,256 epoch 6 - iter 265/2650 - loss 0.50797523 throughput (samples/sec): 708.65 -2019-08-19 17:05:36,833 epoch 6 - iter 530/2650 - loss 0.50590742 throughput (samples/sec): 738.39 -2019-08-19 17:05:49,131 epoch 6 - iter 795/2650 - loss 0.50613159 throughput (samples/sec): 695.75 -2019-08-19 17:06:01,381 epoch 6 - iter 1060/2650 - loss 0.50356570 throughput (samples/sec): 697.92 -2019-08-19 17:06:13,257 epoch 6 - iter 1325/2650 - loss 0.50008888 throughput (samples/sec): 721.16 -2019-08-19 17:06:25,418 epoch 6 - iter 1590/2650 - loss 0.49793645 throughput (samples/sec): 704.09 -2019-08-19 17:06:37,923 epoch 6 - iter 1855/2650 - loss 0.49700106 throughput (samples/sec): 684.06 -2019-08-19 17:06:50,372 epoch 6 - iter 2120/2650 - loss 0.49534308 throughput (samples/sec): 687.65 -2019-08-19 17:07:02,110 epoch 6 - iter 2385/2650 - loss 0.49350542 throughput (samples/sec): 728.29 -2019-08-19 17:07:13,857 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:07:13,858 EPOCH 6 done: loss 0.4918 - lr 0.1000 -2019-08-19 17:07:13,858 BAD EPOCHS (no improvement): 0 -2019-08-19 17:07:13,858 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:07:13,917 epoch 7 - iter 0/2650 - loss 0.39869389 throughput (samples/sec): 158981.67 -2019-08-19 17:07:26,673 epoch 7 - iter 265/2650 - loss 0.47553680 throughput (samples/sec): 670.68 -2019-08-19 17:07:38,421 epoch 7 - iter 530/2650 - loss 0.47453629 throughput (samples/sec): 728.95 -2019-08-19 17:07:50,515 epoch 7 - iter 795/2650 - loss 0.47281299 throughput (samples/sec): 707.94 -2019-08-19 17:08:01,728 epoch 7 - iter 1060/2650 - loss 0.47325321 throughput (samples/sec): 762.77 -2019-08-19 17:08:13,843 epoch 7 - iter 1325/2650 - loss 0.47227016 throughput (samples/sec): 706.63 -2019-08-19 17:08:26,703 epoch 7 - iter 1590/2650 - loss 0.46949911 throughput (samples/sec): 665.52 -2019-08-19 17:08:38,984 epoch 7 - iter 1855/2650 - loss 0.46827366 throughput (samples/sec): 696.98 -2019-08-19 17:08:51,274 epoch 7 - iter 2120/2650 - loss 0.46760394 throughput (samples/sec): 696.72 -2019-08-19 17:09:02,284 epoch 7 - iter 2385/2650 - loss 0.46553373 throughput (samples/sec): 778.29 -2019-08-19 17:09:14,083 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:09:14,083 EPOCH 7 done: loss 0.4637 - lr 0.1000 -2019-08-19 17:09:14,083 BAD EPOCHS (no improvement): 0 -2019-08-19 17:09:14,084 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:09:14,125 epoch 8 - iter 0/2650 - loss 0.44571328 throughput (samples/sec): 225676.20 -2019-08-19 17:09:25,810 epoch 8 - iter 265/2650 - loss 0.45079209 throughput (samples/sec): 732.02 -2019-08-19 17:09:37,881 epoch 8 - iter 530/2650 - loss 0.45168513 throughput (samples/sec): 708.96 -2019-08-19 17:09:50,088 epoch 8 - iter 795/2650 - loss 0.44754631 throughput (samples/sec): 700.93 -2019-08-19 17:10:02,280 epoch 8 - iter 1060/2650 - loss 0.44667370 throughput (samples/sec): 701.94 -2019-08-19 17:10:14,441 epoch 8 - iter 1325/2650 - loss 0.44593658 throughput (samples/sec): 703.62 -2019-08-19 17:10:26,396 epoch 8 - iter 1590/2650 - loss 0.44462336 throughput (samples/sec): 716.28 -2019-08-19 17:10:38,293 epoch 8 - iter 1855/2650 - loss 0.44353853 throughput (samples/sec): 719.09 -2019-08-19 17:10:50,449 epoch 8 - iter 2120/2650 - loss 0.44264028 throughput (samples/sec): 704.25 -2019-08-19 17:11:01,886 epoch 8 - iter 2385/2650 - loss 0.44067033 throughput (samples/sec): 748.20 -2019-08-19 17:11:13,640 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:11:13,641 EPOCH 8 done: loss 0.4397 - lr 0.1000 -2019-08-19 17:11:13,641 BAD EPOCHS (no improvement): 0 -2019-08-19 17:11:13,642 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:11:13,686 epoch 9 - iter 0/2650 - loss 0.41412807 throughput (samples/sec): 219388.47 -2019-08-19 17:11:26,465 epoch 9 - iter 265/2650 - loss 0.42319575 throughput (samples/sec): 670.11 -2019-08-19 17:11:38,970 epoch 9 - iter 530/2650 - loss 0.41656691 throughput (samples/sec): 684.73 -2019-08-19 17:11:50,640 epoch 9 - iter 795/2650 - loss 0.41643758 throughput (samples/sec): 733.01 -2019-08-19 17:12:02,568 epoch 9 - iter 1060/2650 - loss 0.41638424 throughput (samples/sec): 717.66 -2019-08-19 17:12:15,177 epoch 9 - iter 1325/2650 - loss 0.41622613 throughput (samples/sec): 679.00 -2019-08-19 17:12:27,335 epoch 9 - iter 1590/2650 - loss 0.41593619 throughput (samples/sec): 703.83 -2019-08-19 17:12:39,417 epoch 9 - iter 1855/2650 - loss 0.41470165 throughput (samples/sec): 707.65 -2019-08-19 17:12:51,394 epoch 9 - iter 2120/2650 - loss 0.41488146 throughput (samples/sec): 714.68 -2019-08-19 17:13:02,834 epoch 9 - iter 2385/2650 - loss 0.41466347 throughput (samples/sec): 747.80 -2019-08-19 17:13:15,441 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:13:15,441 EPOCH 9 done: loss 0.4139 - lr 0.1000 -2019-08-19 17:13:15,442 BAD EPOCHS (no improvement): 0 -2019-08-19 17:13:15,442 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:13:15,494 epoch 10 - iter 0/2650 - loss 0.24614160 throughput (samples/sec): 186196.87 -2019-08-19 17:13:27,820 epoch 10 - iter 265/2650 - loss 0.40739879 throughput (samples/sec): 694.52 -2019-08-19 17:13:39,583 epoch 10 - iter 530/2650 - loss 0.40752169 throughput (samples/sec): 726.85 -2019-08-19 17:13:51,297 epoch 10 - iter 795/2650 - loss 0.40655733 throughput (samples/sec): 730.51 -2019-08-19 17:14:02,938 epoch 10 - iter 1060/2650 - loss 0.40421046 throughput (samples/sec): 734.46 -2019-08-19 17:14:15,132 epoch 10 - iter 1325/2650 - loss 0.40131641 throughput (samples/sec): 702.06 -2019-08-19 17:14:27,790 epoch 10 - iter 1590/2650 - loss 0.40171354 throughput (samples/sec): 676.18 -2019-08-19 17:14:40,386 epoch 10 - iter 1855/2650 - loss 0.40042234 throughput (samples/sec): 679.71 -2019-08-19 17:14:52,285 epoch 10 - iter 2120/2650 - loss 0.39947138 throughput (samples/sec): 719.57 -2019-08-19 17:15:04,154 epoch 10 - iter 2385/2650 - loss 0.39884618 throughput (samples/sec): 721.22 -2019-08-19 17:15:16,137 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:15:16,138 EPOCH 10 done: loss 0.3974 - lr 0.1000 -2019-08-19 17:15:16,138 BAD EPOCHS (no improvement): 0 -2019-08-19 17:15:16,139 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:15:16,188 epoch 11 - iter 0/2650 - loss 0.34269258 throughput (samples/sec): 192469.02 -2019-08-19 17:15:27,710 epoch 11 - iter 265/2650 - loss 0.38532157 throughput (samples/sec): 742.80 -2019-08-19 17:15:40,223 epoch 11 - iter 530/2650 - loss 0.38616615 throughput (samples/sec): 684.39 -2019-08-19 17:15:52,151 epoch 11 - iter 795/2650 - loss 0.39052318 throughput (samples/sec): 717.67 -2019-08-19 17:16:03,532 epoch 11 - iter 1060/2650 - loss 0.38945858 throughput (samples/sec): 751.45 -2019-08-19 17:16:15,763 epoch 11 - iter 1325/2650 - loss 0.38784701 throughput (samples/sec): 699.77 -2019-08-19 17:16:28,093 epoch 11 - iter 1590/2650 - loss 0.38613798 throughput (samples/sec): 694.01 -2019-08-19 17:16:39,990 epoch 11 - iter 1855/2650 - loss 0.38616650 throughput (samples/sec): 719.25 -2019-08-19 17:16:51,535 epoch 11 - iter 2120/2650 - loss 0.38541819 throughput (samples/sec): 740.55 -2019-08-19 17:17:03,330 epoch 11 - iter 2385/2650 - loss 0.38418612 throughput (samples/sec): 725.31 -2019-08-19 17:17:15,691 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:17:15,691 EPOCH 11 done: loss 0.3830 - lr 0.1000 -2019-08-19 17:17:15,691 BAD EPOCHS (no improvement): 0 -2019-08-19 17:17:15,691 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:17:15,731 epoch 12 - iter 0/2650 - loss 0.25702477 throughput (samples/sec): 236275.27 -2019-08-19 17:17:27,634 epoch 12 - iter 265/2650 - loss 0.37468654 throughput (samples/sec): 718.98 -2019-08-19 17:17:39,424 epoch 12 - iter 530/2650 - loss 0.37370148 throughput (samples/sec): 726.09 -2019-08-19 17:17:51,470 epoch 12 - iter 795/2650 - loss 0.37370290 throughput (samples/sec): 710.40 -2019-08-19 17:18:03,899 epoch 12 - iter 1060/2650 - loss 0.37292476 throughput (samples/sec): 688.44 -2019-08-19 17:18:16,238 epoch 12 - iter 1325/2650 - loss 0.37354859 throughput (samples/sec): 693.79 -2019-08-19 17:18:27,780 epoch 12 - iter 1590/2650 - loss 0.37189044 throughput (samples/sec): 742.02 -2019-08-19 17:18:39,048 epoch 12 - iter 1855/2650 - loss 0.37119002 throughput (samples/sec): 759.18 -2019-08-19 17:18:50,901 epoch 12 - iter 2120/2650 - loss 0.36974923 throughput (samples/sec): 722.11 -2019-08-19 17:19:02,798 epoch 12 - iter 2385/2650 - loss 0.36932040 throughput (samples/sec): 719.58 -2019-08-19 17:19:14,503 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:19:14,503 EPOCH 12 done: loss 0.3686 - lr 0.1000 -2019-08-19 17:19:14,503 BAD EPOCHS (no improvement): 0 -2019-08-19 17:19:14,504 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:19:14,547 epoch 13 - iter 0/2650 - loss 0.28977445 throughput (samples/sec): 215794.60 -2019-08-19 17:19:26,328 epoch 13 - iter 265/2650 - loss 0.36155234 throughput (samples/sec): 725.69 -2019-08-19 17:19:38,334 epoch 13 - iter 530/2650 - loss 0.36350951 throughput (samples/sec): 713.03 -2019-08-19 17:19:50,605 epoch 13 - iter 795/2650 - loss 0.36303956 throughput (samples/sec): 697.91 -2019-08-19 17:20:02,644 epoch 13 - iter 1060/2650 - loss 0.36256523 throughput (samples/sec): 711.25 -2019-08-19 17:20:14,681 epoch 13 - iter 1325/2650 - loss 0.36092867 throughput (samples/sec): 711.18 -2019-08-19 17:20:26,605 epoch 13 - iter 1590/2650 - loss 0.36076537 throughput (samples/sec): 717.26 -2019-08-19 17:20:39,312 epoch 13 - iter 1855/2650 - loss 0.36007293 throughput (samples/sec): 673.28 -2019-08-19 17:20:51,492 epoch 13 - iter 2120/2650 - loss 0.35735381 throughput (samples/sec): 702.63 -2019-08-19 17:21:03,649 epoch 13 - iter 2385/2650 - loss 0.35681198 throughput (samples/sec): 704.41 -2019-08-19 17:21:15,975 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:21:15,975 EPOCH 13 done: loss 0.3569 - lr 0.1000 -2019-08-19 17:21:15,975 BAD EPOCHS (no improvement): 0 -2019-08-19 17:21:15,976 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:21:16,033 epoch 14 - iter 0/2650 - loss 0.24969481 throughput (samples/sec): 172442.76 -2019-08-19 17:21:28,225 epoch 14 - iter 265/2650 - loss 0.35151556 throughput (samples/sec): 701.93 -2019-08-19 17:21:40,725 epoch 14 - iter 530/2650 - loss 0.35110632 throughput (samples/sec): 684.17 -2019-08-19 17:21:52,733 epoch 14 - iter 795/2650 - loss 0.34757870 throughput (samples/sec): 712.54 -2019-08-19 17:22:04,817 epoch 14 - iter 1060/2650 - loss 0.34495460 throughput (samples/sec): 708.09 -2019-08-19 17:22:16,874 epoch 14 - iter 1325/2650 - loss 0.34688014 throughput (samples/sec): 709.95 -2019-08-19 17:22:29,156 epoch 14 - iter 1590/2650 - loss 0.34634196 throughput (samples/sec): 697.18 -2019-08-19 17:22:40,574 epoch 14 - iter 1855/2650 - loss 0.34744844 throughput (samples/sec): 749.84 -2019-08-19 17:22:52,483 epoch 14 - iter 2120/2650 - loss 0.34660645 throughput (samples/sec): 718.78 -2019-08-19 17:23:04,496 epoch 14 - iter 2385/2650 - loss 0.34564608 throughput (samples/sec): 712.48 -2019-08-19 17:23:16,770 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:23:16,771 EPOCH 14 done: loss 0.3454 - lr 0.1000 -2019-08-19 17:23:16,771 BAD EPOCHS (no improvement): 0 -2019-08-19 17:23:16,771 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:23:16,828 epoch 15 - iter 0/2650 - loss 0.36004269 throughput (samples/sec): 168653.61 -2019-08-19 17:23:29,664 epoch 15 - iter 265/2650 - loss 0.34297051 throughput (samples/sec): 666.36 -2019-08-19 17:23:41,532 epoch 15 - iter 530/2650 - loss 0.33917273 throughput (samples/sec): 721.43 -2019-08-19 17:23:53,669 epoch 15 - iter 795/2650 - loss 0.33847494 throughput (samples/sec): 705.08 -2019-08-19 17:24:05,278 epoch 15 - iter 1060/2650 - loss 0.33885443 throughput (samples/sec): 736.58 -2019-08-19 17:24:17,174 epoch 15 - iter 1325/2650 - loss 0.33977828 throughput (samples/sec): 719.55 -2019-08-19 17:24:29,204 epoch 15 - iter 1590/2650 - loss 0.33989441 throughput (samples/sec): 711.47 -2019-08-19 17:24:41,317 epoch 15 - iter 1855/2650 - loss 0.33972829 throughput (samples/sec): 705.96 -2019-08-19 17:24:53,855 epoch 15 - iter 2120/2650 - loss 0.33989556 throughput (samples/sec): 682.67 -2019-08-19 17:25:06,498 epoch 15 - iter 2385/2650 - loss 0.33936120 throughput (samples/sec): 677.03 -2019-08-19 17:25:19,178 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:25:19,178 EPOCH 15 done: loss 0.3376 - lr 0.1000 -2019-08-19 17:25:19,178 BAD EPOCHS (no improvement): 0 -2019-08-19 17:25:19,179 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:25:19,243 epoch 16 - iter 0/2650 - loss 0.42160085 throughput (samples/sec): 146179.03 -2019-08-19 17:25:31,639 epoch 16 - iter 265/2650 - loss 0.32798696 throughput (samples/sec): 690.33 -2019-08-19 17:25:44,233 epoch 16 - iter 530/2650 - loss 0.32446545 throughput (samples/sec): 679.54 -2019-08-19 17:25:56,310 epoch 16 - iter 795/2650 - loss 0.32511691 throughput (samples/sec): 708.48 -2019-08-19 17:26:07,931 epoch 16 - iter 1060/2650 - loss 0.32424429 throughput (samples/sec): 735.69 -2019-08-19 17:26:20,173 epoch 16 - iter 1325/2650 - loss 0.32617015 throughput (samples/sec): 703.36 -2019-08-19 17:26:32,140 epoch 16 - iter 1590/2650 - loss 0.32741602 throughput (samples/sec): 715.50 -2019-08-19 17:26:44,011 epoch 16 - iter 1855/2650 - loss 0.32689739 throughput (samples/sec): 721.23 -2019-08-19 17:26:55,963 epoch 16 - iter 2120/2650 - loss 0.32770748 throughput (samples/sec): 716.12 -2019-08-19 17:27:08,122 epoch 16 - iter 2385/2650 - loss 0.32699749 throughput (samples/sec): 703.93 -2019-08-19 17:27:19,581 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:27:19,581 EPOCH 16 done: loss 0.3270 - lr 0.1000 -2019-08-19 17:27:19,581 BAD EPOCHS (no improvement): 0 -2019-08-19 17:27:19,582 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:27:19,639 epoch 17 - iter 0/2650 - loss 0.26352662 throughput (samples/sec): 159768.65 -2019-08-19 17:27:31,720 epoch 17 - iter 265/2650 - loss 0.31845402 throughput (samples/sec): 707.84 -2019-08-19 17:27:43,479 epoch 17 - iter 530/2650 - loss 0.32214636 throughput (samples/sec): 728.04 -2019-08-19 17:27:55,361 epoch 17 - iter 795/2650 - loss 0.32286564 throughput (samples/sec): 720.60 -2019-08-19 17:28:07,219 epoch 17 - iter 1060/2650 - loss 0.32359117 throughput (samples/sec): 721.93 -2019-08-19 17:28:19,427 epoch 17 - iter 1325/2650 - loss 0.32410646 throughput (samples/sec): 701.08 -2019-08-19 17:28:32,079 epoch 17 - iter 1590/2650 - loss 0.32329230 throughput (samples/sec): 676.17 -2019-08-19 17:28:44,855 epoch 17 - iter 1855/2650 - loss 0.32305005 throughput (samples/sec): 669.32 -2019-08-19 17:28:56,714 epoch 17 - iter 2120/2650 - loss 0.32272627 throughput (samples/sec): 721.70 -2019-08-19 17:29:08,341 epoch 17 - iter 2385/2650 - loss 0.32169968 throughput (samples/sec): 735.84 -2019-08-19 17:29:20,174 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:29:20,174 EPOCH 17 done: loss 0.3214 - lr 0.1000 -2019-08-19 17:29:20,174 BAD EPOCHS (no improvement): 0 -2019-08-19 17:29:20,175 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:29:20,221 epoch 18 - iter 0/2650 - loss 0.33711746 throughput (samples/sec): 197981.09 -2019-08-19 17:29:31,489 epoch 18 - iter 265/2650 - loss 0.31196002 throughput (samples/sec): 758.86 -2019-08-19 17:29:44,022 epoch 18 - iter 530/2650 - loss 0.31058160 throughput (samples/sec): 682.12 -2019-08-19 17:29:56,468 epoch 18 - iter 795/2650 - loss 0.31064741 throughput (samples/sec): 687.60 -2019-08-19 17:30:08,590 epoch 18 - iter 1060/2650 - loss 0.31178084 throughput (samples/sec): 705.95 -2019-08-19 17:30:20,215 epoch 18 - iter 1325/2650 - loss 0.31154156 throughput (samples/sec): 735.83 -2019-08-19 17:30:31,925 epoch 18 - iter 1590/2650 - loss 0.31394671 throughput (samples/sec): 730.42 -2019-08-19 17:30:43,568 epoch 18 - iter 1855/2650 - loss 0.31398752 throughput (samples/sec): 735.20 -2019-08-19 17:30:55,527 epoch 18 - iter 2120/2650 - loss 0.31201187 throughput (samples/sec): 715.74 -2019-08-19 17:31:07,451 epoch 18 - iter 2385/2650 - loss 0.31247279 throughput (samples/sec): 717.82 -2019-08-19 17:31:19,915 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:31:19,916 EPOCH 18 done: loss 0.3122 - lr 0.1000 -2019-08-19 17:31:19,916 BAD EPOCHS (no improvement): 0 -2019-08-19 17:31:19,916 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:31:19,951 epoch 19 - iter 0/2650 - loss 0.40095913 throughput (samples/sec): 306832.34 -2019-08-19 17:31:32,539 epoch 19 - iter 265/2650 - loss 0.29803475 throughput (samples/sec): 679.53 -2019-08-19 17:31:45,271 epoch 19 - iter 530/2650 - loss 0.30243255 throughput (samples/sec): 672.41 -2019-08-19 17:31:57,833 epoch 19 - iter 795/2650 - loss 0.30425244 throughput (samples/sec): 681.41 -2019-08-19 17:32:10,171 epoch 19 - iter 1060/2650 - loss 0.30450708 throughput (samples/sec): 693.62 -2019-08-19 17:32:21,332 epoch 19 - iter 1325/2650 - loss 0.30595828 throughput (samples/sec): 766.68 -2019-08-19 17:32:32,169 epoch 19 - iter 1590/2650 - loss 0.30600795 throughput (samples/sec): 789.49 -2019-08-19 17:32:43,148 epoch 19 - iter 1855/2650 - loss 0.30534687 throughput (samples/sec): 779.72 -2019-08-19 17:32:54,907 epoch 19 - iter 2120/2650 - loss 0.30580846 throughput (samples/sec): 727.63 -2019-08-19 17:33:06,814 epoch 19 - iter 2385/2650 - loss 0.30544611 throughput (samples/sec): 719.23 -2019-08-19 17:33:18,876 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:33:18,876 EPOCH 19 done: loss 0.3062 - lr 0.1000 -2019-08-19 17:33:18,876 BAD EPOCHS (no improvement): 0 -2019-08-19 17:33:18,877 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:33:18,918 epoch 20 - iter 0/2650 - loss 0.31434426 throughput (samples/sec): 232670.87 -2019-08-19 17:33:31,449 epoch 20 - iter 265/2650 - loss 0.30245214 throughput (samples/sec): 683.15 -2019-08-19 17:33:43,327 epoch 20 - iter 530/2650 - loss 0.30462512 throughput (samples/sec): 720.38 -2019-08-19 17:33:54,999 epoch 20 - iter 795/2650 - loss 0.30298397 throughput (samples/sec): 733.11 -2019-08-19 17:34:06,107 epoch 20 - iter 1060/2650 - loss 0.30124792 throughput (samples/sec): 769.92 -2019-08-19 17:34:17,160 epoch 20 - iter 1325/2650 - loss 0.30191037 throughput (samples/sec): 774.42 -2019-08-19 17:34:28,820 epoch 20 - iter 1590/2650 - loss 0.30159840 throughput (samples/sec): 733.83 -2019-08-19 17:34:40,342 epoch 20 - iter 1855/2650 - loss 0.30137755 throughput (samples/sec): 742.35 -2019-08-19 17:34:51,949 epoch 20 - iter 2120/2650 - loss 0.30051020 throughput (samples/sec): 736.97 -2019-08-19 17:35:03,524 epoch 20 - iter 2385/2650 - loss 0.30045963 throughput (samples/sec): 739.35 -2019-08-19 17:35:15,038 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:35:15,038 EPOCH 20 done: loss 0.2996 - lr 0.1000 -2019-08-19 17:35:15,038 BAD EPOCHS (no improvement): 0 -2019-08-19 17:35:15,039 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:35:15,089 epoch 21 - iter 0/2650 - loss 0.34020928 throughput (samples/sec): 181756.25 -2019-08-19 17:35:26,881 epoch 21 - iter 265/2650 - loss 0.29417952 throughput (samples/sec): 725.13 -2019-08-19 17:35:38,719 epoch 21 - iter 530/2650 - loss 0.29426581 throughput (samples/sec): 722.46 -2019-08-19 17:35:50,809 epoch 21 - iter 795/2650 - loss 0.29470998 throughput (samples/sec): 708.47 -2019-08-19 17:36:03,059 epoch 21 - iter 1060/2650 - loss 0.29478367 throughput (samples/sec): 698.86 -2019-08-19 17:36:15,038 epoch 21 - iter 1325/2650 - loss 0.29281134 throughput (samples/sec): 714.31 -2019-08-19 17:36:26,983 epoch 21 - iter 1590/2650 - loss 0.29386612 throughput (samples/sec): 716.55 -2019-08-19 17:36:38,952 epoch 21 - iter 1855/2650 - loss 0.29440855 throughput (samples/sec): 714.97 -2019-08-19 17:36:51,167 epoch 21 - iter 2120/2650 - loss 0.29417590 throughput (samples/sec): 700.72 -2019-08-19 17:37:03,098 epoch 21 - iter 2385/2650 - loss 0.29471446 throughput (samples/sec): 717.34 -2019-08-19 17:37:14,610 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:37:14,610 EPOCH 21 done: loss 0.2948 - lr 0.1000 -2019-08-19 17:37:14,610 BAD EPOCHS (no improvement): 0 -2019-08-19 17:37:14,611 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:37:14,658 epoch 22 - iter 0/2650 - loss 0.27656740 throughput (samples/sec): 198904.46 -2019-08-19 17:37:25,928 epoch 22 - iter 265/2650 - loss 0.28668403 throughput (samples/sec): 758.61 -2019-08-19 17:37:38,076 epoch 22 - iter 530/2650 - loss 0.28572542 throughput (samples/sec): 703.69 -2019-08-19 17:37:50,672 epoch 22 - iter 795/2650 - loss 0.28814578 throughput (samples/sec): 679.33 -2019-08-19 17:38:03,411 epoch 22 - iter 1060/2650 - loss 0.28880269 throughput (samples/sec): 671.43 -2019-08-19 17:38:16,135 epoch 22 - iter 1325/2650 - loss 0.29091185 throughput (samples/sec): 672.64 -2019-08-19 17:38:28,864 epoch 22 - iter 1590/2650 - loss 0.29037967 throughput (samples/sec): 672.43 -2019-08-19 17:38:40,901 epoch 22 - iter 1855/2650 - loss 0.28922229 throughput (samples/sec): 711.04 -2019-08-19 17:38:52,998 epoch 22 - iter 2120/2650 - loss 0.28895215 throughput (samples/sec): 707.62 -2019-08-19 17:39:04,925 epoch 22 - iter 2385/2650 - loss 0.28897117 throughput (samples/sec): 717.31 -2019-08-19 17:39:17,567 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:39:17,567 EPOCH 22 done: loss 0.2890 - lr 0.1000 -2019-08-19 17:39:17,568 BAD EPOCHS (no improvement): 0 -2019-08-19 17:39:17,568 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:39:17,618 epoch 23 - iter 0/2650 - loss 0.30959150 throughput (samples/sec): 202609.53 -2019-08-19 17:39:29,380 epoch 23 - iter 265/2650 - loss 0.29118833 throughput (samples/sec): 727.42 -2019-08-19 17:39:41,005 epoch 23 - iter 530/2650 - loss 0.28948907 throughput (samples/sec): 736.66 -2019-08-19 17:39:52,825 epoch 23 - iter 795/2650 - loss 0.28457829 throughput (samples/sec): 723.76 -2019-08-19 17:40:04,766 epoch 23 - iter 1060/2650 - loss 0.28456577 throughput (samples/sec): 716.62 -2019-08-19 17:40:16,626 epoch 23 - iter 1325/2650 - loss 0.28505536 throughput (samples/sec): 721.86 -2019-08-19 17:40:28,698 epoch 23 - iter 1590/2650 - loss 0.28409117 throughput (samples/sec): 708.93 -2019-08-19 17:40:40,753 epoch 23 - iter 1855/2650 - loss 0.28389174 throughput (samples/sec): 709.86 -2019-08-19 17:40:53,660 epoch 23 - iter 2120/2650 - loss 0.28355753 throughput (samples/sec): 662.90 -2019-08-19 17:41:06,310 epoch 23 - iter 2385/2650 - loss 0.28348386 throughput (samples/sec): 676.70 -2019-08-19 17:41:18,311 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:41:18,312 EPOCH 23 done: loss 0.2831 - lr 0.1000 -2019-08-19 17:41:18,312 BAD EPOCHS (no improvement): 0 -2019-08-19 17:41:18,313 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:41:18,357 epoch 24 - iter 0/2650 - loss 0.26445863 throughput (samples/sec): 208521.37 -2019-08-19 17:41:29,938 epoch 24 - iter 265/2650 - loss 0.28018502 throughput (samples/sec): 738.52 -2019-08-19 17:41:41,752 epoch 24 - iter 530/2650 - loss 0.27962314 throughput (samples/sec): 724.13 -2019-08-19 17:41:53,716 epoch 24 - iter 795/2650 - loss 0.27864952 throughput (samples/sec): 714.67 -2019-08-19 17:42:04,892 epoch 24 - iter 1060/2650 - loss 0.27923338 throughput (samples/sec): 766.17 -2019-08-19 17:42:16,675 epoch 24 - iter 1325/2650 - loss 0.27997684 throughput (samples/sec): 726.43 -2019-08-19 17:42:28,359 epoch 24 - iter 1590/2650 - loss 0.27967577 throughput (samples/sec): 733.18 -2019-08-19 17:42:40,594 epoch 24 - iter 1855/2650 - loss 0.27896390 throughput (samples/sec): 699.50 -2019-08-19 17:42:52,538 epoch 24 - iter 2120/2650 - loss 0.27938061 throughput (samples/sec): 716.67 -2019-08-19 17:43:04,084 epoch 24 - iter 2385/2650 - loss 0.27911248 throughput (samples/sec): 740.53 -2019-08-19 17:43:16,799 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:43:16,799 EPOCH 24 done: loss 0.2788 - lr 0.1000 -2019-08-19 17:43:16,800 BAD EPOCHS (no improvement): 0 -2019-08-19 17:43:16,800 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:43:16,855 epoch 25 - iter 0/2650 - loss 0.26982605 throughput (samples/sec): 175070.62 -2019-08-19 17:43:28,900 epoch 25 - iter 265/2650 - loss 0.27963520 throughput (samples/sec): 710.44 -2019-08-19 17:43:40,771 epoch 25 - iter 530/2650 - loss 0.27612192 throughput (samples/sec): 720.77 -2019-08-19 17:43:53,139 epoch 25 - iter 795/2650 - loss 0.27343484 throughput (samples/sec): 692.39 -2019-08-19 17:44:05,210 epoch 25 - iter 1060/2650 - loss 0.27229193 throughput (samples/sec): 709.24 -2019-08-19 17:44:17,788 epoch 25 - iter 1325/2650 - loss 0.27258959 throughput (samples/sec): 680.44 -2019-08-19 17:44:29,745 epoch 25 - iter 1590/2650 - loss 0.27404190 throughput (samples/sec): 715.58 -2019-08-19 17:44:41,660 epoch 25 - iter 1855/2650 - loss 0.27434866 throughput (samples/sec): 718.18 -2019-08-19 17:44:53,999 epoch 25 - iter 2120/2650 - loss 0.27463850 throughput (samples/sec): 693.00 -2019-08-19 17:45:06,110 epoch 25 - iter 2385/2650 - loss 0.27438252 throughput (samples/sec): 706.99 -2019-08-19 17:45:18,431 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:45:18,431 EPOCH 25 done: loss 0.2749 - lr 0.1000 -2019-08-19 17:45:18,432 BAD EPOCHS (no improvement): 0 -2019-08-19 17:45:18,432 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:45:18,480 epoch 26 - iter 0/2650 - loss 0.25150743 throughput (samples/sec): 206275.65 -2019-08-19 17:45:31,047 epoch 26 - iter 265/2650 - loss 0.26523599 throughput (samples/sec): 680.92 -2019-08-19 17:45:42,831 epoch 26 - iter 530/2650 - loss 0.26942665 throughput (samples/sec): 726.37 -2019-08-19 17:45:55,191 epoch 26 - iter 795/2650 - loss 0.26920713 throughput (samples/sec): 692.25 -2019-08-19 17:46:06,718 epoch 26 - iter 1060/2650 - loss 0.27041395 throughput (samples/sec): 742.11 -2019-08-19 17:46:19,024 epoch 26 - iter 1325/2650 - loss 0.27016622 throughput (samples/sec): 694.99 -2019-08-19 17:46:31,649 epoch 26 - iter 1590/2650 - loss 0.27031997 throughput (samples/sec): 678.18 -2019-08-19 17:46:43,795 epoch 26 - iter 1855/2650 - loss 0.26944139 throughput (samples/sec): 704.76 -2019-08-19 17:46:55,662 epoch 26 - iter 2120/2650 - loss 0.26917912 throughput (samples/sec): 720.59 -2019-08-19 17:47:07,610 epoch 26 - iter 2385/2650 - loss 0.26962445 throughput (samples/sec): 716.39 -2019-08-19 17:47:19,216 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:47:19,217 EPOCH 26 done: loss 0.2696 - lr 0.1000 -2019-08-19 17:47:19,217 BAD EPOCHS (no improvement): 0 -2019-08-19 17:47:19,217 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:47:19,264 epoch 27 - iter 0/2650 - loss 0.35072535 throughput (samples/sec): 204879.51 -2019-08-19 17:47:31,753 epoch 27 - iter 265/2650 - loss 0.25849895 throughput (samples/sec): 684.88 -2019-08-19 17:47:44,553 epoch 27 - iter 530/2650 - loss 0.26153284 throughput (samples/sec): 668.78 -2019-08-19 17:47:57,166 epoch 27 - iter 795/2650 - loss 0.26182819 throughput (samples/sec): 678.68 -2019-08-19 17:48:08,495 epoch 27 - iter 1060/2650 - loss 0.26176390 throughput (samples/sec): 755.57 -2019-08-19 17:48:20,305 epoch 27 - iter 1325/2650 - loss 0.26254683 throughput (samples/sec): 724.05 -2019-08-19 17:48:31,978 epoch 27 - iter 1590/2650 - loss 0.26236275 throughput (samples/sec): 732.39 -2019-08-19 17:48:44,211 epoch 27 - iter 1855/2650 - loss 0.26295311 throughput (samples/sec): 699.40 -2019-08-19 17:48:56,383 epoch 27 - iter 2120/2650 - loss 0.26303618 throughput (samples/sec): 702.96 -2019-08-19 17:49:08,446 epoch 27 - iter 2385/2650 - loss 0.26322511 throughput (samples/sec): 709.84 -2019-08-19 17:49:20,783 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:49:20,783 EPOCH 27 done: loss 0.2637 - lr 0.1000 -2019-08-19 17:49:20,783 BAD EPOCHS (no improvement): 0 -2019-08-19 17:49:20,784 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:49:20,831 epoch 28 - iter 0/2650 - loss 0.30805418 throughput (samples/sec): 212371.09 -2019-08-19 17:49:32,647 epoch 28 - iter 265/2650 - loss 0.26732861 throughput (samples/sec): 724.20 -2019-08-19 17:49:44,940 epoch 28 - iter 530/2650 - loss 0.26756367 throughput (samples/sec): 696.18 -2019-08-19 17:49:56,974 epoch 28 - iter 795/2650 - loss 0.26691218 throughput (samples/sec): 711.21 -2019-08-19 17:50:08,827 epoch 28 - iter 1060/2650 - loss 0.26722838 throughput (samples/sec): 721.26 -2019-08-19 17:50:20,700 epoch 28 - iter 1325/2650 - loss 0.26780321 throughput (samples/sec): 720.05 -2019-08-19 17:50:32,718 epoch 28 - iter 1590/2650 - loss 0.26613635 throughput (samples/sec): 712.55 -2019-08-19 17:50:44,777 epoch 28 - iter 1855/2650 - loss 0.26563533 throughput (samples/sec): 709.99 -2019-08-19 17:50:56,572 epoch 28 - iter 2120/2650 - loss 0.26489422 throughput (samples/sec): 725.20 -2019-08-19 17:51:08,774 epoch 28 - iter 2385/2650 - loss 0.26476272 throughput (samples/sec): 701.54 -2019-08-19 17:51:21,234 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:51:21,234 EPOCH 28 done: loss 0.2644 - lr 0.1000 -2019-08-19 17:51:21,234 BAD EPOCHS (no improvement): 1 -2019-08-19 17:51:21,235 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:51:21,290 epoch 29 - iter 0/2650 - loss 0.18793395 throughput (samples/sec): 172931.56 -2019-08-19 17:51:33,784 epoch 29 - iter 265/2650 - loss 0.25911771 throughput (samples/sec): 684.78 -2019-08-19 17:51:45,877 epoch 29 - iter 530/2650 - loss 0.25816021 throughput (samples/sec): 707.77 -2019-08-19 17:51:57,854 epoch 29 - iter 795/2650 - loss 0.25894733 throughput (samples/sec): 714.48 -2019-08-19 17:52:09,643 epoch 29 - iter 1060/2650 - loss 0.25871637 throughput (samples/sec): 725.87 -2019-08-19 17:52:21,589 epoch 29 - iter 1325/2650 - loss 0.25888054 throughput (samples/sec): 716.64 -2019-08-19 17:52:33,556 epoch 29 - iter 1590/2650 - loss 0.25844501 throughput (samples/sec): 715.28 -2019-08-19 17:52:45,616 epoch 29 - iter 1855/2650 - loss 0.25870154 throughput (samples/sec): 709.62 -2019-08-19 17:52:58,096 epoch 29 - iter 2120/2650 - loss 0.25891712 throughput (samples/sec): 685.85 -2019-08-19 17:53:09,899 epoch 29 - iter 2385/2650 - loss 0.25830874 throughput (samples/sec): 724.69 -2019-08-19 17:53:21,778 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:53:21,778 EPOCH 29 done: loss 0.2583 - lr 0.1000 -2019-08-19 17:53:21,778 BAD EPOCHS (no improvement): 0 -2019-08-19 17:53:21,779 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:53:21,830 epoch 30 - iter 0/2650 - loss 0.30124110 throughput (samples/sec): 183016.01 -2019-08-19 17:53:34,422 epoch 30 - iter 265/2650 - loss 0.26034614 throughput (samples/sec): 679.77 -2019-08-19 17:53:47,143 epoch 30 - iter 530/2650 - loss 0.25636060 throughput (samples/sec): 672.45 -2019-08-19 17:54:00,024 epoch 30 - iter 795/2650 - loss 0.25621297 throughput (samples/sec): 664.02 -2019-08-19 17:54:11,692 epoch 30 - iter 1060/2650 - loss 0.25658918 throughput (samples/sec): 733.14 -2019-08-19 17:54:23,617 epoch 30 - iter 1325/2650 - loss 0.25599529 throughput (samples/sec): 717.75 -2019-08-19 17:54:35,991 epoch 30 - iter 1590/2650 - loss 0.25664372 throughput (samples/sec): 692.12 -2019-08-19 17:54:48,462 epoch 30 - iter 1855/2650 - loss 0.25676785 throughput (samples/sec): 686.35 -2019-08-19 17:55:00,357 epoch 30 - iter 2120/2650 - loss 0.25677979 throughput (samples/sec): 719.64 -2019-08-19 17:55:12,563 epoch 30 - iter 2385/2650 - loss 0.25711299 throughput (samples/sec): 701.32 -2019-08-19 17:55:25,066 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:55:25,066 EPOCH 30 done: loss 0.2567 - lr 0.1000 -2019-08-19 17:55:25,066 BAD EPOCHS (no improvement): 0 -2019-08-19 17:55:25,067 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:55:25,111 epoch 31 - iter 0/2650 - loss 0.27951309 throughput (samples/sec): 226988.26 -2019-08-19 17:55:36,718 epoch 31 - iter 265/2650 - loss 0.25702580 throughput (samples/sec): 737.21 -2019-08-19 17:55:48,654 epoch 31 - iter 530/2650 - loss 0.25963426 throughput (samples/sec): 717.31 -2019-08-19 17:56:00,173 epoch 31 - iter 795/2650 - loss 0.25535843 throughput (samples/sec): 743.22 -2019-08-19 17:56:12,036 epoch 31 - iter 1060/2650 - loss 0.25311134 throughput (samples/sec): 721.06 -2019-08-19 17:56:23,770 epoch 31 - iter 1325/2650 - loss 0.25304331 throughput (samples/sec): 729.44 -2019-08-19 17:56:35,061 epoch 31 - iter 1590/2650 - loss 0.25301085 throughput (samples/sec): 757.59 -2019-08-19 17:56:46,935 epoch 31 - iter 1855/2650 - loss 0.25316826 throughput (samples/sec): 720.39 -2019-08-19 17:56:58,800 epoch 31 - iter 2120/2650 - loss 0.25300463 throughput (samples/sec): 721.15 -2019-08-19 17:57:10,392 epoch 31 - iter 2385/2650 - loss 0.25247141 throughput (samples/sec): 737.59 -2019-08-19 17:57:22,012 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:57:22,013 EPOCH 31 done: loss 0.2524 - lr 0.1000 -2019-08-19 17:57:22,013 BAD EPOCHS (no improvement): 0 -2019-08-19 17:57:22,014 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:57:22,066 epoch 32 - iter 0/2650 - loss 0.31662893 throughput (samples/sec): 182560.41 -2019-08-19 17:57:33,676 epoch 32 - iter 265/2650 - loss 0.24924151 throughput (samples/sec): 737.62 -2019-08-19 17:57:45,899 epoch 32 - iter 530/2650 - loss 0.25385967 throughput (samples/sec): 700.24 -2019-08-19 17:57:58,668 epoch 32 - iter 795/2650 - loss 0.25522494 throughput (samples/sec): 670.21 -2019-08-19 17:58:11,017 epoch 32 - iter 1060/2650 - loss 0.25238760 throughput (samples/sec): 693.13 -2019-08-19 17:58:23,122 epoch 32 - iter 1325/2650 - loss 0.25100075 throughput (samples/sec): 706.79 -2019-08-19 17:58:34,989 epoch 32 - iter 1590/2650 - loss 0.25000941 throughput (samples/sec): 721.50 -2019-08-19 17:58:47,487 epoch 32 - iter 1855/2650 - loss 0.24922892 throughput (samples/sec): 685.03 -2019-08-19 17:59:00,155 epoch 32 - iter 2120/2650 - loss 0.24806292 throughput (samples/sec): 675.73 -2019-08-19 17:59:12,799 epoch 32 - iter 2385/2650 - loss 0.24844811 throughput (samples/sec): 677.20 -2019-08-19 17:59:25,455 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:59:25,455 EPOCH 32 done: loss 0.2491 - lr 0.1000 -2019-08-19 17:59:25,455 BAD EPOCHS (no improvement): 0 -2019-08-19 17:59:25,456 ---------------------------------------------------------------------------------------------------- -2019-08-19 17:59:25,503 epoch 33 - iter 0/2650 - loss 0.22995272 throughput (samples/sec): 204676.73 -2019-08-19 17:59:37,226 epoch 33 - iter 265/2650 - loss 0.24476457 throughput (samples/sec): 729.74 -2019-08-19 17:59:49,404 epoch 33 - iter 530/2650 - loss 0.24656088 throughput (samples/sec): 702.25 -2019-08-19 18:00:00,436 epoch 33 - iter 795/2650 - loss 0.24662153 throughput (samples/sec): 776.17 -2019-08-19 18:00:11,476 epoch 33 - iter 1060/2650 - loss 0.24579152 throughput (samples/sec): 775.30 -2019-08-19 18:00:22,456 epoch 33 - iter 1325/2650 - loss 0.24659248 throughput (samples/sec): 779.38 -2019-08-19 18:00:33,580 epoch 33 - iter 1590/2650 - loss 0.24662819 throughput (samples/sec): 769.23 -2019-08-19 18:00:44,577 epoch 33 - iter 1855/2650 - loss 0.24619211 throughput (samples/sec): 778.10 -2019-08-19 18:00:55,699 epoch 33 - iter 2120/2650 - loss 0.24682064 throughput (samples/sec): 769.27 -2019-08-19 18:01:06,903 epoch 33 - iter 2385/2650 - loss 0.24674135 throughput (samples/sec): 763.90 -2019-08-19 18:01:17,714 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:01:17,715 EPOCH 33 done: loss 0.2477 - lr 0.1000 -2019-08-19 18:01:17,715 BAD EPOCHS (no improvement): 0 -2019-08-19 18:01:17,715 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:01:17,756 epoch 34 - iter 0/2650 - loss 0.23535991 throughput (samples/sec): 225617.51 -2019-08-19 18:01:28,586 epoch 34 - iter 265/2650 - loss 0.24708416 throughput (samples/sec): 790.29 -2019-08-19 18:01:40,415 epoch 34 - iter 530/2650 - loss 0.24356153 throughput (samples/sec): 723.51 -2019-08-19 18:01:53,059 epoch 34 - iter 795/2650 - loss 0.24428704 throughput (samples/sec): 676.73 -2019-08-19 18:02:04,719 epoch 34 - iter 1060/2650 - loss 0.24485880 throughput (samples/sec): 733.64 -2019-08-19 18:02:16,278 epoch 34 - iter 1325/2650 - loss 0.24397159 throughput (samples/sec): 739.63 -2019-08-19 18:02:28,064 epoch 34 - iter 1590/2650 - loss 0.24472768 throughput (samples/sec): 725.75 -2019-08-19 18:02:40,679 epoch 34 - iter 1855/2650 - loss 0.24353609 throughput (samples/sec): 678.62 -2019-08-19 18:02:52,688 epoch 34 - iter 2120/2650 - loss 0.24355824 throughput (samples/sec): 712.91 -2019-08-19 18:03:04,526 epoch 34 - iter 2385/2650 - loss 0.24400710 throughput (samples/sec): 722.62 -2019-08-19 18:03:16,198 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:03:16,198 EPOCH 34 done: loss 0.2439 - lr 0.1000 -2019-08-19 18:03:16,198 BAD EPOCHS (no improvement): 0 -2019-08-19 18:03:16,199 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:03:16,242 epoch 35 - iter 0/2650 - loss 0.18991825 throughput (samples/sec): 218347.39 -2019-08-19 18:03:27,653 epoch 35 - iter 265/2650 - loss 0.24001168 throughput (samples/sec): 749.23 -2019-08-19 18:03:39,649 epoch 35 - iter 530/2650 - loss 0.24201679 throughput (samples/sec): 712.87 -2019-08-19 18:03:52,414 epoch 35 - iter 795/2650 - loss 0.24072888 throughput (samples/sec): 670.83 -2019-08-19 18:04:04,720 epoch 35 - iter 1060/2650 - loss 0.24104915 throughput (samples/sec): 696.02 -2019-08-19 18:04:17,087 epoch 35 - iter 1325/2650 - loss 0.24166496 throughput (samples/sec): 691.59 -2019-08-19 18:04:29,070 epoch 35 - iter 1590/2650 - loss 0.24178493 throughput (samples/sec): 714.17 -2019-08-19 18:04:40,859 epoch 35 - iter 1855/2650 - loss 0.24116544 throughput (samples/sec): 725.43 -2019-08-19 18:04:52,329 epoch 35 - iter 2120/2650 - loss 0.24099458 throughput (samples/sec): 745.84 -2019-08-19 18:05:03,513 epoch 35 - iter 2385/2650 - loss 0.24088479 throughput (samples/sec): 765.02 -2019-08-19 18:05:14,799 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:05:14,799 EPOCH 35 done: loss 0.2412 - lr 0.1000 -2019-08-19 18:05:14,799 BAD EPOCHS (no improvement): 0 -2019-08-19 18:05:14,800 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:05:14,848 epoch 36 - iter 0/2650 - loss 0.18916214 throughput (samples/sec): 192238.08 -2019-08-19 18:05:26,104 epoch 36 - iter 265/2650 - loss 0.23710373 throughput (samples/sec): 759.71 -2019-08-19 18:05:37,909 epoch 36 - iter 530/2650 - loss 0.23822211 throughput (samples/sec): 724.48 -2019-08-19 18:05:50,312 epoch 36 - iter 795/2650 - loss 0.23883372 throughput (samples/sec): 690.13 -2019-08-19 18:06:02,429 epoch 36 - iter 1060/2650 - loss 0.23969475 throughput (samples/sec): 706.34 -2019-08-19 18:06:14,648 epoch 36 - iter 1325/2650 - loss 0.23856615 throughput (samples/sec): 700.50 -2019-08-19 18:06:27,544 epoch 36 - iter 1590/2650 - loss 0.23883440 throughput (samples/sec): 663.70 -2019-08-19 18:06:39,970 epoch 36 - iter 1855/2650 - loss 0.23939186 throughput (samples/sec): 689.33 -2019-08-19 18:06:51,545 epoch 36 - iter 2120/2650 - loss 0.23900033 throughput (samples/sec): 739.22 -2019-08-19 18:07:03,343 epoch 36 - iter 2385/2650 - loss 0.23831161 throughput (samples/sec): 725.69 -2019-08-19 18:07:15,855 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:07:15,855 EPOCH 36 done: loss 0.2386 - lr 0.1000 -2019-08-19 18:07:15,855 BAD EPOCHS (no improvement): 0 -2019-08-19 18:07:15,857 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:07:15,912 epoch 37 - iter 0/2650 - loss 0.13170101 throughput (samples/sec): 171806.37 -2019-08-19 18:07:27,969 epoch 37 - iter 265/2650 - loss 0.23015323 throughput (samples/sec): 709.68 -2019-08-19 18:07:40,623 epoch 37 - iter 530/2650 - loss 0.23732401 throughput (samples/sec): 675.82 -2019-08-19 18:07:53,384 epoch 37 - iter 795/2650 - loss 0.23630463 throughput (samples/sec): 670.57 -2019-08-19 18:08:05,575 epoch 37 - iter 1060/2650 - loss 0.23669973 throughput (samples/sec): 702.04 -2019-08-19 18:08:18,201 epoch 37 - iter 1325/2650 - loss 0.23713529 throughput (samples/sec): 677.87 -2019-08-19 18:08:29,640 epoch 37 - iter 1590/2650 - loss 0.23703804 throughput (samples/sec): 747.79 -2019-08-19 18:08:41,631 epoch 37 - iter 1855/2650 - loss 0.23656060 throughput (samples/sec): 713.46 -2019-08-19 18:08:53,687 epoch 37 - iter 2120/2650 - loss 0.23666445 throughput (samples/sec): 709.92 -2019-08-19 18:09:05,269 epoch 37 - iter 2385/2650 - loss 0.23604210 throughput (samples/sec): 738.51 -2019-08-19 18:09:17,123 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:09:17,123 EPOCH 37 done: loss 0.2357 - lr 0.1000 -2019-08-19 18:09:17,123 BAD EPOCHS (no improvement): 0 -2019-08-19 18:09:17,124 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:09:17,176 epoch 38 - iter 0/2650 - loss 0.17838463 throughput (samples/sec): 184033.99 -2019-08-19 18:09:29,400 epoch 38 - iter 265/2650 - loss 0.23129194 throughput (samples/sec): 700.35 -2019-08-19 18:09:42,090 epoch 38 - iter 530/2650 - loss 0.23363122 throughput (samples/sec): 674.72 -2019-08-19 18:09:53,745 epoch 38 - iter 795/2650 - loss 0.23334409 throughput (samples/sec): 733.90 -2019-08-19 18:10:05,803 epoch 38 - iter 1060/2650 - loss 0.23297286 throughput (samples/sec): 709.86 -2019-08-19 18:10:18,616 epoch 38 - iter 1325/2650 - loss 0.23224357 throughput (samples/sec): 667.79 -2019-08-19 18:10:31,446 epoch 38 - iter 1590/2650 - loss 0.23289326 throughput (samples/sec): 666.90 -2019-08-19 18:10:43,298 epoch 38 - iter 1855/2650 - loss 0.23407575 throughput (samples/sec): 722.55 -2019-08-19 18:10:55,231 epoch 38 - iter 2120/2650 - loss 0.23428072 throughput (samples/sec): 717.06 -2019-08-19 18:11:07,652 epoch 38 - iter 2385/2650 - loss 0.23506197 throughput (samples/sec): 689.30 -2019-08-19 18:11:19,980 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:11:19,980 EPOCH 38 done: loss 0.2352 - lr 0.1000 -2019-08-19 18:11:19,981 BAD EPOCHS (no improvement): 0 -2019-08-19 18:11:19,981 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:11:20,023 epoch 39 - iter 0/2650 - loss 0.16383472 throughput (samples/sec): 224919.83 -2019-08-19 18:11:31,907 epoch 39 - iter 265/2650 - loss 0.23503086 throughput (samples/sec): 719.61 -2019-08-19 18:11:44,414 epoch 39 - iter 530/2650 - loss 0.23189886 throughput (samples/sec): 683.76 -2019-08-19 18:11:56,704 epoch 39 - iter 795/2650 - loss 0.23417262 throughput (samples/sec): 696.39 -2019-08-19 18:12:09,302 epoch 39 - iter 1060/2650 - loss 0.23368633 throughput (samples/sec): 679.72 -2019-08-19 18:12:21,673 epoch 39 - iter 1325/2650 - loss 0.23294201 throughput (samples/sec): 692.17 -2019-08-19 18:12:33,833 epoch 39 - iter 1590/2650 - loss 0.23290420 throughput (samples/sec): 703.91 -2019-08-19 18:12:45,789 epoch 39 - iter 1855/2650 - loss 0.23319804 throughput (samples/sec): 715.82 -2019-08-19 18:12:57,644 epoch 39 - iter 2120/2650 - loss 0.23319470 throughput (samples/sec): 721.59 -2019-08-19 18:13:09,699 epoch 39 - iter 2385/2650 - loss 0.23437341 throughput (samples/sec): 709.52 -2019-08-19 18:13:21,894 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:13:21,895 EPOCH 39 done: loss 0.2339 - lr 0.1000 -2019-08-19 18:13:21,895 BAD EPOCHS (no improvement): 0 -2019-08-19 18:13:21,896 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:13:21,946 epoch 40 - iter 0/2650 - loss 0.32228515 throughput (samples/sec): 189017.96 -2019-08-19 18:13:33,815 epoch 40 - iter 265/2650 - loss 0.23088217 throughput (samples/sec): 721.61 -2019-08-19 18:13:45,140 epoch 40 - iter 530/2650 - loss 0.23228915 throughput (samples/sec): 755.42 -2019-08-19 18:13:57,098 epoch 40 - iter 795/2650 - loss 0.23136555 throughput (samples/sec): 715.50 -2019-08-19 18:14:09,387 epoch 40 - iter 1060/2650 - loss 0.22935241 throughput (samples/sec): 696.60 -2019-08-19 18:14:22,028 epoch 40 - iter 1325/2650 - loss 0.22878725 throughput (samples/sec): 676.64 -2019-08-19 18:14:34,635 epoch 40 - iter 1590/2650 - loss 0.22944231 throughput (samples/sec): 678.78 -2019-08-19 18:14:46,774 epoch 40 - iter 1855/2650 - loss 0.22948178 throughput (samples/sec): 705.20 -2019-08-19 18:14:58,657 epoch 40 - iter 2120/2650 - loss 0.22966042 throughput (samples/sec): 720.09 -2019-08-19 18:15:10,313 epoch 40 - iter 2385/2650 - loss 0.22986314 throughput (samples/sec): 733.73 -2019-08-19 18:15:22,036 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:15:22,036 EPOCH 40 done: loss 0.2307 - lr 0.1000 -2019-08-19 18:15:22,036 BAD EPOCHS (no improvement): 0 -2019-08-19 18:15:22,037 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:15:22,090 epoch 41 - iter 0/2650 - loss 0.19588199 throughput (samples/sec): 180149.81 -2019-08-19 18:15:34,672 epoch 41 - iter 265/2650 - loss 0.23180060 throughput (samples/sec): 679.78 -2019-08-19 18:15:46,083 epoch 41 - iter 530/2650 - loss 0.22975771 throughput (samples/sec): 749.62 -2019-08-19 18:15:58,324 epoch 41 - iter 795/2650 - loss 0.22835552 throughput (samples/sec): 698.49 -2019-08-19 18:16:10,469 epoch 41 - iter 1060/2650 - loss 0.22914443 throughput (samples/sec): 704.83 -2019-08-19 18:16:22,367 epoch 41 - iter 1325/2650 - loss 0.22957292 throughput (samples/sec): 719.84 -2019-08-19 18:16:33,577 epoch 41 - iter 1590/2650 - loss 0.22844529 throughput (samples/sec): 763.07 -2019-08-19 18:16:44,916 epoch 41 - iter 1855/2650 - loss 0.22839340 throughput (samples/sec): 754.48 -2019-08-19 18:16:57,164 epoch 41 - iter 2120/2650 - loss 0.22809158 throughput (samples/sec): 698.14 -2019-08-19 18:17:09,200 epoch 41 - iter 2385/2650 - loss 0.22764974 throughput (samples/sec): 710.67 -2019-08-19 18:17:22,041 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:17:22,041 EPOCH 41 done: loss 0.2272 - lr 0.1000 -2019-08-19 18:17:22,041 BAD EPOCHS (no improvement): 0 -2019-08-19 18:17:22,042 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:17:22,091 epoch 42 - iter 0/2650 - loss 0.28260866 throughput (samples/sec): 200610.83 -2019-08-19 18:17:34,126 epoch 42 - iter 265/2650 - loss 0.22866965 throughput (samples/sec): 711.65 -2019-08-19 18:17:45,887 epoch 42 - iter 530/2650 - loss 0.22841674 throughput (samples/sec): 727.42 -2019-08-19 18:17:57,673 epoch 42 - iter 795/2650 - loss 0.22727976 throughput (samples/sec): 725.85 -2019-08-19 18:18:09,048 epoch 42 - iter 1060/2650 - loss 0.22724507 throughput (samples/sec): 752.76 -2019-08-19 18:18:21,097 epoch 42 - iter 1325/2650 - loss 0.22594073 throughput (samples/sec): 709.70 -2019-08-19 18:18:33,956 epoch 42 - iter 1590/2650 - loss 0.22607386 throughput (samples/sec): 665.43 -2019-08-19 18:18:46,758 epoch 42 - iter 1855/2650 - loss 0.22535064 throughput (samples/sec): 668.43 -2019-08-19 18:18:58,998 epoch 42 - iter 2120/2650 - loss 0.22438726 throughput (samples/sec): 699.84 -2019-08-19 18:19:10,829 epoch 42 - iter 2385/2650 - loss 0.22395761 throughput (samples/sec): 723.48 -2019-08-19 18:19:22,587 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:19:22,587 EPOCH 42 done: loss 0.2242 - lr 0.1000 -2019-08-19 18:19:22,587 BAD EPOCHS (no improvement): 0 -2019-08-19 18:19:22,588 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:19:22,634 epoch 43 - iter 0/2650 - loss 0.23945720 throughput (samples/sec): 210691.64 -2019-08-19 18:19:34,085 epoch 43 - iter 265/2650 - loss 0.21876241 throughput (samples/sec): 746.90 -2019-08-19 18:19:46,508 epoch 43 - iter 530/2650 - loss 0.22003612 throughput (samples/sec): 688.13 -2019-08-19 18:19:58,570 epoch 43 - iter 795/2650 - loss 0.21792837 throughput (samples/sec): 709.44 -2019-08-19 18:20:11,039 epoch 43 - iter 1060/2650 - loss 0.21886064 throughput (samples/sec): 686.11 -2019-08-19 18:20:22,775 epoch 43 - iter 1325/2650 - loss 0.22019047 throughput (samples/sec): 729.22 -2019-08-19 18:20:34,707 epoch 43 - iter 1590/2650 - loss 0.22071249 throughput (samples/sec): 716.99 -2019-08-19 18:20:46,299 epoch 43 - iter 1855/2650 - loss 0.22154296 throughput (samples/sec): 739.03 -2019-08-19 18:20:58,132 epoch 43 - iter 2120/2650 - loss 0.22099066 throughput (samples/sec): 722.83 -2019-08-19 18:21:10,091 epoch 43 - iter 2385/2650 - loss 0.22119737 throughput (samples/sec): 715.75 -2019-08-19 18:21:22,090 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:21:22,091 EPOCH 43 done: loss 0.2224 - lr 0.1000 -2019-08-19 18:21:22,091 BAD EPOCHS (no improvement): 0 -2019-08-19 18:21:22,091 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:21:22,152 epoch 44 - iter 0/2650 - loss 0.18005544 throughput (samples/sec): 159915.19 -2019-08-19 18:21:34,469 epoch 44 - iter 265/2650 - loss 0.22845506 throughput (samples/sec): 695.00 -2019-08-19 18:21:46,310 epoch 44 - iter 530/2650 - loss 0.22558393 throughput (samples/sec): 723.42 -2019-08-19 18:21:58,137 epoch 44 - iter 795/2650 - loss 0.22447855 throughput (samples/sec): 723.95 -2019-08-19 18:22:10,257 epoch 44 - iter 1060/2650 - loss 0.22184268 throughput (samples/sec): 706.30 -2019-08-19 18:22:22,453 epoch 44 - iter 1325/2650 - loss 0.22174383 throughput (samples/sec): 701.69 -2019-08-19 18:22:34,420 epoch 44 - iter 1590/2650 - loss 0.22120803 throughput (samples/sec): 715.45 -2019-08-19 18:22:46,720 epoch 44 - iter 1855/2650 - loss 0.22053542 throughput (samples/sec): 695.24 -2019-08-19 18:22:57,933 epoch 44 - iter 2120/2650 - loss 0.22076209 throughput (samples/sec): 763.00 -2019-08-19 18:23:09,710 epoch 44 - iter 2385/2650 - loss 0.22124650 throughput (samples/sec): 727.38 -2019-08-19 18:23:21,363 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:23:21,364 EPOCH 44 done: loss 0.2213 - lr 0.1000 -2019-08-19 18:23:21,364 BAD EPOCHS (no improvement): 0 -2019-08-19 18:23:21,364 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:23:21,412 epoch 45 - iter 0/2650 - loss 0.15182313 throughput (samples/sec): 199078.14 -2019-08-19 18:23:33,133 epoch 45 - iter 265/2650 - loss 0.20910663 throughput (samples/sec): 730.81 -2019-08-19 18:23:45,185 epoch 45 - iter 530/2650 - loss 0.21616020 throughput (samples/sec): 710.18 -2019-08-19 18:23:57,915 epoch 45 - iter 795/2650 - loss 0.21701019 throughput (samples/sec): 672.10 -2019-08-19 18:24:10,094 epoch 45 - iter 1060/2650 - loss 0.21913785 throughput (samples/sec): 703.11 -2019-08-19 18:24:22,030 epoch 45 - iter 1325/2650 - loss 0.21810261 throughput (samples/sec): 717.58 -2019-08-19 18:24:33,826 epoch 45 - iter 1590/2650 - loss 0.21877979 throughput (samples/sec): 725.96 -2019-08-19 18:24:45,828 epoch 45 - iter 1855/2650 - loss 0.21910723 throughput (samples/sec): 713.19 -2019-08-19 18:24:57,329 epoch 45 - iter 2120/2650 - loss 0.21997163 throughput (samples/sec): 743.27 -2019-08-19 18:25:09,435 epoch 45 - iter 2385/2650 - loss 0.22051872 throughput (samples/sec): 706.14 -2019-08-19 18:25:21,676 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:25:21,677 EPOCH 45 done: loss 0.2200 - lr 0.1000 -2019-08-19 18:25:21,677 BAD EPOCHS (no improvement): 0 -2019-08-19 18:25:21,677 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:25:21,722 epoch 46 - iter 0/2650 - loss 0.20673397 throughput (samples/sec): 206348.65 -2019-08-19 18:25:33,201 epoch 46 - iter 265/2650 - loss 0.22114012 throughput (samples/sec): 744.93 -2019-08-19 18:25:44,967 epoch 46 - iter 530/2650 - loss 0.22036788 throughput (samples/sec): 728.03 -2019-08-19 18:25:57,390 epoch 46 - iter 795/2650 - loss 0.21926090 throughput (samples/sec): 689.16 -2019-08-19 18:26:08,961 epoch 46 - iter 1060/2650 - loss 0.21816503 throughput (samples/sec): 738.87 -2019-08-19 18:26:20,748 epoch 46 - iter 1325/2650 - loss 0.21665141 throughput (samples/sec): 725.28 -2019-08-19 18:26:32,319 epoch 46 - iter 1590/2650 - loss 0.21671101 throughput (samples/sec): 738.69 -2019-08-19 18:26:44,210 epoch 46 - iter 1855/2650 - loss 0.21690559 throughput (samples/sec): 719.88 -2019-08-19 18:26:56,089 epoch 46 - iter 2120/2650 - loss 0.21684390 throughput (samples/sec): 720.64 -2019-08-19 18:27:07,154 epoch 46 - iter 2385/2650 - loss 0.21700182 throughput (samples/sec): 773.51 -2019-08-19 18:27:18,099 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:27:18,099 EPOCH 46 done: loss 0.2182 - lr 0.1000 -2019-08-19 18:27:18,099 BAD EPOCHS (no improvement): 0 -2019-08-19 18:27:18,100 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:27:18,135 epoch 47 - iter 0/2650 - loss 0.18777919 throughput (samples/sec): 266898.52 -2019-08-19 18:27:29,160 epoch 47 - iter 265/2650 - loss 0.20961298 throughput (samples/sec): 776.29 -2019-08-19 18:27:41,053 epoch 47 - iter 530/2650 - loss 0.21297218 throughput (samples/sec): 719.38 -2019-08-19 18:27:52,537 epoch 47 - iter 795/2650 - loss 0.21251210 throughput (samples/sec): 745.18 -2019-08-19 18:28:03,769 epoch 47 - iter 1060/2650 - loss 0.21353662 throughput (samples/sec): 761.86 -2019-08-19 18:28:16,391 epoch 47 - iter 1325/2650 - loss 0.21407095 throughput (samples/sec): 677.67 -2019-08-19 18:28:28,316 epoch 47 - iter 1590/2650 - loss 0.21524045 throughput (samples/sec): 718.02 -2019-08-19 18:28:41,044 epoch 47 - iter 1855/2650 - loss 0.21568782 throughput (samples/sec): 672.60 -2019-08-19 18:28:53,604 epoch 47 - iter 2120/2650 - loss 0.21656365 throughput (samples/sec): 681.40 -2019-08-19 18:29:06,327 epoch 47 - iter 2385/2650 - loss 0.21591261 throughput (samples/sec): 672.61 -2019-08-19 18:29:18,601 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:29:18,602 EPOCH 47 done: loss 0.2162 - lr 0.1000 -2019-08-19 18:29:18,602 BAD EPOCHS (no improvement): 0 -2019-08-19 18:29:18,602 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:29:18,647 epoch 48 - iter 0/2650 - loss 0.22103284 throughput (samples/sec): 207524.93 -2019-08-19 18:29:30,857 epoch 48 - iter 265/2650 - loss 0.21303874 throughput (samples/sec): 700.46 -2019-08-19 18:29:43,560 epoch 48 - iter 530/2650 - loss 0.21128606 throughput (samples/sec): 673.88 -2019-08-19 18:29:55,946 epoch 48 - iter 795/2650 - loss 0.21253301 throughput (samples/sec): 690.99 -2019-08-19 18:30:08,072 epoch 48 - iter 1060/2650 - loss 0.21257674 throughput (samples/sec): 705.92 -2019-08-19 18:30:20,701 epoch 48 - iter 1325/2650 - loss 0.21312349 throughput (samples/sec): 677.74 -2019-08-19 18:30:32,573 epoch 48 - iter 1590/2650 - loss 0.21296783 throughput (samples/sec): 720.93 -2019-08-19 18:30:44,488 epoch 48 - iter 1855/2650 - loss 0.21192271 throughput (samples/sec): 717.56 -2019-08-19 18:30:56,784 epoch 48 - iter 2120/2650 - loss 0.21261960 throughput (samples/sec): 695.53 -2019-08-19 18:31:09,117 epoch 48 - iter 2385/2650 - loss 0.21294187 throughput (samples/sec): 694.28 -2019-08-19 18:31:21,291 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:31:21,291 EPOCH 48 done: loss 0.2129 - lr 0.1000 -2019-08-19 18:31:21,291 BAD EPOCHS (no improvement): 0 -2019-08-19 18:31:21,292 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:31:21,351 epoch 49 - iter 0/2650 - loss 0.19509727 throughput (samples/sec): 162011.58 -2019-08-19 18:31:33,742 epoch 49 - iter 265/2650 - loss 0.21922868 throughput (samples/sec): 690.56 -2019-08-19 18:31:46,338 epoch 49 - iter 530/2650 - loss 0.21257377 throughput (samples/sec): 679.32 -2019-08-19 18:31:58,431 epoch 49 - iter 795/2650 - loss 0.21500071 throughput (samples/sec): 706.84 -2019-08-19 18:32:10,566 epoch 49 - iter 1060/2650 - loss 0.21601772 throughput (samples/sec): 704.58 -2019-08-19 18:32:23,123 epoch 49 - iter 1325/2650 - loss 0.21503636 throughput (samples/sec): 681.81 -2019-08-19 18:32:34,862 epoch 49 - iter 1590/2650 - loss 0.21411202 throughput (samples/sec): 729.27 -2019-08-19 18:32:46,294 epoch 49 - iter 1855/2650 - loss 0.21418414 throughput (samples/sec): 747.88 -2019-08-19 18:32:58,038 epoch 49 - iter 2120/2650 - loss 0.21371725 throughput (samples/sec): 728.75 -2019-08-19 18:33:10,566 epoch 49 - iter 2385/2650 - loss 0.21403420 throughput (samples/sec): 682.38 -2019-08-19 18:33:22,648 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:33:22,648 EPOCH 49 done: loss 0.2142 - lr 0.1000 -2019-08-19 18:33:22,648 BAD EPOCHS (no improvement): 1 -2019-08-19 18:33:22,649 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:33:22,699 epoch 50 - iter 0/2650 - loss 0.20827709 throughput (samples/sec): 184908.46 -2019-08-19 18:33:35,153 epoch 50 - iter 265/2650 - loss 0.20957705 throughput (samples/sec): 686.85 -2019-08-19 18:33:47,992 epoch 50 - iter 530/2650 - loss 0.20883966 throughput (samples/sec): 666.82 -2019-08-19 18:34:00,037 epoch 50 - iter 795/2650 - loss 0.21018067 throughput (samples/sec): 710.39 -2019-08-19 18:34:11,888 epoch 50 - iter 1060/2650 - loss 0.20885101 throughput (samples/sec): 722.37 -2019-08-19 18:34:24,063 epoch 50 - iter 1325/2650 - loss 0.20934102 throughput (samples/sec): 702.92 -2019-08-19 18:34:36,831 epoch 50 - iter 1590/2650 - loss 0.20908498 throughput (samples/sec): 670.16 -2019-08-19 18:34:48,867 epoch 50 - iter 1855/2650 - loss 0.20992419 throughput (samples/sec): 710.95 -2019-08-19 18:35:01,062 epoch 50 - iter 2120/2650 - loss 0.20933167 throughput (samples/sec): 700.84 -2019-08-19 18:35:13,768 epoch 50 - iter 2385/2650 - loss 0.21033254 throughput (samples/sec): 673.89 -2019-08-19 18:35:25,349 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:35:25,350 EPOCH 50 done: loss 0.2102 - lr 0.1000 -2019-08-19 18:35:25,350 BAD EPOCHS (no improvement): 0 -2019-08-19 18:35:25,351 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:35:25,400 epoch 51 - iter 0/2650 - loss 0.28950837 throughput (samples/sec): 194692.00 -2019-08-19 18:35:37,295 epoch 51 - iter 265/2650 - loss 0.20814597 throughput (samples/sec): 719.70 -2019-08-19 18:35:49,285 epoch 51 - iter 530/2650 - loss 0.21006627 throughput (samples/sec): 713.92 -2019-08-19 18:36:00,790 epoch 51 - iter 795/2650 - loss 0.21075226 throughput (samples/sec): 742.99 -2019-08-19 18:36:12,721 epoch 51 - iter 1060/2650 - loss 0.21146521 throughput (samples/sec): 716.20 -2019-08-19 18:36:24,797 epoch 51 - iter 1325/2650 - loss 0.21188530 throughput (samples/sec): 708.95 -2019-08-19 18:36:36,722 epoch 51 - iter 1590/2650 - loss 0.21130509 throughput (samples/sec): 718.20 -2019-08-19 18:36:48,918 epoch 51 - iter 1855/2650 - loss 0.21084528 throughput (samples/sec): 701.98 -2019-08-19 18:37:00,667 epoch 51 - iter 2120/2650 - loss 0.21099218 throughput (samples/sec): 727.95 -2019-08-19 18:37:13,375 epoch 51 - iter 2385/2650 - loss 0.21060916 throughput (samples/sec): 673.46 -2019-08-19 18:37:24,793 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:37:24,793 EPOCH 51 done: loss 0.2112 - lr 0.1000 -2019-08-19 18:37:24,794 BAD EPOCHS (no improvement): 1 -2019-08-19 18:37:24,794 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:37:24,840 epoch 52 - iter 0/2650 - loss 0.20036638 throughput (samples/sec): 201698.40 -2019-08-19 18:37:36,303 epoch 52 - iter 265/2650 - loss 0.20819991 throughput (samples/sec): 745.78 -2019-08-19 18:37:47,532 epoch 52 - iter 530/2650 - loss 0.21069450 throughput (samples/sec): 761.73 -2019-08-19 18:37:58,950 epoch 52 - iter 795/2650 - loss 0.21173091 throughput (samples/sec): 749.06 -2019-08-19 18:38:10,538 epoch 52 - iter 1060/2650 - loss 0.21049659 throughput (samples/sec): 738.16 -2019-08-19 18:38:23,029 epoch 52 - iter 1325/2650 - loss 0.20959214 throughput (samples/sec): 685.44 -2019-08-19 18:38:35,156 epoch 52 - iter 1590/2650 - loss 0.20911563 throughput (samples/sec): 705.75 -2019-08-19 18:38:47,421 epoch 52 - iter 1855/2650 - loss 0.20850643 throughput (samples/sec): 697.48 -2019-08-19 18:38:59,186 epoch 52 - iter 2120/2650 - loss 0.20874014 throughput (samples/sec): 727.19 -2019-08-19 18:39:11,401 epoch 52 - iter 2385/2650 - loss 0.20869472 throughput (samples/sec): 700.89 -2019-08-19 18:39:24,153 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:39:24,160 EPOCH 52 done: loss 0.2086 - lr 0.1000 -2019-08-19 18:39:24,161 BAD EPOCHS (no improvement): 0 -2019-08-19 18:39:24,161 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:39:24,213 epoch 53 - iter 0/2650 - loss 0.21933979 throughput (samples/sec): 180669.58 -2019-08-19 18:39:36,501 epoch 53 - iter 265/2650 - loss 0.20497846 throughput (samples/sec): 696.62 -2019-08-19 18:39:48,361 epoch 53 - iter 530/2650 - loss 0.20459961 throughput (samples/sec): 720.93 -2019-08-19 18:39:59,852 epoch 53 - iter 795/2650 - loss 0.20506467 throughput (samples/sec): 744.83 -2019-08-19 18:40:11,813 epoch 53 - iter 1060/2650 - loss 0.20620522 throughput (samples/sec): 715.73 -2019-08-19 18:40:23,944 epoch 53 - iter 1325/2650 - loss 0.20759674 throughput (samples/sec): 710.36 -2019-08-19 18:40:36,033 epoch 53 - iter 1590/2650 - loss 0.20699551 throughput (samples/sec): 708.35 -2019-08-19 18:40:47,970 epoch 53 - iter 1855/2650 - loss 0.20685398 throughput (samples/sec): 717.28 -2019-08-19 18:41:00,307 epoch 53 - iter 2120/2650 - loss 0.20778145 throughput (samples/sec): 693.20 -2019-08-19 18:41:12,748 epoch 53 - iter 2385/2650 - loss 0.20744359 throughput (samples/sec): 687.96 -2019-08-19 18:41:25,340 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:41:25,341 EPOCH 53 done: loss 0.2070 - lr 0.1000 -2019-08-19 18:41:25,341 BAD EPOCHS (no improvement): 0 -2019-08-19 18:41:25,342 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:41:25,402 epoch 54 - iter 0/2650 - loss 0.14670137 throughput (samples/sec): 161903.17 -2019-08-19 18:41:37,529 epoch 54 - iter 265/2650 - loss 0.20541256 throughput (samples/sec): 705.60 -2019-08-19 18:41:49,349 epoch 54 - iter 530/2650 - loss 0.20404290 throughput (samples/sec): 723.54 -2019-08-19 18:42:01,434 epoch 54 - iter 795/2650 - loss 0.20454517 throughput (samples/sec): 707.99 -2019-08-19 18:42:14,017 epoch 54 - iter 1060/2650 - loss 0.20353741 throughput (samples/sec): 680.37 -2019-08-19 18:42:26,286 epoch 54 - iter 1325/2650 - loss 0.20360301 throughput (samples/sec): 697.81 -2019-08-19 18:42:37,455 epoch 54 - iter 1590/2650 - loss 0.20482166 throughput (samples/sec): 766.25 -2019-08-19 18:42:48,558 epoch 54 - iter 1855/2650 - loss 0.20425539 throughput (samples/sec): 770.75 -2019-08-19 18:43:00,674 epoch 54 - iter 2120/2650 - loss 0.20408707 throughput (samples/sec): 706.72 -2019-08-19 18:43:12,625 epoch 54 - iter 2385/2650 - loss 0.20369267 throughput (samples/sec): 716.67 -2019-08-19 18:43:23,894 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:43:23,894 EPOCH 54 done: loss 0.2035 - lr 0.1000 -2019-08-19 18:43:23,894 BAD EPOCHS (no improvement): 0 -2019-08-19 18:43:23,895 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:43:23,956 epoch 55 - iter 0/2650 - loss 0.37222201 throughput (samples/sec): 163525.89 -2019-08-19 18:43:35,563 epoch 55 - iter 265/2650 - loss 0.20693792 throughput (samples/sec): 737.57 -2019-08-19 18:43:48,041 epoch 55 - iter 530/2650 - loss 0.20401078 throughput (samples/sec): 686.00 -2019-08-19 18:43:59,518 epoch 55 - iter 795/2650 - loss 0.20144302 throughput (samples/sec): 745.73 -2019-08-19 18:44:11,347 epoch 55 - iter 1060/2650 - loss 0.20119961 throughput (samples/sec): 722.87 -2019-08-19 18:44:23,766 epoch 55 - iter 1325/2650 - loss 0.20228157 throughput (samples/sec): 689.32 -2019-08-19 18:44:36,316 epoch 55 - iter 1590/2650 - loss 0.20304199 throughput (samples/sec): 682.46 -2019-08-19 18:44:49,068 epoch 55 - iter 1855/2650 - loss 0.20295972 throughput (samples/sec): 671.41 -2019-08-19 18:45:01,206 epoch 55 - iter 2120/2650 - loss 0.20382886 throughput (samples/sec): 705.15 -2019-08-19 18:45:13,342 epoch 55 - iter 2385/2650 - loss 0.20391944 throughput (samples/sec): 705.34 -2019-08-19 18:45:25,427 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:45:25,428 EPOCH 55 done: loss 0.2036 - lr 0.1000 -2019-08-19 18:45:25,428 BAD EPOCHS (no improvement): 1 -2019-08-19 18:45:25,428 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:45:25,482 epoch 56 - iter 0/2650 - loss 0.34415540 throughput (samples/sec): 180910.35 -2019-08-19 18:45:37,635 epoch 56 - iter 265/2650 - loss 0.20016689 throughput (samples/sec): 704.27 -2019-08-19 18:45:49,517 epoch 56 - iter 530/2650 - loss 0.20292604 throughput (samples/sec): 720.73 -2019-08-19 18:46:01,954 epoch 56 - iter 795/2650 - loss 0.20167064 throughput (samples/sec): 688.58 -2019-08-19 18:46:13,517 epoch 56 - iter 1060/2650 - loss 0.20123600 throughput (samples/sec): 740.47 -2019-08-19 18:46:25,640 epoch 56 - iter 1325/2650 - loss 0.20153249 throughput (samples/sec): 706.13 -2019-08-19 18:46:37,516 epoch 56 - iter 1590/2650 - loss 0.20209210 throughput (samples/sec): 720.56 -2019-08-19 18:46:49,411 epoch 56 - iter 1855/2650 - loss 0.20256154 throughput (samples/sec): 719.54 -2019-08-19 18:47:01,528 epoch 56 - iter 2120/2650 - loss 0.20271688 throughput (samples/sec): 706.49 -2019-08-19 18:47:13,393 epoch 56 - iter 2385/2650 - loss 0.20284491 throughput (samples/sec): 721.60 -2019-08-19 18:47:26,089 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:47:26,089 EPOCH 56 done: loss 0.2035 - lr 0.1000 -2019-08-19 18:47:26,089 BAD EPOCHS (no improvement): 2 -2019-08-19 18:47:26,090 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:47:26,143 epoch 57 - iter 0/2650 - loss 0.12266492 throughput (samples/sec): 184008.29 -2019-08-19 18:47:38,247 epoch 57 - iter 265/2650 - loss 0.20367886 throughput (samples/sec): 707.33 -2019-08-19 18:47:50,323 epoch 57 - iter 530/2650 - loss 0.20469891 throughput (samples/sec): 708.70 -2019-08-19 18:48:02,468 epoch 57 - iter 795/2650 - loss 0.20110042 throughput (samples/sec): 704.37 -2019-08-19 18:48:14,699 epoch 57 - iter 1060/2650 - loss 0.20117809 throughput (samples/sec): 699.79 -2019-08-19 18:48:26,799 epoch 57 - iter 1325/2650 - loss 0.20212097 throughput (samples/sec): 707.84 -2019-08-19 18:48:38,303 epoch 57 - iter 1590/2650 - loss 0.20235443 throughput (samples/sec): 744.19 -2019-08-19 18:48:50,088 epoch 57 - iter 1855/2650 - loss 0.20204161 throughput (samples/sec): 725.68 -2019-08-19 18:49:02,210 epoch 57 - iter 2120/2650 - loss 0.20238083 throughput (samples/sec): 706.14 -2019-08-19 18:49:13,908 epoch 57 - iter 2385/2650 - loss 0.20212645 throughput (samples/sec): 732.42 -2019-08-19 18:49:25,554 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:49:25,554 EPOCH 57 done: loss 0.2018 - lr 0.1000 -2019-08-19 18:49:25,555 BAD EPOCHS (no improvement): 0 -2019-08-19 18:49:25,555 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:49:25,603 epoch 58 - iter 0/2650 - loss 0.21354020 throughput (samples/sec): 193057.19 -2019-08-19 18:49:37,385 epoch 58 - iter 265/2650 - loss 0.19763093 throughput (samples/sec): 725.59 -2019-08-19 18:49:49,333 epoch 58 - iter 530/2650 - loss 0.19961085 throughput (samples/sec): 716.74 -2019-08-19 18:50:00,854 epoch 58 - iter 795/2650 - loss 0.19848858 throughput (samples/sec): 743.26 -2019-08-19 18:50:12,888 epoch 58 - iter 1060/2650 - loss 0.19869247 throughput (samples/sec): 710.63 -2019-08-19 18:50:24,553 epoch 58 - iter 1325/2650 - loss 0.20009362 throughput (samples/sec): 733.08 -2019-08-19 18:50:36,695 epoch 58 - iter 1590/2650 - loss 0.19956512 throughput (samples/sec): 704.86 -2019-08-19 18:50:48,749 epoch 58 - iter 1855/2650 - loss 0.19923077 throughput (samples/sec): 710.20 -2019-08-19 18:51:00,906 epoch 58 - iter 2120/2650 - loss 0.19878348 throughput (samples/sec): 704.28 -2019-08-19 18:51:12,708 epoch 58 - iter 2385/2650 - loss 0.19877101 throughput (samples/sec): 724.66 -2019-08-19 18:51:24,879 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:51:24,879 EPOCH 58 done: loss 0.1994 - lr 0.1000 -2019-08-19 18:51:24,879 BAD EPOCHS (no improvement): 0 -2019-08-19 18:51:24,880 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:51:24,925 epoch 59 - iter 0/2650 - loss 0.32030973 throughput (samples/sec): 209683.06 -2019-08-19 18:51:36,597 epoch 59 - iter 265/2650 - loss 0.20031985 throughput (samples/sec): 732.51 -2019-08-19 18:51:48,624 epoch 59 - iter 530/2650 - loss 0.19944971 throughput (samples/sec): 711.73 -2019-08-19 18:52:00,937 epoch 59 - iter 795/2650 - loss 0.20034641 throughput (samples/sec): 694.86 -2019-08-19 18:52:13,106 epoch 59 - iter 1060/2650 - loss 0.19999116 throughput (samples/sec): 703.51 -2019-08-19 18:52:25,240 epoch 59 - iter 1325/2650 - loss 0.20005021 throughput (samples/sec): 706.00 -2019-08-19 18:52:37,205 epoch 59 - iter 1590/2650 - loss 0.20048842 throughput (samples/sec): 715.37 -2019-08-19 18:52:49,213 epoch 59 - iter 1855/2650 - loss 0.20046760 throughput (samples/sec): 713.04 -2019-08-19 18:53:00,995 epoch 59 - iter 2120/2650 - loss 0.19981869 throughput (samples/sec): 725.84 -2019-08-19 18:53:13,262 epoch 59 - iter 2385/2650 - loss 0.20063166 throughput (samples/sec): 697.71 -2019-08-19 18:53:25,510 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:53:25,511 EPOCH 59 done: loss 0.2000 - lr 0.1000 -2019-08-19 18:53:25,511 BAD EPOCHS (no improvement): 1 -2019-08-19 18:53:25,512 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:53:25,556 epoch 60 - iter 0/2650 - loss 0.24555789 throughput (samples/sec): 210941.55 -2019-08-19 18:53:37,577 epoch 60 - iter 265/2650 - loss 0.20075484 throughput (samples/sec): 711.40 -2019-08-19 18:53:49,836 epoch 60 - iter 530/2650 - loss 0.19947166 throughput (samples/sec): 698.61 -2019-08-19 18:54:01,104 epoch 60 - iter 795/2650 - loss 0.19806083 throughput (samples/sec): 759.04 -2019-08-19 18:54:12,374 epoch 60 - iter 1060/2650 - loss 0.19942932 throughput (samples/sec): 758.90 -2019-08-19 18:54:24,432 epoch 60 - iter 1325/2650 - loss 0.19932675 throughput (samples/sec): 709.78 -2019-08-19 18:54:36,485 epoch 60 - iter 1590/2650 - loss 0.19841676 throughput (samples/sec): 710.93 -2019-08-19 18:54:48,876 epoch 60 - iter 1855/2650 - loss 0.19841709 throughput (samples/sec): 690.63 -2019-08-19 18:55:00,783 epoch 60 - iter 2120/2650 - loss 0.19798058 throughput (samples/sec): 719.01 -2019-08-19 18:55:12,835 epoch 60 - iter 2385/2650 - loss 0.19826451 throughput (samples/sec): 710.51 -2019-08-19 18:55:24,172 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:55:24,173 EPOCH 60 done: loss 0.1987 - lr 0.1000 -2019-08-19 18:55:24,173 BAD EPOCHS (no improvement): 0 -2019-08-19 18:55:24,173 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:55:24,210 epoch 61 - iter 0/2650 - loss 0.18495460 throughput (samples/sec): 280721.52 -2019-08-19 18:55:36,578 epoch 61 - iter 265/2650 - loss 0.19114779 throughput (samples/sec): 692.03 -2019-08-19 18:55:48,852 epoch 61 - iter 530/2650 - loss 0.19324950 throughput (samples/sec): 697.30 -2019-08-19 18:56:00,511 epoch 61 - iter 795/2650 - loss 0.19517120 throughput (samples/sec): 733.22 -2019-08-19 18:56:12,571 epoch 61 - iter 1060/2650 - loss 0.19583475 throughput (samples/sec): 709.67 -2019-08-19 18:56:24,560 epoch 61 - iter 1325/2650 - loss 0.19538346 throughput (samples/sec): 714.04 -2019-08-19 18:56:36,241 epoch 61 - iter 1590/2650 - loss 0.19610793 throughput (samples/sec): 732.37 -2019-08-19 18:56:48,170 epoch 61 - iter 1855/2650 - loss 0.19595215 throughput (samples/sec): 717.49 -2019-08-19 18:57:00,842 epoch 61 - iter 2120/2650 - loss 0.19602211 throughput (samples/sec): 675.46 -2019-08-19 18:57:12,897 epoch 61 - iter 2385/2650 - loss 0.19628401 throughput (samples/sec): 710.10 -2019-08-19 18:57:25,625 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:57:25,625 EPOCH 61 done: loss 0.1963 - lr 0.1000 -2019-08-19 18:57:25,625 BAD EPOCHS (no improvement): 0 -2019-08-19 18:57:25,630 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:57:25,678 epoch 62 - iter 0/2650 - loss 0.18443511 throughput (samples/sec): 200907.72 -2019-08-19 18:57:37,951 epoch 62 - iter 265/2650 - loss 0.19597270 throughput (samples/sec): 697.12 -2019-08-19 18:57:50,576 epoch 62 - iter 530/2650 - loss 0.19368978 throughput (samples/sec): 678.39 -2019-08-19 18:58:02,422 epoch 62 - iter 795/2650 - loss 0.19486832 throughput (samples/sec): 722.63 -2019-08-19 18:58:15,160 epoch 62 - iter 1060/2650 - loss 0.19561142 throughput (samples/sec): 671.58 -2019-08-19 18:58:27,475 epoch 62 - iter 1325/2650 - loss 0.19485139 throughput (samples/sec): 694.53 -2019-08-19 18:58:39,991 epoch 62 - iter 1590/2650 - loss 0.19443839 throughput (samples/sec): 683.33 -2019-08-19 18:58:52,889 epoch 62 - iter 1855/2650 - loss 0.19394291 throughput (samples/sec): 663.74 -2019-08-19 18:59:05,433 epoch 62 - iter 2120/2650 - loss 0.19406690 throughput (samples/sec): 682.76 -2019-08-19 18:59:18,140 epoch 62 - iter 2385/2650 - loss 0.19477005 throughput (samples/sec): 673.82 -2019-08-19 18:59:29,963 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:59:29,963 EPOCH 62 done: loss 0.1947 - lr 0.1000 -2019-08-19 18:59:29,963 BAD EPOCHS (no improvement): 0 -2019-08-19 18:59:29,964 ---------------------------------------------------------------------------------------------------- -2019-08-19 18:59:30,006 epoch 63 - iter 0/2650 - loss 0.14907822 throughput (samples/sec): 233056.59 -2019-08-19 18:59:41,781 epoch 63 - iter 265/2650 - loss 0.19683802 throughput (samples/sec): 727.20 -2019-08-19 18:59:54,166 epoch 63 - iter 530/2650 - loss 0.19690317 throughput (samples/sec): 691.04 -2019-08-19 19:00:05,894 epoch 63 - iter 795/2650 - loss 0.19685997 throughput (samples/sec): 729.77 -2019-08-19 19:00:18,361 epoch 63 - iter 1060/2650 - loss 0.19628518 throughput (samples/sec): 685.98 -2019-08-19 19:00:29,758 epoch 63 - iter 1325/2650 - loss 0.19433318 throughput (samples/sec): 750.54 -2019-08-19 19:00:41,280 epoch 63 - iter 1590/2650 - loss 0.19406074 throughput (samples/sec): 742.39 -2019-08-19 19:00:53,464 epoch 63 - iter 1855/2650 - loss 0.19378401 throughput (samples/sec): 702.56 -2019-08-19 19:01:05,405 epoch 63 - iter 2120/2650 - loss 0.19423155 throughput (samples/sec): 716.92 -2019-08-19 19:01:17,451 epoch 63 - iter 2385/2650 - loss 0.19453265 throughput (samples/sec): 710.47 -2019-08-19 19:01:29,909 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:01:29,909 EPOCH 63 done: loss 0.1952 - lr 0.1000 -2019-08-19 19:01:29,909 BAD EPOCHS (no improvement): 1 -2019-08-19 19:01:29,910 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:01:29,961 epoch 64 - iter 0/2650 - loss 0.12812115 throughput (samples/sec): 181739.53 -2019-08-19 19:01:41,316 epoch 64 - iter 265/2650 - loss 0.19419354 throughput (samples/sec): 752.89 -2019-08-19 19:01:53,630 epoch 64 - iter 530/2650 - loss 0.19495883 throughput (samples/sec): 694.73 -2019-08-19 19:02:04,679 epoch 64 - iter 795/2650 - loss 0.19492281 throughput (samples/sec): 775.17 -2019-08-19 19:02:15,647 epoch 64 - iter 1060/2650 - loss 0.19322992 throughput (samples/sec): 780.83 -2019-08-19 19:02:26,442 epoch 64 - iter 1325/2650 - loss 0.19360449 throughput (samples/sec): 793.55 -2019-08-19 19:02:38,547 epoch 64 - iter 1590/2650 - loss 0.19426006 throughput (samples/sec): 706.84 -2019-08-19 19:02:51,184 epoch 64 - iter 1855/2650 - loss 0.19391419 throughput (samples/sec): 677.26 -2019-08-19 19:03:03,733 epoch 64 - iter 2120/2650 - loss 0.19424093 throughput (samples/sec): 682.10 -2019-08-19 19:03:16,132 epoch 64 - iter 2385/2650 - loss 0.19354817 throughput (samples/sec): 690.59 -2019-08-19 19:03:28,335 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:03:28,335 EPOCH 64 done: loss 0.1933 - lr 0.1000 -2019-08-19 19:03:28,335 BAD EPOCHS (no improvement): 0 -2019-08-19 19:03:28,336 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:03:28,390 epoch 65 - iter 0/2650 - loss 0.17987567 throughput (samples/sec): 174447.24 -2019-08-19 19:03:40,191 epoch 65 - iter 265/2650 - loss 0.18777868 throughput (samples/sec): 725.42 -2019-08-19 19:03:52,052 epoch 65 - iter 530/2650 - loss 0.18911607 throughput (samples/sec): 721.67 -2019-08-19 19:04:03,679 epoch 65 - iter 795/2650 - loss 0.18851398 throughput (samples/sec): 735.46 -2019-08-19 19:04:15,547 epoch 65 - iter 1060/2650 - loss 0.18944649 throughput (samples/sec): 721.12 -2019-08-19 19:04:27,651 epoch 65 - iter 1325/2650 - loss 0.19010325 throughput (samples/sec): 706.70 -2019-08-19 19:04:39,580 epoch 65 - iter 1590/2650 - loss 0.19132769 throughput (samples/sec): 717.87 -2019-08-19 19:04:51,333 epoch 65 - iter 1855/2650 - loss 0.19186513 throughput (samples/sec): 728.81 -2019-08-19 19:05:03,813 epoch 65 - iter 2120/2650 - loss 0.19082707 throughput (samples/sec): 686.00 -2019-08-19 19:05:16,297 epoch 65 - iter 2385/2650 - loss 0.19093551 throughput (samples/sec): 685.06 -2019-08-19 19:05:28,507 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:05:28,508 EPOCH 65 done: loss 0.1909 - lr 0.1000 -2019-08-19 19:05:28,508 BAD EPOCHS (no improvement): 0 -2019-08-19 19:05:28,509 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:05:28,554 epoch 66 - iter 0/2650 - loss 0.24350353 throughput (samples/sec): 214997.60 -2019-08-19 19:05:40,811 epoch 66 - iter 265/2650 - loss 0.19723650 throughput (samples/sec): 698.28 -2019-08-19 19:05:53,263 epoch 66 - iter 530/2650 - loss 0.19533571 throughput (samples/sec): 687.79 -2019-08-19 19:06:05,831 epoch 66 - iter 795/2650 - loss 0.19482201 throughput (samples/sec): 681.31 -2019-08-19 19:06:17,905 epoch 66 - iter 1060/2650 - loss 0.19372108 throughput (samples/sec): 708.98 -2019-08-19 19:06:30,751 epoch 66 - iter 1325/2650 - loss 0.19289518 throughput (samples/sec): 666.40 -2019-08-19 19:06:42,968 epoch 66 - iter 1590/2650 - loss 0.19212196 throughput (samples/sec): 700.62 -2019-08-19 19:06:55,117 epoch 66 - iter 1855/2650 - loss 0.19229489 throughput (samples/sec): 704.38 -2019-08-19 19:07:07,243 epoch 66 - iter 2120/2650 - loss 0.19218069 throughput (samples/sec): 706.12 -2019-08-19 19:07:18,898 epoch 66 - iter 2385/2650 - loss 0.19211061 throughput (samples/sec): 734.77 -2019-08-19 19:07:31,697 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:07:31,697 EPOCH 66 done: loss 0.1918 - lr 0.1000 -2019-08-19 19:07:31,698 BAD EPOCHS (no improvement): 1 -2019-08-19 19:07:31,698 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:07:31,749 epoch 67 - iter 0/2650 - loss 0.14718726 throughput (samples/sec): 195633.29 -2019-08-19 19:07:43,425 epoch 67 - iter 265/2650 - loss 0.19158348 throughput (samples/sec): 733.23 -2019-08-19 19:07:55,100 epoch 67 - iter 530/2650 - loss 0.19330669 throughput (samples/sec): 732.52 -2019-08-19 19:08:07,301 epoch 67 - iter 795/2650 - loss 0.19311941 throughput (samples/sec): 701.33 -2019-08-19 19:08:19,892 epoch 67 - iter 1060/2650 - loss 0.19218358 throughput (samples/sec): 679.55 -2019-08-19 19:08:32,218 epoch 67 - iter 1325/2650 - loss 0.19189392 throughput (samples/sec): 694.05 -2019-08-19 19:08:44,090 epoch 67 - iter 1590/2650 - loss 0.19164855 throughput (samples/sec): 720.62 -2019-08-19 19:08:56,762 epoch 67 - iter 1855/2650 - loss 0.19152571 throughput (samples/sec): 675.62 -2019-08-19 19:09:09,449 epoch 67 - iter 2120/2650 - loss 0.19110973 throughput (samples/sec): 674.71 -2019-08-19 19:09:22,083 epoch 67 - iter 2385/2650 - loss 0.19090827 throughput (samples/sec): 681.88 -2019-08-19 19:09:33,872 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:09:33,872 EPOCH 67 done: loss 0.1905 - lr 0.1000 -2019-08-19 19:09:33,873 BAD EPOCHS (no improvement): 0 -2019-08-19 19:09:33,873 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:09:33,917 epoch 68 - iter 0/2650 - loss 0.23632422 throughput (samples/sec): 210750.31 -2019-08-19 19:09:45,391 epoch 68 - iter 265/2650 - loss 0.18491981 throughput (samples/sec): 745.48 -2019-08-19 19:09:57,277 epoch 68 - iter 530/2650 - loss 0.18722522 throughput (samples/sec): 720.35 -2019-08-19 19:10:09,812 epoch 68 - iter 795/2650 - loss 0.18929192 throughput (samples/sec): 682.99 -2019-08-19 19:10:22,067 epoch 68 - iter 1060/2650 - loss 0.18924186 throughput (samples/sec): 698.65 -2019-08-19 19:10:34,176 epoch 68 - iter 1325/2650 - loss 0.18942614 throughput (samples/sec): 706.87 -2019-08-19 19:10:45,679 epoch 68 - iter 1590/2650 - loss 0.18926293 throughput (samples/sec): 744.25 -2019-08-19 19:10:57,613 epoch 68 - iter 1855/2650 - loss 0.18926344 throughput (samples/sec): 716.56 -2019-08-19 19:11:09,984 epoch 68 - iter 2120/2650 - loss 0.18953323 throughput (samples/sec): 691.74 -2019-08-19 19:11:21,613 epoch 68 - iter 2385/2650 - loss 0.18940125 throughput (samples/sec): 735.87 -2019-08-19 19:11:33,014 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:11:33,014 EPOCH 68 done: loss 0.1891 - lr 0.1000 -2019-08-19 19:11:33,014 BAD EPOCHS (no improvement): 0 -2019-08-19 19:11:33,015 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:11:33,057 epoch 69 - iter 0/2650 - loss 0.10609931 throughput (samples/sec): 232420.00 -2019-08-19 19:11:44,493 epoch 69 - iter 265/2650 - loss 0.18658787 throughput (samples/sec): 748.58 -2019-08-19 19:11:56,846 epoch 69 - iter 530/2650 - loss 0.18531782 throughput (samples/sec): 692.23 -2019-08-19 19:12:09,152 epoch 69 - iter 795/2650 - loss 0.18621385 throughput (samples/sec): 695.58 -2019-08-19 19:12:21,149 epoch 69 - iter 1060/2650 - loss 0.18602366 throughput (samples/sec): 712.79 -2019-08-19 19:12:33,405 epoch 69 - iter 1325/2650 - loss 0.18631890 throughput (samples/sec): 698.55 -2019-08-19 19:12:45,235 epoch 69 - iter 1590/2650 - loss 0.18647409 throughput (samples/sec): 724.00 -2019-08-19 19:12:57,667 epoch 69 - iter 1855/2650 - loss 0.18708492 throughput (samples/sec): 688.60 -2019-08-19 19:13:10,279 epoch 69 - iter 2120/2650 - loss 0.18748053 throughput (samples/sec): 678.87 -2019-08-19 19:13:21,976 epoch 69 - iter 2385/2650 - loss 0.18841168 throughput (samples/sec): 732.02 -2019-08-19 19:13:33,609 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:13:33,609 EPOCH 69 done: loss 0.1882 - lr 0.1000 -2019-08-19 19:13:33,609 BAD EPOCHS (no improvement): 0 -2019-08-19 19:13:33,610 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:13:33,653 epoch 70 - iter 0/2650 - loss 0.17041592 throughput (samples/sec): 216989.99 -2019-08-19 19:13:45,043 epoch 70 - iter 265/2650 - loss 0.18509268 throughput (samples/sec): 750.75 -2019-08-19 19:13:56,967 epoch 70 - iter 530/2650 - loss 0.18446010 throughput (samples/sec): 717.08 -2019-08-19 19:14:09,156 epoch 70 - iter 795/2650 - loss 0.18547596 throughput (samples/sec): 702.63 -2019-08-19 19:14:21,717 epoch 70 - iter 1060/2650 - loss 0.18699378 throughput (samples/sec): 681.69 -2019-08-19 19:14:33,675 epoch 70 - iter 1325/2650 - loss 0.18715753 throughput (samples/sec): 715.84 -2019-08-19 19:14:45,618 epoch 70 - iter 1590/2650 - loss 0.18650919 throughput (samples/sec): 716.67 -2019-08-19 19:14:57,713 epoch 70 - iter 1855/2650 - loss 0.18667284 throughput (samples/sec): 707.58 -2019-08-19 19:15:10,076 epoch 70 - iter 2120/2650 - loss 0.18661953 throughput (samples/sec): 691.71 -2019-08-19 19:15:22,863 epoch 70 - iter 2385/2650 - loss 0.18646635 throughput (samples/sec): 669.63 -2019-08-19 19:15:34,376 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:15:34,377 EPOCH 70 done: loss 0.1863 - lr 0.1000 -2019-08-19 19:15:34,377 BAD EPOCHS (no improvement): 0 -2019-08-19 19:15:34,378 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:15:34,427 epoch 71 - iter 0/2650 - loss 0.15237895 throughput (samples/sec): 194410.00 -2019-08-19 19:15:46,239 epoch 71 - iter 265/2650 - loss 0.18815795 throughput (samples/sec): 724.97 -2019-08-19 19:15:58,667 epoch 71 - iter 530/2650 - loss 0.18575488 throughput (samples/sec): 688.52 -2019-08-19 19:16:10,768 epoch 71 - iter 795/2650 - loss 0.18746004 throughput (samples/sec): 707.52 -2019-08-19 19:16:22,992 epoch 71 - iter 1060/2650 - loss 0.18571760 throughput (samples/sec): 700.01 -2019-08-19 19:16:34,809 epoch 71 - iter 1325/2650 - loss 0.18544371 throughput (samples/sec): 723.68 -2019-08-19 19:16:47,191 epoch 71 - iter 1590/2650 - loss 0.18529058 throughput (samples/sec): 691.54 -2019-08-19 19:16:59,763 epoch 71 - iter 1855/2650 - loss 0.18562375 throughput (samples/sec): 680.95 -2019-08-19 19:17:11,620 epoch 71 - iter 2120/2650 - loss 0.18512468 throughput (samples/sec): 722.10 -2019-08-19 19:17:23,381 epoch 71 - iter 2385/2650 - loss 0.18565835 throughput (samples/sec): 727.23 -2019-08-19 19:17:36,185 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:17:36,186 EPOCH 71 done: loss 0.1862 - lr 0.1000 -2019-08-19 19:17:36,186 BAD EPOCHS (no improvement): 0 -2019-08-19 19:17:36,187 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:17:36,235 epoch 72 - iter 0/2650 - loss 0.27685264 throughput (samples/sec): 203738.78 -2019-08-19 19:17:49,000 epoch 72 - iter 265/2650 - loss 0.18715402 throughput (samples/sec): 670.11 -2019-08-19 19:18:01,440 epoch 72 - iter 530/2650 - loss 0.18496944 throughput (samples/sec): 688.11 -2019-08-19 19:18:13,198 epoch 72 - iter 795/2650 - loss 0.18439924 throughput (samples/sec): 728.47 -2019-08-19 19:18:25,084 epoch 72 - iter 1060/2650 - loss 0.18400282 throughput (samples/sec): 720.27 -2019-08-19 19:18:37,703 epoch 72 - iter 1325/2650 - loss 0.18319829 throughput (samples/sec): 678.34 -2019-08-19 19:18:49,589 epoch 72 - iter 1590/2650 - loss 0.18291022 throughput (samples/sec): 720.08 -2019-08-19 19:19:01,500 epoch 72 - iter 1855/2650 - loss 0.18329472 throughput (samples/sec): 718.52 -2019-08-19 19:19:14,429 epoch 72 - iter 2120/2650 - loss 0.18335461 throughput (samples/sec): 661.72 -2019-08-19 19:19:26,884 epoch 72 - iter 2385/2650 - loss 0.18385290 throughput (samples/sec): 687.54 -2019-08-19 19:19:38,403 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:19:38,403 EPOCH 72 done: loss 0.1840 - lr 0.1000 -2019-08-19 19:19:38,403 BAD EPOCHS (no improvement): 0 -2019-08-19 19:19:38,404 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:19:38,446 epoch 73 - iter 0/2650 - loss 0.29946369 throughput (samples/sec): 219841.38 -2019-08-19 19:19:50,323 epoch 73 - iter 265/2650 - loss 0.18552752 throughput (samples/sec): 720.18 -2019-08-19 19:20:02,386 epoch 73 - iter 530/2650 - loss 0.18389852 throughput (samples/sec): 709.62 -2019-08-19 19:20:14,379 epoch 73 - iter 795/2650 - loss 0.18421486 throughput (samples/sec): 713.66 -2019-08-19 19:20:26,015 epoch 73 - iter 1060/2650 - loss 0.18541042 throughput (samples/sec): 734.67 -2019-08-19 19:20:37,953 epoch 73 - iter 1325/2650 - loss 0.18508942 throughput (samples/sec): 716.37 -2019-08-19 19:20:50,602 epoch 73 - iter 1590/2650 - loss 0.18482756 throughput (samples/sec): 677.11 -2019-08-19 19:21:03,128 epoch 73 - iter 1855/2650 - loss 0.18478673 throughput (samples/sec): 683.60 -2019-08-19 19:21:14,625 epoch 73 - iter 2120/2650 - loss 0.18419981 throughput (samples/sec): 744.16 -2019-08-19 19:21:26,891 epoch 73 - iter 2385/2650 - loss 0.18464742 throughput (samples/sec): 697.74 -2019-08-19 19:21:38,904 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:21:38,905 EPOCH 73 done: loss 0.1848 - lr 0.1000 -2019-08-19 19:21:38,905 BAD EPOCHS (no improvement): 1 -2019-08-19 19:21:38,905 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:21:38,953 epoch 74 - iter 0/2650 - loss 0.21666758 throughput (samples/sec): 202548.38 -2019-08-19 19:21:51,011 epoch 74 - iter 265/2650 - loss 0.18308531 throughput (samples/sec): 709.69 -2019-08-19 19:22:03,333 epoch 74 - iter 530/2650 - loss 0.18336271 throughput (samples/sec): 694.70 -2019-08-19 19:22:15,893 epoch 74 - iter 795/2650 - loss 0.18382814 throughput (samples/sec): 681.91 -2019-08-19 19:22:27,993 epoch 74 - iter 1060/2650 - loss 0.18505800 throughput (samples/sec): 707.81 -2019-08-19 19:22:39,882 epoch 74 - iter 1325/2650 - loss 0.18502191 throughput (samples/sec): 720.06 -2019-08-19 19:22:52,021 epoch 74 - iter 1590/2650 - loss 0.18377374 throughput (samples/sec): 704.49 -2019-08-19 19:23:04,396 epoch 74 - iter 1855/2650 - loss 0.18318749 throughput (samples/sec): 691.01 -2019-08-19 19:23:16,656 epoch 74 - iter 2120/2650 - loss 0.18295040 throughput (samples/sec): 698.24 -2019-08-19 19:23:28,862 epoch 74 - iter 2385/2650 - loss 0.18305738 throughput (samples/sec): 701.52 -2019-08-19 19:23:40,739 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:23:40,739 EPOCH 74 done: loss 0.1827 - lr 0.1000 -2019-08-19 19:23:40,739 BAD EPOCHS (no improvement): 0 -2019-08-19 19:23:40,740 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:23:40,788 epoch 75 - iter 0/2650 - loss 0.17495307 throughput (samples/sec): 197909.48 -2019-08-19 19:23:52,835 epoch 75 - iter 265/2650 - loss 0.18296709 throughput (samples/sec): 710.61 -2019-08-19 19:24:04,947 epoch 75 - iter 530/2650 - loss 0.17957318 throughput (samples/sec): 707.36 -2019-08-19 19:24:17,430 epoch 75 - iter 795/2650 - loss 0.17995702 throughput (samples/sec): 685.01 -2019-08-19 19:24:29,612 epoch 75 - iter 1060/2650 - loss 0.17936774 throughput (samples/sec): 702.40 -2019-08-19 19:24:41,973 epoch 75 - iter 1325/2650 - loss 0.17950019 throughput (samples/sec): 692.51 -2019-08-19 19:24:53,789 epoch 75 - iter 1590/2650 - loss 0.18031028 throughput (samples/sec): 724.82 -2019-08-19 19:25:05,653 epoch 75 - iter 1855/2650 - loss 0.18095168 throughput (samples/sec): 721.90 -2019-08-19 19:25:17,688 epoch 75 - iter 2120/2650 - loss 0.18157447 throughput (samples/sec): 711.22 -2019-08-19 19:25:30,016 epoch 75 - iter 2385/2650 - loss 0.18172431 throughput (samples/sec): 694.24 -2019-08-19 19:25:42,584 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:25:42,584 EPOCH 75 done: loss 0.1818 - lr 0.1000 -2019-08-19 19:25:42,584 BAD EPOCHS (no improvement): 0 -2019-08-19 19:25:42,585 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:25:42,636 epoch 76 - iter 0/2650 - loss 0.22108111 throughput (samples/sec): 178541.05 -2019-08-19 19:25:54,087 epoch 76 - iter 265/2650 - loss 0.18157251 throughput (samples/sec): 746.84 -2019-08-19 19:26:06,770 epoch 76 - iter 530/2650 - loss 0.18088631 throughput (samples/sec): 675.04 -2019-08-19 19:26:18,413 epoch 76 - iter 795/2650 - loss 0.17996049 throughput (samples/sec): 735.66 -2019-08-19 19:26:30,294 epoch 76 - iter 1060/2650 - loss 0.18072793 throughput (samples/sec): 720.54 -2019-08-19 19:26:42,211 epoch 76 - iter 1325/2650 - loss 0.18050110 throughput (samples/sec): 718.23 -2019-08-19 19:26:55,104 epoch 76 - iter 1590/2650 - loss 0.18041908 throughput (samples/sec): 663.54 -2019-08-19 19:27:07,025 epoch 76 - iter 1855/2650 - loss 0.18106524 throughput (samples/sec): 718.17 -2019-08-19 19:27:19,921 epoch 76 - iter 2120/2650 - loss 0.18123168 throughput (samples/sec): 663.89 -2019-08-19 19:27:31,557 epoch 76 - iter 2385/2650 - loss 0.18178530 throughput (samples/sec): 736.33 -2019-08-19 19:27:43,511 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:27:43,512 EPOCH 76 done: loss 0.1818 - lr 0.1000 -2019-08-19 19:27:43,512 BAD EPOCHS (no improvement): 1 -2019-08-19 19:27:43,512 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:27:43,561 epoch 77 - iter 0/2650 - loss 0.24987443 throughput (samples/sec): 202427.34 -2019-08-19 19:27:55,398 epoch 77 - iter 265/2650 - loss 0.18059275 throughput (samples/sec): 723.31 -2019-08-19 19:28:07,052 epoch 77 - iter 530/2650 - loss 0.18118678 throughput (samples/sec): 733.72 -2019-08-19 19:28:19,770 epoch 77 - iter 795/2650 - loss 0.18051289 throughput (samples/sec): 672.74 -2019-08-19 19:28:32,529 epoch 77 - iter 1060/2650 - loss 0.17928455 throughput (samples/sec): 670.81 -2019-08-19 19:28:45,406 epoch 77 - iter 1325/2650 - loss 0.17963129 throughput (samples/sec): 664.89 -2019-08-19 19:28:57,562 epoch 77 - iter 1590/2650 - loss 0.18036885 throughput (samples/sec): 703.73 -2019-08-19 19:29:10,076 epoch 77 - iter 1855/2650 - loss 0.18016299 throughput (samples/sec): 684.22 -2019-08-19 19:29:22,548 epoch 77 - iter 2120/2650 - loss 0.17901938 throughput (samples/sec): 686.29 -2019-08-19 19:29:34,252 epoch 77 - iter 2385/2650 - loss 0.17902186 throughput (samples/sec): 730.68 -2019-08-19 19:29:46,662 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:29:46,663 EPOCH 77 done: loss 0.1792 - lr 0.1000 -2019-08-19 19:29:46,663 BAD EPOCHS (no improvement): 0 -2019-08-19 19:29:46,664 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:29:46,723 epoch 78 - iter 0/2650 - loss 0.17673168 throughput (samples/sec): 164934.81 -2019-08-19 19:29:57,929 epoch 78 - iter 265/2650 - loss 0.17799551 throughput (samples/sec): 763.81 -2019-08-19 19:30:09,054 epoch 78 - iter 530/2650 - loss 0.18060750 throughput (samples/sec): 769.76 -2019-08-19 19:30:20,141 epoch 78 - iter 795/2650 - loss 0.18064432 throughput (samples/sec): 772.29 -2019-08-19 19:30:31,070 epoch 78 - iter 1060/2650 - loss 0.18060532 throughput (samples/sec): 783.48 -2019-08-19 19:30:42,036 epoch 78 - iter 1325/2650 - loss 0.18009627 throughput (samples/sec): 780.65 -2019-08-19 19:30:53,175 epoch 78 - iter 1590/2650 - loss 0.17979629 throughput (samples/sec): 768.52 -2019-08-19 19:31:04,609 epoch 78 - iter 1855/2650 - loss 0.17980104 throughput (samples/sec): 748.87 -2019-08-19 19:31:17,571 epoch 78 - iter 2120/2650 - loss 0.17964082 throughput (samples/sec): 660.27 -2019-08-19 19:31:30,187 epoch 78 - iter 2385/2650 - loss 0.17998349 throughput (samples/sec): 678.92 -2019-08-19 19:31:41,044 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:31:41,044 EPOCH 78 done: loss 0.1793 - lr 0.1000 -2019-08-19 19:31:41,044 BAD EPOCHS (no improvement): 1 -2019-08-19 19:31:41,045 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:31:41,087 epoch 79 - iter 0/2650 - loss 0.25371000 throughput (samples/sec): 217257.73 -2019-08-19 19:31:52,486 epoch 79 - iter 265/2650 - loss 0.17874388 throughput (samples/sec): 751.04 -2019-08-19 19:32:04,546 epoch 79 - iter 530/2650 - loss 0.17595349 throughput (samples/sec): 709.87 -2019-08-19 19:32:16,888 epoch 79 - iter 795/2650 - loss 0.17773985 throughput (samples/sec): 693.28 -2019-08-19 19:32:28,516 epoch 79 - iter 1060/2650 - loss 0.17891372 throughput (samples/sec): 736.03 -2019-08-19 19:32:40,770 epoch 79 - iter 1325/2650 - loss 0.17790471 throughput (samples/sec): 697.85 -2019-08-19 19:32:53,322 epoch 79 - iter 1590/2650 - loss 0.17814964 throughput (samples/sec): 682.36 -2019-08-19 19:33:05,263 epoch 79 - iter 1855/2650 - loss 0.17825161 throughput (samples/sec): 717.17 -2019-08-19 19:33:17,201 epoch 79 - iter 2120/2650 - loss 0.17841201 throughput (samples/sec): 717.04 -2019-08-19 19:33:30,024 epoch 79 - iter 2385/2650 - loss 0.17815153 throughput (samples/sec): 667.55 -2019-08-19 19:33:42,756 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:33:42,756 EPOCH 79 done: loss 0.1787 - lr 0.1000 -2019-08-19 19:33:42,756 BAD EPOCHS (no improvement): 0 -2019-08-19 19:33:42,757 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:33:42,807 epoch 80 - iter 0/2650 - loss 0.17532077 throughput (samples/sec): 195750.65 -2019-08-19 19:33:55,476 epoch 80 - iter 265/2650 - loss 0.18374315 throughput (samples/sec): 675.55 -2019-08-19 19:34:08,033 epoch 80 - iter 530/2650 - loss 0.18212054 throughput (samples/sec): 682.06 -2019-08-19 19:34:19,913 epoch 80 - iter 795/2650 - loss 0.18037175 throughput (samples/sec): 720.87 -2019-08-19 19:34:31,963 epoch 80 - iter 1060/2650 - loss 0.18002429 throughput (samples/sec): 710.59 -2019-08-19 19:34:44,280 epoch 80 - iter 1325/2650 - loss 0.17954910 throughput (samples/sec): 695.01 -2019-08-19 19:34:55,866 epoch 80 - iter 1590/2650 - loss 0.17911845 throughput (samples/sec): 738.92 -2019-08-19 19:35:07,521 epoch 80 - iter 1855/2650 - loss 0.17917816 throughput (samples/sec): 733.45 -2019-08-19 19:35:19,583 epoch 80 - iter 2120/2650 - loss 0.17883593 throughput (samples/sec): 709.35 -2019-08-19 19:35:31,642 epoch 80 - iter 2385/2650 - loss 0.17938943 throughput (samples/sec): 710.03 -2019-08-19 19:35:43,893 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:35:43,893 EPOCH 80 done: loss 0.1789 - lr 0.1000 -2019-08-19 19:35:43,893 BAD EPOCHS (no improvement): 1 -2019-08-19 19:35:43,894 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:35:43,955 epoch 81 - iter 0/2650 - loss 0.15943146 throughput (samples/sec): 158761.69 -2019-08-19 19:35:55,810 epoch 81 - iter 265/2650 - loss 0.18409231 throughput (samples/sec): 722.15 -2019-08-19 19:36:07,741 epoch 81 - iter 530/2650 - loss 0.18365822 throughput (samples/sec): 716.75 -2019-08-19 19:36:20,420 epoch 81 - iter 795/2650 - loss 0.18283703 throughput (samples/sec): 675.05 -2019-08-19 19:36:33,147 epoch 81 - iter 1060/2650 - loss 0.18107938 throughput (samples/sec): 672.72 -2019-08-19 19:36:45,828 epoch 81 - iter 1325/2650 - loss 0.18014028 throughput (samples/sec): 674.95 -2019-08-19 19:36:58,004 epoch 81 - iter 1590/2650 - loss 0.17843649 throughput (samples/sec): 703.78 -2019-08-19 19:37:09,875 epoch 81 - iter 1855/2650 - loss 0.17823576 throughput (samples/sec): 721.23 -2019-08-19 19:37:21,921 epoch 81 - iter 2120/2650 - loss 0.17831707 throughput (samples/sec): 710.73 -2019-08-19 19:37:33,924 epoch 81 - iter 2385/2650 - loss 0.17825944 throughput (samples/sec): 712.91 -2019-08-19 19:37:45,000 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:37:45,001 EPOCH 81 done: loss 0.1783 - lr 0.1000 -2019-08-19 19:37:45,001 BAD EPOCHS (no improvement): 0 -2019-08-19 19:37:45,001 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:37:45,056 epoch 82 - iter 0/2650 - loss 0.17682041 throughput (samples/sec): 168793.68 -2019-08-19 19:37:56,014 epoch 82 - iter 265/2650 - loss 0.17840995 throughput (samples/sec): 780.13 -2019-08-19 19:38:07,125 epoch 82 - iter 530/2650 - loss 0.17315180 throughput (samples/sec): 770.68 -2019-08-19 19:38:18,082 epoch 82 - iter 795/2650 - loss 0.17396574 throughput (samples/sec): 781.60 -2019-08-19 19:38:28,929 epoch 82 - iter 1060/2650 - loss 0.17440261 throughput (samples/sec): 789.54 -2019-08-19 19:38:41,258 epoch 82 - iter 1325/2650 - loss 0.17512262 throughput (samples/sec): 693.48 -2019-08-19 19:38:53,637 epoch 82 - iter 1590/2650 - loss 0.17601378 throughput (samples/sec): 691.23 -2019-08-19 19:39:05,505 epoch 82 - iter 1855/2650 - loss 0.17618394 throughput (samples/sec): 721.67 -2019-08-19 19:39:17,839 epoch 82 - iter 2120/2650 - loss 0.17546515 throughput (samples/sec): 693.76 -2019-08-19 19:39:30,518 epoch 82 - iter 2385/2650 - loss 0.17550116 throughput (samples/sec): 675.57 -2019-08-19 19:39:42,277 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:39:42,278 EPOCH 82 done: loss 0.1758 - lr 0.1000 -2019-08-19 19:39:42,278 BAD EPOCHS (no improvement): 0 -2019-08-19 19:39:42,278 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:39:42,329 epoch 83 - iter 0/2650 - loss 0.27860749 throughput (samples/sec): 180993.20 -2019-08-19 19:39:54,146 epoch 83 - iter 265/2650 - loss 0.18224216 throughput (samples/sec): 723.65 -2019-08-19 19:40:05,838 epoch 83 - iter 530/2650 - loss 0.17949911 throughput (samples/sec): 732.17 -2019-08-19 19:40:17,977 epoch 83 - iter 795/2650 - loss 0.17879768 throughput (samples/sec): 704.82 -2019-08-19 19:40:30,388 epoch 83 - iter 1060/2650 - loss 0.17911476 throughput (samples/sec): 689.52 -2019-08-19 19:40:42,587 epoch 83 - iter 1325/2650 - loss 0.17921562 throughput (samples/sec): 701.87 -2019-08-19 19:40:54,565 epoch 83 - iter 1590/2650 - loss 0.17819341 throughput (samples/sec): 715.06 -2019-08-19 19:41:06,671 epoch 83 - iter 1855/2650 - loss 0.17726331 throughput (samples/sec): 706.99 -2019-08-19 19:41:19,333 epoch 83 - iter 2120/2650 - loss 0.17713002 throughput (samples/sec): 675.98 -2019-08-19 19:41:31,465 epoch 83 - iter 2385/2650 - loss 0.17682080 throughput (samples/sec): 705.62 -2019-08-19 19:41:43,478 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:41:43,479 EPOCH 83 done: loss 0.1762 - lr 0.1000 -2019-08-19 19:41:43,479 BAD EPOCHS (no improvement): 1 -2019-08-19 19:41:43,480 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:41:43,528 epoch 84 - iter 0/2650 - loss 0.16266789 throughput (samples/sec): 201434.53 -2019-08-19 19:41:55,686 epoch 84 - iter 265/2650 - loss 0.17566446 throughput (samples/sec): 703.69 -2019-08-19 19:42:08,121 epoch 84 - iter 530/2650 - loss 0.17590408 throughput (samples/sec): 688.76 -2019-08-19 19:42:19,358 epoch 84 - iter 795/2650 - loss 0.17504105 throughput (samples/sec): 761.11 -2019-08-19 19:42:31,092 epoch 84 - iter 1060/2650 - loss 0.17599895 throughput (samples/sec): 728.91 -2019-08-19 19:42:43,215 epoch 84 - iter 1325/2650 - loss 0.17617940 throughput (samples/sec): 706.62 -2019-08-19 19:42:55,537 epoch 84 - iter 1590/2650 - loss 0.17629382 throughput (samples/sec): 694.46 -2019-08-19 19:43:07,328 epoch 84 - iter 1855/2650 - loss 0.17610219 throughput (samples/sec): 725.77 -2019-08-19 19:43:18,858 epoch 84 - iter 2120/2650 - loss 0.17666071 throughput (samples/sec): 741.66 -2019-08-19 19:43:31,261 epoch 84 - iter 2385/2650 - loss 0.17714232 throughput (samples/sec): 690.13 -2019-08-19 19:43:43,662 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:43:43,662 EPOCH 84 done: loss 0.1773 - lr 0.1000 -2019-08-19 19:43:43,662 BAD EPOCHS (no improvement): 2 -2019-08-19 19:43:43,662 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:43:43,711 epoch 85 - iter 0/2650 - loss 0.10375286 throughput (samples/sec): 199345.92 -2019-08-19 19:43:55,063 epoch 85 - iter 265/2650 - loss 0.17341691 throughput (samples/sec): 754.21 -2019-08-19 19:44:06,357 epoch 85 - iter 530/2650 - loss 0.17511261 throughput (samples/sec): 757.24 -2019-08-19 19:44:17,736 epoch 85 - iter 795/2650 - loss 0.17412913 throughput (samples/sec): 751.28 -2019-08-19 19:44:29,271 epoch 85 - iter 1060/2650 - loss 0.17454462 throughput (samples/sec): 740.95 -2019-08-19 19:44:41,367 epoch 85 - iter 1325/2650 - loss 0.17358561 throughput (samples/sec): 706.70 -2019-08-19 19:44:54,093 epoch 85 - iter 1590/2650 - loss 0.17276206 throughput (samples/sec): 672.97 -2019-08-19 19:45:05,897 epoch 85 - iter 1855/2650 - loss 0.17305109 throughput (samples/sec): 725.59 -2019-08-19 19:45:17,399 epoch 85 - iter 2120/2650 - loss 0.17334936 throughput (samples/sec): 743.43 -2019-08-19 19:45:29,029 epoch 85 - iter 2385/2650 - loss 0.17379398 throughput (samples/sec): 735.23 -2019-08-19 19:45:41,567 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:45:41,567 EPOCH 85 done: loss 0.1741 - lr 0.1000 -2019-08-19 19:45:41,568 BAD EPOCHS (no improvement): 0 -2019-08-19 19:45:41,568 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:45:41,621 epoch 86 - iter 0/2650 - loss 0.19798380 throughput (samples/sec): 184120.69 -2019-08-19 19:45:54,021 epoch 86 - iter 265/2650 - loss 0.17135954 throughput (samples/sec): 690.19 -2019-08-19 19:46:06,638 epoch 86 - iter 530/2650 - loss 0.17526271 throughput (samples/sec): 678.33 -2019-08-19 19:46:19,284 epoch 86 - iter 795/2650 - loss 0.17570056 throughput (samples/sec): 677.74 -2019-08-19 19:46:31,659 epoch 86 - iter 1060/2650 - loss 0.17410691 throughput (samples/sec): 692.06 -2019-08-19 19:46:43,637 epoch 86 - iter 1325/2650 - loss 0.17446382 throughput (samples/sec): 713.90 -2019-08-19 19:46:55,554 epoch 86 - iter 1590/2650 - loss 0.17416979 throughput (samples/sec): 718.43 -2019-08-19 19:47:07,543 epoch 86 - iter 1855/2650 - loss 0.17407627 throughput (samples/sec): 713.76 -2019-08-19 19:47:20,286 epoch 86 - iter 2120/2650 - loss 0.17444596 throughput (samples/sec): 671.32 -2019-08-19 19:47:33,076 epoch 86 - iter 2385/2650 - loss 0.17479590 throughput (samples/sec): 669.26 -2019-08-19 19:47:44,793 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:47:44,793 EPOCH 86 done: loss 0.1746 - lr 0.1000 -2019-08-19 19:47:44,794 BAD EPOCHS (no improvement): 1 -2019-08-19 19:47:44,794 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:47:44,844 epoch 87 - iter 0/2650 - loss 0.18595459 throughput (samples/sec): 185607.07 -2019-08-19 19:47:56,247 epoch 87 - iter 265/2650 - loss 0.17588782 throughput (samples/sec): 749.86 -2019-08-19 19:48:07,529 epoch 87 - iter 530/2650 - loss 0.17354693 throughput (samples/sec): 757.79 -2019-08-19 19:48:19,331 epoch 87 - iter 795/2650 - loss 0.17285897 throughput (samples/sec): 724.59 -2019-08-19 19:48:31,297 epoch 87 - iter 1060/2650 - loss 0.17233875 throughput (samples/sec): 715.22 -2019-08-19 19:48:43,464 epoch 87 - iter 1325/2650 - loss 0.17338322 throughput (samples/sec): 703.21 -2019-08-19 19:48:55,137 epoch 87 - iter 1590/2650 - loss 0.17315607 throughput (samples/sec): 733.07 -2019-08-19 19:49:06,543 epoch 87 - iter 1855/2650 - loss 0.17348679 throughput (samples/sec): 750.15 -2019-08-19 19:49:19,213 epoch 87 - iter 2120/2650 - loss 0.17334554 throughput (samples/sec): 675.91 -2019-08-19 19:49:31,573 epoch 87 - iter 2385/2650 - loss 0.17293648 throughput (samples/sec): 692.85 -2019-08-19 19:49:43,927 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:49:43,927 EPOCH 87 done: loss 0.1728 - lr 0.1000 -2019-08-19 19:49:43,927 BAD EPOCHS (no improvement): 0 -2019-08-19 19:49:43,928 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:49:43,981 epoch 88 - iter 0/2650 - loss 0.09771585 throughput (samples/sec): 177906.98 -2019-08-19 19:49:54,778 epoch 88 - iter 265/2650 - loss 0.17296549 throughput (samples/sec): 792.94 -2019-08-19 19:50:05,897 epoch 88 - iter 530/2650 - loss 0.17491983 throughput (samples/sec): 769.75 -2019-08-19 19:50:17,062 epoch 88 - iter 795/2650 - loss 0.17295652 throughput (samples/sec): 766.92 -2019-08-19 19:50:27,890 epoch 88 - iter 1060/2650 - loss 0.17234961 throughput (samples/sec): 790.98 -2019-08-19 19:50:38,982 epoch 88 - iter 1325/2650 - loss 0.17305396 throughput (samples/sec): 771.95 -2019-08-19 19:50:50,920 epoch 88 - iter 1590/2650 - loss 0.17288129 throughput (samples/sec): 716.17 -2019-08-19 19:51:03,348 epoch 88 - iter 1855/2650 - loss 0.17208992 throughput (samples/sec): 688.67 -2019-08-19 19:51:15,398 epoch 88 - iter 2120/2650 - loss 0.17155974 throughput (samples/sec): 710.28 -2019-08-19 19:51:27,552 epoch 88 - iter 2385/2650 - loss 0.17189758 throughput (samples/sec): 703.43 -2019-08-19 19:51:38,941 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:51:38,941 EPOCH 88 done: loss 0.1718 - lr 0.1000 -2019-08-19 19:51:38,941 BAD EPOCHS (no improvement): 0 -2019-08-19 19:51:38,942 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:51:38,988 epoch 89 - iter 0/2650 - loss 0.10814421 throughput (samples/sec): 198025.18 -2019-08-19 19:51:50,865 epoch 89 - iter 265/2650 - loss 0.17452179 throughput (samples/sec): 720.11 -2019-08-19 19:52:03,466 epoch 89 - iter 530/2650 - loss 0.17642360 throughput (samples/sec): 679.46 -2019-08-19 19:52:15,990 epoch 89 - iter 795/2650 - loss 0.17750373 throughput (samples/sec): 683.55 -2019-08-19 19:52:28,700 epoch 89 - iter 1060/2650 - loss 0.17682034 throughput (samples/sec): 673.30 -2019-08-19 19:52:40,865 epoch 89 - iter 1325/2650 - loss 0.17602721 throughput (samples/sec): 703.28 -2019-08-19 19:52:53,128 epoch 89 - iter 1590/2650 - loss 0.17506888 throughput (samples/sec): 698.07 -2019-08-19 19:53:05,138 epoch 89 - iter 1855/2650 - loss 0.17348710 throughput (samples/sec): 712.12 -2019-08-19 19:53:17,056 epoch 89 - iter 2120/2650 - loss 0.17275395 throughput (samples/sec): 718.10 -2019-08-19 19:53:29,641 epoch 89 - iter 2385/2650 - loss 0.17251704 throughput (samples/sec): 680.30 -2019-08-19 19:53:41,417 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:53:41,417 EPOCH 89 done: loss 0.1723 - lr 0.1000 -2019-08-19 19:53:41,417 BAD EPOCHS (no improvement): 1 -2019-08-19 19:53:41,418 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:53:41,463 epoch 90 - iter 0/2650 - loss 0.16301513 throughput (samples/sec): 206166.84 -2019-08-19 19:53:53,882 epoch 90 - iter 265/2650 - loss 0.16684494 throughput (samples/sec): 688.92 -2019-08-19 19:54:05,940 epoch 90 - iter 530/2650 - loss 0.16792274 throughput (samples/sec): 708.99 -2019-08-19 19:54:18,065 epoch 90 - iter 795/2650 - loss 0.17041069 throughput (samples/sec): 706.19 -2019-08-19 19:54:29,847 epoch 90 - iter 1060/2650 - loss 0.17048773 throughput (samples/sec): 726.20 -2019-08-19 19:54:41,865 epoch 90 - iter 1325/2650 - loss 0.17081313 throughput (samples/sec): 712.19 -2019-08-19 19:54:53,626 epoch 90 - iter 1590/2650 - loss 0.17081720 throughput (samples/sec): 727.20 -2019-08-19 19:55:05,431 epoch 90 - iter 1855/2650 - loss 0.17072524 throughput (samples/sec): 724.16 -2019-08-19 19:55:17,705 epoch 90 - iter 2120/2650 - loss 0.17075701 throughput (samples/sec): 696.57 -2019-08-19 19:55:29,900 epoch 90 - iter 2385/2650 - loss 0.17121634 throughput (samples/sec): 701.80 -2019-08-19 19:55:41,514 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:55:41,515 EPOCH 90 done: loss 0.1714 - lr 0.1000 -2019-08-19 19:55:41,515 BAD EPOCHS (no improvement): 0 -2019-08-19 19:55:41,515 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:55:41,569 epoch 91 - iter 0/2650 - loss 0.21594846 throughput (samples/sec): 170062.39 -2019-08-19 19:55:53,099 epoch 91 - iter 265/2650 - loss 0.16356024 throughput (samples/sec): 742.71 -2019-08-19 19:56:04,937 epoch 91 - iter 530/2650 - loss 0.16370762 throughput (samples/sec): 723.26 -2019-08-19 19:56:16,529 epoch 91 - iter 795/2650 - loss 0.16534800 throughput (samples/sec): 737.65 -2019-08-19 19:56:28,477 epoch 91 - iter 1060/2650 - loss 0.17018372 throughput (samples/sec): 716.29 -2019-08-19 19:56:40,493 epoch 91 - iter 1325/2650 - loss 0.17181288 throughput (samples/sec): 711.37 -2019-08-19 19:56:52,749 epoch 91 - iter 1590/2650 - loss 0.17142684 throughput (samples/sec): 697.68 -2019-08-19 19:57:04,351 epoch 91 - iter 1855/2650 - loss 0.17104404 throughput (samples/sec): 738.15 -2019-08-19 19:57:15,743 epoch 91 - iter 2120/2650 - loss 0.17220674 throughput (samples/sec): 750.64 -2019-08-19 19:57:27,303 epoch 91 - iter 2385/2650 - loss 0.17229899 throughput (samples/sec): 739.72 -2019-08-19 19:57:39,781 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:57:39,782 EPOCH 91 done: loss 0.1724 - lr 0.1000 -2019-08-19 19:57:39,782 BAD EPOCHS (no improvement): 1 -2019-08-19 19:57:39,783 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:57:39,832 epoch 92 - iter 0/2650 - loss 0.15791188 throughput (samples/sec): 204315.77 -2019-08-19 19:57:52,459 epoch 92 - iter 265/2650 - loss 0.16362281 throughput (samples/sec): 677.66 -2019-08-19 19:58:05,083 epoch 92 - iter 530/2650 - loss 0.16432890 throughput (samples/sec): 677.77 -2019-08-19 19:58:17,320 epoch 92 - iter 795/2650 - loss 0.16590037 throughput (samples/sec): 699.47 -2019-08-19 19:58:28,790 epoch 92 - iter 1060/2650 - loss 0.16832541 throughput (samples/sec): 745.67 -2019-08-19 19:58:39,891 epoch 92 - iter 1325/2650 - loss 0.16873110 throughput (samples/sec): 770.49 -2019-08-19 19:58:51,610 epoch 92 - iter 1590/2650 - loss 0.16962828 throughput (samples/sec): 729.76 -2019-08-19 19:59:03,715 epoch 92 - iter 1855/2650 - loss 0.17002119 throughput (samples/sec): 707.00 -2019-08-19 19:59:16,707 epoch 92 - iter 2120/2650 - loss 0.16949235 throughput (samples/sec): 658.62 -2019-08-19 19:59:28,640 epoch 92 - iter 2385/2650 - loss 0.16895254 throughput (samples/sec): 717.06 -2019-08-19 19:59:39,605 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:59:39,605 EPOCH 92 done: loss 0.1692 - lr 0.1000 -2019-08-19 19:59:39,605 BAD EPOCHS (no improvement): 0 -2019-08-19 19:59:39,606 ---------------------------------------------------------------------------------------------------- -2019-08-19 19:59:39,650 epoch 93 - iter 0/2650 - loss 0.20217675 throughput (samples/sec): 208560.49 -2019-08-19 19:59:50,775 epoch 93 - iter 265/2650 - loss 0.17467967 throughput (samples/sec): 769.46 -2019-08-19 20:00:01,568 epoch 93 - iter 530/2650 - loss 0.17308881 throughput (samples/sec): 793.30 -2019-08-19 20:00:12,734 epoch 93 - iter 795/2650 - loss 0.17184024 throughput (samples/sec): 766.46 -2019-08-19 20:00:23,732 epoch 93 - iter 1060/2650 - loss 0.17035317 throughput (samples/sec): 778.27 -2019-08-19 20:00:34,811 epoch 93 - iter 1325/2650 - loss 0.16941108 throughput (samples/sec): 772.43 -2019-08-19 20:00:45,893 epoch 93 - iter 1590/2650 - loss 0.16927729 throughput (samples/sec): 772.18 -2019-08-19 20:00:56,890 epoch 93 - iter 1855/2650 - loss 0.16930488 throughput (samples/sec): 778.44 -2019-08-19 20:01:08,663 epoch 93 - iter 2120/2650 - loss 0.16972730 throughput (samples/sec): 727.17 -2019-08-19 20:01:20,623 epoch 93 - iter 2385/2650 - loss 0.16956696 throughput (samples/sec): 715.73 -2019-08-19 20:01:33,147 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:01:33,147 EPOCH 93 done: loss 0.1691 - lr 0.1000 -2019-08-19 20:01:33,147 BAD EPOCHS (no improvement): 1 -2019-08-19 20:01:33,148 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:01:33,199 epoch 94 - iter 0/2650 - loss 0.08595832 throughput (samples/sec): 196089.52 -2019-08-19 20:01:44,983 epoch 94 - iter 265/2650 - loss 0.16663371 throughput (samples/sec): 726.18 -2019-08-19 20:01:56,761 epoch 94 - iter 530/2650 - loss 0.16642118 throughput (samples/sec): 726.53 -2019-08-19 20:02:08,944 epoch 94 - iter 795/2650 - loss 0.16461541 throughput (samples/sec): 701.72 -2019-08-19 20:02:20,937 epoch 94 - iter 1060/2650 - loss 0.16552050 throughput (samples/sec): 713.91 -2019-08-19 20:02:33,278 epoch 94 - iter 1325/2650 - loss 0.16798765 throughput (samples/sec): 693.87 -2019-08-19 20:02:45,256 epoch 94 - iter 1590/2650 - loss 0.16926717 throughput (samples/sec): 714.56 -2019-08-19 20:02:57,828 epoch 94 - iter 1855/2650 - loss 0.16918768 throughput (samples/sec): 680.63 -2019-08-19 20:03:09,633 epoch 94 - iter 2120/2650 - loss 0.16847439 throughput (samples/sec): 725.02 -2019-08-19 20:03:21,658 epoch 94 - iter 2385/2650 - loss 0.16940105 throughput (samples/sec): 710.93 -2019-08-19 20:03:33,433 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:03:33,434 EPOCH 94 done: loss 0.1695 - lr 0.1000 -2019-08-19 20:03:33,434 BAD EPOCHS (no improvement): 2 -2019-08-19 20:03:33,434 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:03:33,479 epoch 95 - iter 0/2650 - loss 0.14835800 throughput (samples/sec): 206911.64 -2019-08-19 20:03:45,225 epoch 95 - iter 265/2650 - loss 0.16790029 throughput (samples/sec): 728.39 -2019-08-19 20:03:57,091 epoch 95 - iter 530/2650 - loss 0.16819706 throughput (samples/sec): 721.22 -2019-08-19 20:04:08,357 epoch 95 - iter 795/2650 - loss 0.17039658 throughput (samples/sec): 759.07 -2019-08-19 20:04:19,618 epoch 95 - iter 1060/2650 - loss 0.16901487 throughput (samples/sec): 759.41 -2019-08-19 20:04:31,419 epoch 95 - iter 1325/2650 - loss 0.16834445 throughput (samples/sec): 724.57 -2019-08-19 20:04:43,611 epoch 95 - iter 1590/2650 - loss 0.16771219 throughput (samples/sec): 701.73 -2019-08-19 20:04:56,116 epoch 95 - iter 1855/2650 - loss 0.16788662 throughput (samples/sec): 684.38 -2019-08-19 20:05:08,762 epoch 95 - iter 2120/2650 - loss 0.16791180 throughput (samples/sec): 677.25 -2019-08-19 20:05:21,377 epoch 95 - iter 2385/2650 - loss 0.16748109 throughput (samples/sec): 678.70 -2019-08-19 20:05:32,645 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:05:32,645 EPOCH 95 done: loss 0.1671 - lr 0.1000 -2019-08-19 20:05:32,645 BAD EPOCHS (no improvement): 0 -2019-08-19 20:05:32,646 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:05:32,687 epoch 96 - iter 0/2650 - loss 0.12533721 throughput (samples/sec): 226649.79 -2019-08-19 20:05:44,225 epoch 96 - iter 265/2650 - loss 0.17381836 throughput (samples/sec): 741.01 -2019-08-19 20:05:56,193 epoch 96 - iter 530/2650 - loss 0.17106547 throughput (samples/sec): 713.81 -2019-08-19 20:06:07,612 epoch 96 - iter 795/2650 - loss 0.16983310 throughput (samples/sec): 748.81 -2019-08-19 20:06:19,387 epoch 96 - iter 1060/2650 - loss 0.16846697 throughput (samples/sec): 725.99 -2019-08-19 20:06:31,010 epoch 96 - iter 1325/2650 - loss 0.16798828 throughput (samples/sec): 735.88 -2019-08-19 20:06:43,378 epoch 96 - iter 1590/2650 - loss 0.16818472 throughput (samples/sec): 692.38 -2019-08-19 20:06:55,734 epoch 96 - iter 1855/2650 - loss 0.16753489 throughput (samples/sec): 692.71 -2019-08-19 20:07:08,284 epoch 96 - iter 2120/2650 - loss 0.16721694 throughput (samples/sec): 682.05 -2019-08-19 20:07:20,173 epoch 96 - iter 2385/2650 - loss 0.16769297 throughput (samples/sec): 719.50 -2019-08-19 20:07:32,463 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:07:32,463 EPOCH 96 done: loss 0.1674 - lr 0.1000 -2019-08-19 20:07:32,463 BAD EPOCHS (no improvement): 1 -2019-08-19 20:07:32,466 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:07:32,516 epoch 97 - iter 0/2650 - loss 0.19989762 throughput (samples/sec): 189853.36 -2019-08-19 20:07:45,267 epoch 97 - iter 265/2650 - loss 0.16779470 throughput (samples/sec): 671.07 -2019-08-19 20:07:57,374 epoch 97 - iter 530/2650 - loss 0.16785977 throughput (samples/sec): 707.31 -2019-08-19 20:08:09,832 epoch 97 - iter 795/2650 - loss 0.16707595 throughput (samples/sec): 687.11 -2019-08-19 20:08:21,333 epoch 97 - iter 1060/2650 - loss 0.16781321 throughput (samples/sec): 744.23 -2019-08-19 20:08:33,976 epoch 97 - iter 1325/2650 - loss 0.16848816 throughput (samples/sec): 676.86 -2019-08-19 20:08:46,468 epoch 97 - iter 1590/2650 - loss 0.16728740 throughput (samples/sec): 685.11 -2019-08-19 20:08:58,520 epoch 97 - iter 1855/2650 - loss 0.16745628 throughput (samples/sec): 709.90 -2019-08-19 20:09:11,166 epoch 97 - iter 2120/2650 - loss 0.16680069 throughput (samples/sec): 676.80 -2019-08-19 20:09:23,229 epoch 97 - iter 2385/2650 - loss 0.16698704 throughput (samples/sec): 709.78 -2019-08-19 20:09:34,414 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:09:34,414 EPOCH 97 done: loss 0.1670 - lr 0.1000 -2019-08-19 20:09:34,414 BAD EPOCHS (no improvement): 0 -2019-08-19 20:09:34,415 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:09:34,464 epoch 98 - iter 0/2650 - loss 0.12436760 throughput (samples/sec): 187158.02 -2019-08-19 20:09:45,927 epoch 98 - iter 265/2650 - loss 0.16390006 throughput (samples/sec): 746.00 -2019-08-19 20:09:57,590 epoch 98 - iter 530/2650 - loss 0.16604853 throughput (samples/sec): 733.59 -2019-08-19 20:10:09,327 epoch 98 - iter 795/2650 - loss 0.16689452 throughput (samples/sec): 728.46 -2019-08-19 20:10:21,298 epoch 98 - iter 1060/2650 - loss 0.16635816 throughput (samples/sec): 714.75 -2019-08-19 20:10:33,836 epoch 98 - iter 1325/2650 - loss 0.16687253 throughput (samples/sec): 682.78 -2019-08-19 20:10:45,495 epoch 98 - iter 1590/2650 - loss 0.16590759 throughput (samples/sec): 733.67 -2019-08-19 20:10:58,190 epoch 98 - iter 1855/2650 - loss 0.16621856 throughput (samples/sec): 674.41 -2019-08-19 20:11:10,263 epoch 98 - iter 2120/2650 - loss 0.16629098 throughput (samples/sec): 708.81 -2019-08-19 20:11:22,419 epoch 98 - iter 2385/2650 - loss 0.16532679 throughput (samples/sec): 704.01 -2019-08-19 20:11:34,803 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:11:34,803 EPOCH 98 done: loss 0.1649 - lr 0.1000 -2019-08-19 20:11:34,804 BAD EPOCHS (no improvement): 0 -2019-08-19 20:11:34,804 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:11:34,845 epoch 99 - iter 0/2650 - loss 0.07505674 throughput (samples/sec): 226273.45 -2019-08-19 20:11:45,890 epoch 99 - iter 265/2650 - loss 0.16653020 throughput (samples/sec): 774.15 -2019-08-19 20:11:56,880 epoch 99 - iter 530/2650 - loss 0.16377515 throughput (samples/sec): 779.12 -2019-08-19 20:12:07,842 epoch 99 - iter 795/2650 - loss 0.16506428 throughput (samples/sec): 780.81 -2019-08-19 20:12:18,773 epoch 99 - iter 1060/2650 - loss 0.16457448 throughput (samples/sec): 782.99 -2019-08-19 20:12:29,895 epoch 99 - iter 1325/2650 - loss 0.16618976 throughput (samples/sec): 769.58 -2019-08-19 20:12:41,113 epoch 99 - iter 1590/2650 - loss 0.16641705 throughput (samples/sec): 762.64 -2019-08-19 20:12:52,284 epoch 99 - iter 1855/2650 - loss 0.16572980 throughput (samples/sec): 766.14 -2019-08-19 20:13:04,365 epoch 99 - iter 2120/2650 - loss 0.16611090 throughput (samples/sec): 707.77 -2019-08-19 20:13:16,883 epoch 99 - iter 2385/2650 - loss 0.16627123 throughput (samples/sec): 683.92 -2019-08-19 20:13:28,631 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:13:28,632 EPOCH 99 done: loss 0.1665 - lr 0.1000 -2019-08-19 20:13:28,632 BAD EPOCHS (no improvement): 1 -2019-08-19 20:13:28,633 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:13:28,684 epoch 100 - iter 0/2650 - loss 0.16899247 throughput (samples/sec): 185054.70 -2019-08-19 20:13:41,188 epoch 100 - iter 265/2650 - loss 0.16150488 throughput (samples/sec): 684.35 -2019-08-19 20:13:53,479 epoch 100 - iter 530/2650 - loss 0.16515796 throughput (samples/sec): 696.38 -2019-08-19 20:14:05,485 epoch 100 - iter 795/2650 - loss 0.16561438 throughput (samples/sec): 712.81 -2019-08-19 20:14:17,815 epoch 100 - iter 1060/2650 - loss 0.16552003 throughput (samples/sec): 693.75 -2019-08-19 20:14:30,018 epoch 100 - iter 1325/2650 - loss 0.16502126 throughput (samples/sec): 701.69 -2019-08-19 20:14:41,670 epoch 100 - iter 1590/2650 - loss 0.16549337 throughput (samples/sec): 733.99 -2019-08-19 20:14:53,907 epoch 100 - iter 1855/2650 - loss 0.16527689 throughput (samples/sec): 699.64 -2019-08-19 20:15:05,710 epoch 100 - iter 2120/2650 - loss 0.16565579 throughput (samples/sec): 725.05 -2019-08-19 20:15:17,300 epoch 100 - iter 2385/2650 - loss 0.16494885 throughput (samples/sec): 738.07 -2019-08-19 20:15:29,383 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:15:29,383 EPOCH 100 done: loss 0.1652 - lr 0.1000 -2019-08-19 20:15:29,383 BAD EPOCHS (no improvement): 2 -2019-08-19 20:15:29,384 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:15:29,429 epoch 101 - iter 0/2650 - loss 0.07735409 throughput (samples/sec): 212130.44 -2019-08-19 20:15:41,972 epoch 101 - iter 265/2650 - loss 0.16524570 throughput (samples/sec): 682.17 -2019-08-19 20:15:54,242 epoch 101 - iter 530/2650 - loss 0.16556856 throughput (samples/sec): 698.04 -2019-08-19 20:16:06,868 epoch 101 - iter 795/2650 - loss 0.16524954 throughput (samples/sec): 678.07 -2019-08-19 20:16:19,229 epoch 101 - iter 1060/2650 - loss 0.16459493 throughput (samples/sec): 692.53 -2019-08-19 20:16:31,073 epoch 101 - iter 1325/2650 - loss 0.16509847 throughput (samples/sec): 722.69 -2019-08-19 20:16:43,449 epoch 101 - iter 1590/2650 - loss 0.16457427 throughput (samples/sec): 691.38 -2019-08-19 20:16:55,450 epoch 101 - iter 1855/2650 - loss 0.16468865 throughput (samples/sec): 712.54 -2019-08-19 20:17:07,486 epoch 101 - iter 2120/2650 - loss 0.16446490 throughput (samples/sec): 711.26 -2019-08-19 20:17:19,224 epoch 101 - iter 2385/2650 - loss 0.16420534 throughput (samples/sec): 729.60 -2019-08-19 20:17:31,115 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:17:31,115 EPOCH 101 done: loss 0.1640 - lr 0.1000 -2019-08-19 20:17:31,115 BAD EPOCHS (no improvement): 0 -2019-08-19 20:17:31,116 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:17:31,160 epoch 102 - iter 0/2650 - loss 0.12855580 throughput (samples/sec): 210447.30 -2019-08-19 20:17:42,754 epoch 102 - iter 265/2650 - loss 0.16220313 throughput (samples/sec): 737.52 -2019-08-19 20:17:55,091 epoch 102 - iter 530/2650 - loss 0.16233169 throughput (samples/sec): 693.55 -2019-08-19 20:18:07,465 epoch 102 - iter 795/2650 - loss 0.16203927 throughput (samples/sec): 691.52 -2019-08-19 20:18:19,439 epoch 102 - iter 1060/2650 - loss 0.16314379 throughput (samples/sec): 714.63 -2019-08-19 20:18:31,683 epoch 102 - iter 1325/2650 - loss 0.16331201 throughput (samples/sec): 699.35 -2019-08-19 20:18:43,822 epoch 102 - iter 1590/2650 - loss 0.16261113 throughput (samples/sec): 705.29 -2019-08-19 20:18:55,632 epoch 102 - iter 1855/2650 - loss 0.16302241 throughput (samples/sec): 724.69 -2019-08-19 20:19:07,536 epoch 102 - iter 2120/2650 - loss 0.16311109 throughput (samples/sec): 719.02 -2019-08-19 20:19:19,455 epoch 102 - iter 2385/2650 - loss 0.16326419 throughput (samples/sec): 718.10 -2019-08-19 20:19:31,607 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:19:31,607 EPOCH 102 done: loss 0.1630 - lr 0.1000 -2019-08-19 20:19:31,607 BAD EPOCHS (no improvement): 0 -2019-08-19 20:19:31,608 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:19:31,657 epoch 103 - iter 0/2650 - loss 0.17208301 throughput (samples/sec): 193386.79 -2019-08-19 20:19:43,753 epoch 103 - iter 265/2650 - loss 0.16276731 throughput (samples/sec): 707.76 -2019-08-19 20:19:55,817 epoch 103 - iter 530/2650 - loss 0.16292639 throughput (samples/sec): 709.89 -2019-08-19 20:20:07,712 epoch 103 - iter 795/2650 - loss 0.16275833 throughput (samples/sec): 719.57 -2019-08-19 20:20:19,633 epoch 103 - iter 1060/2650 - loss 0.16325383 throughput (samples/sec): 718.19 -2019-08-19 20:20:32,581 epoch 103 - iter 1325/2650 - loss 0.16256229 throughput (samples/sec): 660.95 -2019-08-19 20:20:45,133 epoch 103 - iter 1590/2650 - loss 0.16292699 throughput (samples/sec): 681.77 -2019-08-19 20:20:56,905 epoch 103 - iter 1855/2650 - loss 0.16240701 throughput (samples/sec): 726.95 -2019-08-19 20:21:07,827 epoch 103 - iter 2120/2650 - loss 0.16240669 throughput (samples/sec): 784.02 -2019-08-19 20:21:19,479 epoch 103 - iter 2385/2650 - loss 0.16228362 throughput (samples/sec): 734.20 -2019-08-19 20:21:31,851 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:21:31,851 EPOCH 103 done: loss 0.1626 - lr 0.1000 -2019-08-19 20:21:31,851 BAD EPOCHS (no improvement): 0 -2019-08-19 20:21:31,852 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:21:31,905 epoch 104 - iter 0/2650 - loss 0.22760251 throughput (samples/sec): 175070.62 -2019-08-19 20:21:44,399 epoch 104 - iter 265/2650 - loss 0.16292406 throughput (samples/sec): 685.07 -2019-08-19 20:21:56,500 epoch 104 - iter 530/2650 - loss 0.16418370 throughput (samples/sec): 707.33 -2019-08-19 20:22:08,648 epoch 104 - iter 795/2650 - loss 0.16290460 throughput (samples/sec): 704.31 -2019-08-19 20:22:20,875 epoch 104 - iter 1060/2650 - loss 0.16318196 throughput (samples/sec): 700.04 -2019-08-19 20:22:33,452 epoch 104 - iter 1325/2650 - loss 0.16412677 throughput (samples/sec): 680.84 -2019-08-19 20:22:44,967 epoch 104 - iter 1590/2650 - loss 0.16341500 throughput (samples/sec): 742.86 -2019-08-19 20:22:56,902 epoch 104 - iter 1855/2650 - loss 0.16311824 throughput (samples/sec): 717.19 -2019-08-19 20:23:08,801 epoch 104 - iter 2120/2650 - loss 0.16303285 throughput (samples/sec): 719.38 -2019-08-19 20:23:20,699 epoch 104 - iter 2385/2650 - loss 0.16257778 throughput (samples/sec): 719.39 -2019-08-19 20:23:33,007 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:23:33,007 EPOCH 104 done: loss 0.1625 - lr 0.1000 -2019-08-19 20:23:33,008 BAD EPOCHS (no improvement): 0 -2019-08-19 20:23:33,008 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:23:33,064 epoch 105 - iter 0/2650 - loss 0.12166908 throughput (samples/sec): 162332.49 -2019-08-19 20:23:45,253 epoch 105 - iter 265/2650 - loss 0.15640555 throughput (samples/sec): 701.97 -2019-08-19 20:23:57,790 epoch 105 - iter 530/2650 - loss 0.15785606 throughput (samples/sec): 682.80 -2019-08-19 20:24:09,956 epoch 105 - iter 795/2650 - loss 0.15838603 throughput (samples/sec): 703.61 -2019-08-19 20:24:21,991 epoch 105 - iter 1060/2650 - loss 0.15964751 throughput (samples/sec): 711.50 -2019-08-19 20:24:33,947 epoch 105 - iter 1325/2650 - loss 0.16113380 throughput (samples/sec): 715.47 -2019-08-19 20:24:46,581 epoch 105 - iter 1590/2650 - loss 0.16187094 throughput (samples/sec): 677.34 -2019-08-19 20:24:58,762 epoch 105 - iter 1855/2650 - loss 0.16178262 throughput (samples/sec): 702.69 -2019-08-19 20:25:10,659 epoch 105 - iter 2120/2650 - loss 0.16170841 throughput (samples/sec): 719.73 -2019-08-19 20:25:22,129 epoch 105 - iter 2385/2650 - loss 0.16159184 throughput (samples/sec): 746.60 -2019-08-19 20:25:33,959 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:25:33,959 EPOCH 105 done: loss 0.1622 - lr 0.1000 -2019-08-19 20:25:33,959 BAD EPOCHS (no improvement): 0 -2019-08-19 20:25:33,960 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:25:34,012 epoch 106 - iter 0/2650 - loss 0.13024408 throughput (samples/sec): 177511.87 -2019-08-19 20:25:46,446 epoch 106 - iter 265/2650 - loss 0.16622634 throughput (samples/sec): 687.40 -2019-08-19 20:25:58,752 epoch 106 - iter 530/2650 - loss 0.16189437 throughput (samples/sec): 695.40 -2019-08-19 20:26:11,183 epoch 106 - iter 795/2650 - loss 0.16048438 throughput (samples/sec): 688.26 -2019-08-19 20:26:23,671 epoch 106 - iter 1060/2650 - loss 0.16027267 throughput (samples/sec): 685.57 -2019-08-19 20:26:36,257 epoch 106 - iter 1325/2650 - loss 0.16135861 throughput (samples/sec): 680.33 -2019-08-19 20:26:47,961 epoch 106 - iter 1590/2650 - loss 0.16179408 throughput (samples/sec): 731.43 -2019-08-19 20:26:59,448 epoch 106 - iter 1855/2650 - loss 0.16209889 throughput (samples/sec): 744.74 -2019-08-19 20:27:11,293 epoch 106 - iter 2120/2650 - loss 0.16163401 throughput (samples/sec): 722.69 -2019-08-19 20:27:23,334 epoch 106 - iter 2385/2650 - loss 0.16233916 throughput (samples/sec): 710.64 -2019-08-19 20:27:35,238 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:27:35,239 EPOCH 106 done: loss 0.1620 - lr 0.1000 -2019-08-19 20:27:35,239 BAD EPOCHS (no improvement): 0 -2019-08-19 20:27:35,240 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:27:35,292 epoch 107 - iter 0/2650 - loss 0.12224628 throughput (samples/sec): 187305.86 -2019-08-19 20:27:47,028 epoch 107 - iter 265/2650 - loss 0.16432142 throughput (samples/sec): 729.54 -2019-08-19 20:27:59,218 epoch 107 - iter 530/2650 - loss 0.16094321 throughput (samples/sec): 702.29 -2019-08-19 20:28:11,446 epoch 107 - iter 795/2650 - loss 0.16237067 throughput (samples/sec): 700.17 -2019-08-19 20:28:22,362 epoch 107 - iter 1060/2650 - loss 0.16174976 throughput (samples/sec): 784.27 -2019-08-19 20:28:33,474 epoch 107 - iter 1325/2650 - loss 0.16184540 throughput (samples/sec): 770.10 -2019-08-19 20:28:44,551 epoch 107 - iter 1590/2650 - loss 0.16250472 throughput (samples/sec): 772.42 -2019-08-19 20:28:56,143 epoch 107 - iter 1855/2650 - loss 0.16232327 throughput (samples/sec): 738.12 -2019-08-19 20:29:07,612 epoch 107 - iter 2120/2650 - loss 0.16104360 throughput (samples/sec): 746.59 -2019-08-19 20:29:19,402 epoch 107 - iter 2385/2650 - loss 0.16118024 throughput (samples/sec): 726.27 -2019-08-19 20:29:31,216 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:29:31,217 EPOCH 107 done: loss 0.1613 - lr 0.1000 -2019-08-19 20:29:31,217 BAD EPOCHS (no improvement): 0 -2019-08-19 20:29:31,217 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:29:31,266 epoch 108 - iter 0/2650 - loss 0.14027414 throughput (samples/sec): 194343.08 -2019-08-19 20:29:43,127 epoch 108 - iter 265/2650 - loss 0.15793461 throughput (samples/sec): 721.41 -2019-08-19 20:29:55,566 epoch 108 - iter 530/2650 - loss 0.15604168 throughput (samples/sec): 687.69 -2019-08-19 20:30:07,526 epoch 108 - iter 795/2650 - loss 0.15586407 throughput (samples/sec): 715.29 -2019-08-19 20:30:19,342 epoch 108 - iter 1060/2650 - loss 0.15730694 throughput (samples/sec): 723.94 -2019-08-19 20:30:31,376 epoch 108 - iter 1325/2650 - loss 0.15816089 throughput (samples/sec): 711.40 -2019-08-19 20:30:43,769 epoch 108 - iter 1590/2650 - loss 0.15915199 throughput (samples/sec): 691.01 -2019-08-19 20:30:56,244 epoch 108 - iter 1855/2650 - loss 0.15990373 throughput (samples/sec): 686.20 -2019-08-19 20:31:08,713 epoch 108 - iter 2120/2650 - loss 0.16004035 throughput (samples/sec): 686.37 -2019-08-19 20:31:21,563 epoch 108 - iter 2385/2650 - loss 0.15982747 throughput (samples/sec): 665.75 -2019-08-19 20:31:34,364 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:31:34,365 EPOCH 108 done: loss 0.1600 - lr 0.1000 -2019-08-19 20:31:34,365 BAD EPOCHS (no improvement): 0 -2019-08-19 20:31:34,366 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:31:34,415 epoch 109 - iter 0/2650 - loss 0.10511114 throughput (samples/sec): 202988.80 -2019-08-19 20:31:47,051 epoch 109 - iter 265/2650 - loss 0.15987492 throughput (samples/sec): 677.72 -2019-08-19 20:31:58,156 epoch 109 - iter 530/2650 - loss 0.16138321 throughput (samples/sec): 770.86 -2019-08-19 20:32:08,941 epoch 109 - iter 795/2650 - loss 0.16079386 throughput (samples/sec): 793.80 -2019-08-19 20:32:19,866 epoch 109 - iter 1060/2650 - loss 0.16079145 throughput (samples/sec): 783.49 -2019-08-19 20:32:31,218 epoch 109 - iter 1325/2650 - loss 0.16060571 throughput (samples/sec): 753.74 -2019-08-19 20:32:42,244 epoch 109 - iter 1590/2650 - loss 0.16046653 throughput (samples/sec): 776.14 -2019-08-19 20:32:53,247 epoch 109 - iter 1855/2650 - loss 0.16125404 throughput (samples/sec): 777.75 -2019-08-19 20:33:04,422 epoch 109 - iter 2120/2650 - loss 0.16082723 throughput (samples/sec): 766.13 -2019-08-19 20:33:15,496 epoch 109 - iter 2385/2650 - loss 0.16112259 throughput (samples/sec): 772.91 -2019-08-19 20:33:26,537 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:33:26,538 EPOCH 109 done: loss 0.1607 - lr 0.1000 -2019-08-19 20:33:26,538 BAD EPOCHS (no improvement): 1 -2019-08-19 20:33:26,538 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:33:26,581 epoch 110 - iter 0/2650 - loss 0.11161678 throughput (samples/sec): 215338.64 -2019-08-19 20:33:37,565 epoch 110 - iter 265/2650 - loss 0.15795344 throughput (samples/sec): 779.00 -2019-08-19 20:33:48,733 epoch 110 - iter 530/2650 - loss 0.15928802 throughput (samples/sec): 766.43 -2019-08-19 20:34:00,727 epoch 110 - iter 795/2650 - loss 0.15984920 throughput (samples/sec): 713.34 -2019-08-19 20:34:13,122 epoch 110 - iter 1060/2650 - loss 0.15962818 throughput (samples/sec): 690.63 -2019-08-19 20:34:24,842 epoch 110 - iter 1325/2650 - loss 0.15818117 throughput (samples/sec): 730.07 -2019-08-19 20:34:37,024 epoch 110 - iter 1590/2650 - loss 0.15829749 throughput (samples/sec): 702.20 -2019-08-19 20:34:49,378 epoch 110 - iter 1855/2650 - loss 0.15877638 throughput (samples/sec): 692.62 -2019-08-19 20:35:01,071 epoch 110 - iter 2120/2650 - loss 0.15839214 throughput (samples/sec): 731.64 -2019-08-19 20:35:12,872 epoch 110 - iter 2385/2650 - loss 0.15841422 throughput (samples/sec): 724.73 -2019-08-19 20:35:25,117 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:35:25,118 EPOCH 110 done: loss 0.1589 - lr 0.1000 -2019-08-19 20:35:25,118 BAD EPOCHS (no improvement): 0 -2019-08-19 20:35:25,118 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:35:25,167 epoch 111 - iter 0/2650 - loss 0.17376798 throughput (samples/sec): 190360.40 -2019-08-19 20:35:36,541 epoch 111 - iter 265/2650 - loss 0.15837294 throughput (samples/sec): 751.87 -2019-08-19 20:35:47,939 epoch 111 - iter 530/2650 - loss 0.16046645 throughput (samples/sec): 750.62 -2019-08-19 20:36:00,080 epoch 111 - iter 795/2650 - loss 0.15946585 throughput (samples/sec): 705.13 -2019-08-19 20:36:12,561 epoch 111 - iter 1060/2650 - loss 0.15890948 throughput (samples/sec): 685.75 -2019-08-19 20:36:25,291 epoch 111 - iter 1325/2650 - loss 0.15789383 throughput (samples/sec): 672.32 -2019-08-19 20:36:37,732 epoch 111 - iter 1590/2650 - loss 0.15858002 throughput (samples/sec): 687.86 -2019-08-19 20:36:49,205 epoch 111 - iter 1855/2650 - loss 0.15901275 throughput (samples/sec): 745.26 -2019-08-19 20:37:01,963 epoch 111 - iter 2120/2650 - loss 0.15920456 throughput (samples/sec): 671.18 -2019-08-19 20:37:13,621 epoch 111 - iter 2385/2650 - loss 0.15893904 throughput (samples/sec): 734.58 -2019-08-19 20:37:26,167 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:37:26,167 EPOCH 111 done: loss 0.1585 - lr 0.1000 -2019-08-19 20:37:26,167 BAD EPOCHS (no improvement): 0 -2019-08-19 20:37:26,168 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:37:26,216 epoch 112 - iter 0/2650 - loss 0.17082362 throughput (samples/sec): 203421.84 -2019-08-19 20:37:38,709 epoch 112 - iter 265/2650 - loss 0.15535394 throughput (samples/sec): 685.02 -2019-08-19 20:37:51,248 epoch 112 - iter 530/2650 - loss 0.15814109 throughput (samples/sec): 682.45 -2019-08-19 20:38:03,157 epoch 112 - iter 795/2650 - loss 0.15886062 throughput (samples/sec): 718.64 -2019-08-19 20:38:15,895 epoch 112 - iter 1060/2650 - loss 0.15873541 throughput (samples/sec): 671.74 -2019-08-19 20:38:27,763 epoch 112 - iter 1325/2650 - loss 0.15883457 throughput (samples/sec): 721.51 -2019-08-19 20:38:40,386 epoch 112 - iter 1590/2650 - loss 0.15905407 throughput (samples/sec): 678.20 -2019-08-19 20:38:52,256 epoch 112 - iter 1855/2650 - loss 0.15918328 throughput (samples/sec): 721.17 -2019-08-19 20:39:04,248 epoch 112 - iter 2120/2650 - loss 0.15907630 throughput (samples/sec): 713.61 -2019-08-19 20:39:16,124 epoch 112 - iter 2385/2650 - loss 0.15882706 throughput (samples/sec): 720.67 -2019-08-19 20:39:28,549 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:39:28,550 EPOCH 112 done: loss 0.1592 - lr 0.1000 -2019-08-19 20:39:28,550 BAD EPOCHS (no improvement): 1 -2019-08-19 20:39:28,550 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:39:28,597 epoch 113 - iter 0/2650 - loss 0.18553202 throughput (samples/sec): 196464.29 -2019-08-19 20:39:39,769 epoch 113 - iter 265/2650 - loss 0.15274214 throughput (samples/sec): 766.07 -2019-08-19 20:39:50,811 epoch 113 - iter 530/2650 - loss 0.15534816 throughput (samples/sec): 775.35 -2019-08-19 20:40:01,558 epoch 113 - iter 795/2650 - loss 0.15533643 throughput (samples/sec): 796.44 -2019-08-19 20:40:12,471 epoch 113 - iter 1060/2650 - loss 0.15564168 throughput (samples/sec): 784.37 -2019-08-19 20:40:23,563 epoch 113 - iter 1325/2650 - loss 0.15622384 throughput (samples/sec): 771.45 -2019-08-19 20:40:34,677 epoch 113 - iter 1590/2650 - loss 0.15742784 throughput (samples/sec): 769.99 -2019-08-19 20:40:45,602 epoch 113 - iter 1855/2650 - loss 0.15803942 throughput (samples/sec): 783.34 -2019-08-19 20:40:56,690 epoch 113 - iter 2120/2650 - loss 0.15734512 throughput (samples/sec): 771.82 -2019-08-19 20:41:08,237 epoch 113 - iter 2385/2650 - loss 0.15690311 throughput (samples/sec): 741.45 -2019-08-19 20:41:20,244 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:41:20,245 EPOCH 113 done: loss 0.1570 - lr 0.1000 -2019-08-19 20:41:20,245 BAD EPOCHS (no improvement): 0 -2019-08-19 20:41:20,245 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:41:20,291 epoch 114 - iter 0/2650 - loss 0.09519857 throughput (samples/sec): 204080.13 -2019-08-19 20:41:31,583 epoch 114 - iter 265/2650 - loss 0.15075066 throughput (samples/sec): 757.25 -2019-08-19 20:41:44,272 epoch 114 - iter 530/2650 - loss 0.15468531 throughput (samples/sec): 674.70 -2019-08-19 20:41:57,017 epoch 114 - iter 795/2650 - loss 0.15436017 throughput (samples/sec): 671.36 -2019-08-19 20:42:09,666 epoch 114 - iter 1060/2650 - loss 0.15476866 throughput (samples/sec): 676.52 -2019-08-19 20:42:22,139 epoch 114 - iter 1325/2650 - loss 0.15572735 throughput (samples/sec): 686.43 -2019-08-19 20:42:33,489 epoch 114 - iter 1590/2650 - loss 0.15545223 throughput (samples/sec): 753.58 -2019-08-19 20:42:45,531 epoch 114 - iter 1855/2650 - loss 0.15526752 throughput (samples/sec): 710.36 -2019-08-19 20:42:57,668 epoch 114 - iter 2120/2650 - loss 0.15608828 throughput (samples/sec): 706.06 -2019-08-19 20:43:09,963 epoch 114 - iter 2385/2650 - loss 0.15611181 throughput (samples/sec): 696.45 -2019-08-19 20:43:21,965 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:43:21,966 EPOCH 114 done: loss 0.1564 - lr 0.1000 -2019-08-19 20:43:21,966 BAD EPOCHS (no improvement): 0 -2019-08-19 20:43:21,966 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:43:22,015 epoch 115 - iter 0/2650 - loss 0.10394065 throughput (samples/sec): 195055.02 -2019-08-19 20:43:34,413 epoch 115 - iter 265/2650 - loss 0.15763292 throughput (samples/sec): 690.09 -2019-08-19 20:43:46,455 epoch 115 - iter 530/2650 - loss 0.15458913 throughput (samples/sec): 711.12 -2019-08-19 20:43:58,614 epoch 115 - iter 795/2650 - loss 0.15329353 throughput (samples/sec): 704.22 -2019-08-19 20:44:10,091 epoch 115 - iter 1060/2650 - loss 0.15478810 throughput (samples/sec): 745.87 -2019-08-19 20:44:22,078 epoch 115 - iter 1325/2650 - loss 0.15467256 throughput (samples/sec): 714.05 -2019-08-19 20:44:34,064 epoch 115 - iter 1590/2650 - loss 0.15464598 throughput (samples/sec): 713.84 -2019-08-19 20:44:46,223 epoch 115 - iter 1855/2650 - loss 0.15487008 throughput (samples/sec): 703.69 -2019-08-19 20:44:58,414 epoch 115 - iter 2120/2650 - loss 0.15485694 throughput (samples/sec): 702.33 -2019-08-19 20:45:10,418 epoch 115 - iter 2385/2650 - loss 0.15491920 throughput (samples/sec): 712.92 -2019-08-19 20:45:22,673 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:45:22,674 EPOCH 115 done: loss 0.1556 - lr 0.1000 -2019-08-19 20:45:22,674 BAD EPOCHS (no improvement): 0 -2019-08-19 20:45:22,675 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:45:22,724 epoch 116 - iter 0/2650 - loss 0.25861630 throughput (samples/sec): 185656.48 -2019-08-19 20:45:34,631 epoch 116 - iter 265/2650 - loss 0.15638262 throughput (samples/sec): 718.79 -2019-08-19 20:45:46,344 epoch 116 - iter 530/2650 - loss 0.15693425 throughput (samples/sec): 730.79 -2019-08-19 20:45:57,856 epoch 116 - iter 795/2650 - loss 0.15579196 throughput (samples/sec): 743.36 -2019-08-19 20:46:10,393 epoch 116 - iter 1060/2650 - loss 0.15644801 throughput (samples/sec): 682.17 -2019-08-19 20:46:22,369 epoch 116 - iter 1325/2650 - loss 0.15567938 throughput (samples/sec): 714.47 -2019-08-19 20:46:34,001 epoch 116 - iter 1590/2650 - loss 0.15577232 throughput (samples/sec): 736.27 -2019-08-19 20:46:45,432 epoch 116 - iter 1855/2650 - loss 0.15639633 throughput (samples/sec): 748.29 -2019-08-19 20:46:57,002 epoch 116 - iter 2120/2650 - loss 0.15611052 throughput (samples/sec): 740.03 -2019-08-19 20:47:08,832 epoch 116 - iter 2385/2650 - loss 0.15642372 throughput (samples/sec): 722.77 -2019-08-19 20:47:20,321 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:47:20,321 EPOCH 116 done: loss 0.1569 - lr 0.1000 -2019-08-19 20:47:20,322 BAD EPOCHS (no improvement): 1 -2019-08-19 20:47:20,322 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:47:20,365 epoch 117 - iter 0/2650 - loss 0.18426244 throughput (samples/sec): 218672.25 -2019-08-19 20:47:31,788 epoch 117 - iter 265/2650 - loss 0.15518151 throughput (samples/sec): 748.58 -2019-08-19 20:47:43,899 epoch 117 - iter 530/2650 - loss 0.15495991 throughput (samples/sec): 706.78 -2019-08-19 20:47:55,577 epoch 117 - iter 795/2650 - loss 0.15611650 throughput (samples/sec): 732.71 -2019-08-19 20:48:07,536 epoch 117 - iter 1060/2650 - loss 0.15476577 throughput (samples/sec): 715.88 -2019-08-19 20:48:19,477 epoch 117 - iter 1325/2650 - loss 0.15466840 throughput (samples/sec): 716.79 -2019-08-19 20:48:32,114 epoch 117 - iter 1590/2650 - loss 0.15517605 throughput (samples/sec): 677.32 -2019-08-19 20:48:43,697 epoch 117 - iter 1855/2650 - loss 0.15508222 throughput (samples/sec): 738.83 -2019-08-19 20:48:55,425 epoch 117 - iter 2120/2650 - loss 0.15547553 throughput (samples/sec): 729.12 -2019-08-19 20:49:07,066 epoch 117 - iter 2385/2650 - loss 0.15573870 throughput (samples/sec): 734.77 -2019-08-19 20:49:19,117 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:49:19,117 EPOCH 117 done: loss 0.1554 - lr 0.1000 -2019-08-19 20:49:19,117 BAD EPOCHS (no improvement): 0 -2019-08-19 20:49:19,118 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:49:19,169 epoch 118 - iter 0/2650 - loss 0.11025486 throughput (samples/sec): 177366.69 -2019-08-19 20:49:31,365 epoch 118 - iter 265/2650 - loss 0.15564000 throughput (samples/sec): 701.87 -2019-08-19 20:49:42,859 epoch 118 - iter 530/2650 - loss 0.15776694 throughput (samples/sec): 744.21 -2019-08-19 20:49:54,996 epoch 118 - iter 795/2650 - loss 0.15749238 throughput (samples/sec): 705.44 -2019-08-19 20:50:07,822 epoch 118 - iter 1060/2650 - loss 0.15755272 throughput (samples/sec): 666.98 -2019-08-19 20:50:20,587 epoch 118 - iter 1325/2650 - loss 0.15718812 throughput (samples/sec): 670.34 -2019-08-19 20:50:33,356 epoch 118 - iter 1590/2650 - loss 0.15654168 throughput (samples/sec): 670.62 -2019-08-19 20:50:45,765 epoch 118 - iter 1855/2650 - loss 0.15598825 throughput (samples/sec): 689.97 -2019-08-19 20:50:57,524 epoch 118 - iter 2120/2650 - loss 0.15656523 throughput (samples/sec): 728.08 -2019-08-19 20:51:10,038 epoch 118 - iter 2385/2650 - loss 0.15657336 throughput (samples/sec): 684.07 -2019-08-19 20:51:21,988 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:51:21,988 EPOCH 118 done: loss 0.1563 - lr 0.1000 -2019-08-19 20:51:21,988 BAD EPOCHS (no improvement): 1 -2019-08-19 20:51:21,989 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:51:22,049 epoch 119 - iter 0/2650 - loss 0.11639366 throughput (samples/sec): 155181.25 -2019-08-19 20:51:34,228 epoch 119 - iter 265/2650 - loss 0.15332765 throughput (samples/sec): 702.48 -2019-08-19 20:51:46,294 epoch 119 - iter 530/2650 - loss 0.15198538 throughput (samples/sec): 709.33 -2019-08-19 20:51:58,310 epoch 119 - iter 795/2650 - loss 0.15525462 throughput (samples/sec): 712.76 -2019-08-19 20:52:10,520 epoch 119 - iter 1060/2650 - loss 0.15523987 throughput (samples/sec): 700.96 -2019-08-19 20:52:22,651 epoch 119 - iter 1325/2650 - loss 0.15546336 throughput (samples/sec): 705.07 -2019-08-19 20:52:35,245 epoch 119 - iter 1590/2650 - loss 0.15597206 throughput (samples/sec): 679.73 -2019-08-19 20:52:46,710 epoch 119 - iter 1855/2650 - loss 0.15600805 throughput (samples/sec): 745.67 -2019-08-19 20:52:59,443 epoch 119 - iter 2120/2650 - loss 0.15609848 throughput (samples/sec): 672.02 -2019-08-19 20:53:11,969 epoch 119 - iter 2385/2650 - loss 0.15634151 throughput (samples/sec): 683.64 -2019-08-19 20:53:23,592 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:53:23,593 EPOCH 119 done: loss 0.1562 - lr 0.1000 -2019-08-19 20:53:23,593 BAD EPOCHS (no improvement): 2 -2019-08-19 20:53:23,593 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:53:23,643 epoch 120 - iter 0/2650 - loss 0.16097212 throughput (samples/sec): 186651.23 -2019-08-19 20:53:35,867 epoch 120 - iter 265/2650 - loss 0.15466361 throughput (samples/sec): 699.68 -2019-08-19 20:53:47,887 epoch 120 - iter 530/2650 - loss 0.15591566 throughput (samples/sec): 712.11 -2019-08-19 20:54:00,198 epoch 120 - iter 795/2650 - loss 0.15517003 throughput (samples/sec): 694.56 -2019-08-19 20:54:11,947 epoch 120 - iter 1060/2650 - loss 0.15318986 throughput (samples/sec): 728.54 -2019-08-19 20:54:24,120 epoch 120 - iter 1325/2650 - loss 0.15506670 throughput (samples/sec): 703.24 -2019-08-19 20:54:36,240 epoch 120 - iter 1590/2650 - loss 0.15410019 throughput (samples/sec): 706.50 -2019-08-19 20:54:47,743 epoch 120 - iter 1855/2650 - loss 0.15421551 throughput (samples/sec): 743.44 -2019-08-19 20:54:59,924 epoch 120 - iter 2120/2650 - loss 0.15429928 throughput (samples/sec): 702.78 -2019-08-19 20:55:11,975 epoch 120 - iter 2385/2650 - loss 0.15415468 throughput (samples/sec): 709.72 -2019-08-19 20:55:23,745 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:55:23,745 EPOCH 120 done: loss 0.1540 - lr 0.1000 -2019-08-19 20:55:23,745 BAD EPOCHS (no improvement): 0 -2019-08-19 20:55:23,746 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:55:23,790 epoch 121 - iter 0/2650 - loss 0.07567585 throughput (samples/sec): 208406.52 -2019-08-19 20:55:35,343 epoch 121 - iter 265/2650 - loss 0.15924115 throughput (samples/sec): 740.77 -2019-08-19 20:55:47,220 epoch 121 - iter 530/2650 - loss 0.15659951 throughput (samples/sec): 719.96 -2019-08-19 20:55:59,279 epoch 121 - iter 795/2650 - loss 0.15596520 throughput (samples/sec): 710.17 -2019-08-19 20:56:11,034 epoch 121 - iter 1060/2650 - loss 0.15572199 throughput (samples/sec): 728.51 -2019-08-19 20:56:22,872 epoch 121 - iter 1325/2650 - loss 0.15578506 throughput (samples/sec): 722.57 -2019-08-19 20:56:35,257 epoch 121 - iter 1590/2650 - loss 0.15580625 throughput (samples/sec): 690.04 -2019-08-19 20:56:47,485 epoch 121 - iter 1855/2650 - loss 0.15523354 throughput (samples/sec): 699.80 -2019-08-19 20:56:59,637 epoch 121 - iter 2120/2650 - loss 0.15544012 throughput (samples/sec): 703.62 -2019-08-19 20:57:11,815 epoch 121 - iter 2385/2650 - loss 0.15543467 throughput (samples/sec): 702.83 -2019-08-19 20:57:23,738 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:57:23,739 EPOCH 121 done: loss 0.1557 - lr 0.1000 -2019-08-19 20:57:23,739 BAD EPOCHS (no improvement): 1 -2019-08-19 20:57:23,740 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:57:23,797 epoch 122 - iter 0/2650 - loss 0.31354469 throughput (samples/sec): 165389.61 -2019-08-19 20:57:35,416 epoch 122 - iter 265/2650 - loss 0.15157980 throughput (samples/sec): 736.86 -2019-08-19 20:57:48,277 epoch 122 - iter 530/2650 - loss 0.15105469 throughput (samples/sec): 665.50 -2019-08-19 20:58:00,727 epoch 122 - iter 795/2650 - loss 0.15230884 throughput (samples/sec): 686.77 -2019-08-19 20:58:12,536 epoch 122 - iter 1060/2650 - loss 0.15084883 throughput (samples/sec): 724.09 -2019-08-19 20:58:24,758 epoch 122 - iter 1325/2650 - loss 0.15061427 throughput (samples/sec): 700.15 -2019-08-19 20:58:37,371 epoch 122 - iter 1590/2650 - loss 0.15075298 throughput (samples/sec): 678.74 -2019-08-19 20:58:49,670 epoch 122 - iter 1855/2650 - loss 0.15191707 throughput (samples/sec): 696.13 -2019-08-19 20:59:02,271 epoch 122 - iter 2120/2650 - loss 0.15215379 throughput (samples/sec): 679.42 -2019-08-19 20:59:14,404 epoch 122 - iter 2385/2650 - loss 0.15287728 throughput (samples/sec): 705.67 -2019-08-19 20:59:26,002 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:59:26,003 EPOCH 122 done: loss 0.1529 - lr 0.1000 -2019-08-19 20:59:26,003 BAD EPOCHS (no improvement): 0 -2019-08-19 20:59:26,003 ---------------------------------------------------------------------------------------------------- -2019-08-19 20:59:26,056 epoch 123 - iter 0/2650 - loss 0.17122467 throughput (samples/sec): 180204.58 -2019-08-19 20:59:38,908 epoch 123 - iter 265/2650 - loss 0.16012806 throughput (samples/sec): 665.90 -2019-08-19 20:59:51,307 epoch 123 - iter 530/2650 - loss 0.15886899 throughput (samples/sec): 690.08 -2019-08-19 21:00:03,997 epoch 123 - iter 795/2650 - loss 0.15806896 throughput (samples/sec): 674.72 -2019-08-19 21:00:15,612 epoch 123 - iter 1060/2650 - loss 0.15758300 throughput (samples/sec): 736.53 -2019-08-19 21:00:27,410 epoch 123 - iter 1325/2650 - loss 0.15709992 throughput (samples/sec): 725.79 -2019-08-19 21:00:39,764 epoch 123 - iter 1590/2650 - loss 0.15707669 throughput (samples/sec): 692.76 -2019-08-19 21:00:52,226 epoch 123 - iter 1855/2650 - loss 0.15710511 throughput (samples/sec): 686.80 -2019-08-19 21:01:04,245 epoch 123 - iter 2120/2650 - loss 0.15684220 throughput (samples/sec): 712.04 -2019-08-19 21:01:16,327 epoch 123 - iter 2385/2650 - loss 0.15642773 throughput (samples/sec): 708.27 -2019-08-19 21:01:27,798 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:01:27,799 EPOCH 123 done: loss 0.1564 - lr 0.1000 -2019-08-19 21:01:27,799 BAD EPOCHS (no improvement): 1 -2019-08-19 21:01:27,800 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:01:27,844 epoch 124 - iter 0/2650 - loss 0.40992337 throughput (samples/sec): 209107.36 -2019-08-19 21:01:39,572 epoch 124 - iter 265/2650 - loss 0.15188281 throughput (samples/sec): 729.22 -2019-08-19 21:01:51,520 epoch 124 - iter 530/2650 - loss 0.15109932 throughput (samples/sec): 716.18 -2019-08-19 21:02:02,920 epoch 124 - iter 795/2650 - loss 0.15171877 throughput (samples/sec): 750.79 -2019-08-19 21:02:15,337 epoch 124 - iter 1060/2650 - loss 0.15276821 throughput (samples/sec): 689.12 -2019-08-19 21:02:27,209 epoch 124 - iter 1325/2650 - loss 0.15144696 throughput (samples/sec): 720.83 -2019-08-19 21:02:38,772 epoch 124 - iter 1590/2650 - loss 0.15166805 throughput (samples/sec): 740.17 -2019-08-19 21:02:50,661 epoch 124 - iter 1855/2650 - loss 0.15163261 throughput (samples/sec): 719.62 -2019-08-19 21:03:02,922 epoch 124 - iter 2120/2650 - loss 0.15228070 throughput (samples/sec): 698.42 -2019-08-19 21:03:14,815 epoch 124 - iter 2385/2650 - loss 0.15302176 throughput (samples/sec): 719.52 -2019-08-19 21:03:26,263 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:03:26,263 EPOCH 124 done: loss 0.1527 - lr 0.1000 -2019-08-19 21:03:26,263 BAD EPOCHS (no improvement): 0 -2019-08-19 21:03:26,264 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:03:26,306 epoch 125 - iter 0/2650 - loss 0.60782695 throughput (samples/sec): 234818.33 -2019-08-19 21:03:38,979 epoch 125 - iter 265/2650 - loss 0.14930228 throughput (samples/sec): 675.48 -2019-08-19 21:03:51,477 epoch 125 - iter 530/2650 - loss 0.15193233 throughput (samples/sec): 684.69 -2019-08-19 21:04:03,761 epoch 125 - iter 795/2650 - loss 0.15259593 throughput (samples/sec): 696.92 -2019-08-19 21:04:15,223 epoch 125 - iter 1060/2650 - loss 0.15140841 throughput (samples/sec): 746.29 -2019-08-19 21:04:27,927 epoch 125 - iter 1325/2650 - loss 0.15181632 throughput (samples/sec): 673.99 -2019-08-19 21:04:40,388 epoch 125 - iter 1590/2650 - loss 0.15203169 throughput (samples/sec): 686.89 -2019-08-19 21:04:52,473 epoch 125 - iter 1855/2650 - loss 0.15131166 throughput (samples/sec): 707.69 -2019-08-19 21:05:04,563 epoch 125 - iter 2120/2650 - loss 0.15154128 throughput (samples/sec): 707.84 -2019-08-19 21:05:16,526 epoch 125 - iter 2385/2650 - loss 0.15169261 throughput (samples/sec): 714.61 -2019-08-19 21:05:28,314 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:05:28,315 EPOCH 125 done: loss 0.1526 - lr 0.1000 -2019-08-19 21:05:28,315 BAD EPOCHS (no improvement): 0 -2019-08-19 21:05:28,316 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:05:28,360 epoch 126 - iter 0/2650 - loss 0.06399079 throughput (samples/sec): 211988.83 -2019-08-19 21:05:40,373 epoch 126 - iter 265/2650 - loss 0.15448322 throughput (samples/sec): 712.87 -2019-08-19 21:05:53,079 epoch 126 - iter 530/2650 - loss 0.15592356 throughput (samples/sec): 673.75 -2019-08-19 21:06:05,062 epoch 126 - iter 795/2650 - loss 0.15318315 throughput (samples/sec): 714.32 -2019-08-19 21:06:17,019 epoch 126 - iter 1060/2650 - loss 0.15225556 throughput (samples/sec): 716.01 -2019-08-19 21:06:28,581 epoch 126 - iter 1325/2650 - loss 0.15283526 throughput (samples/sec): 739.57 -2019-08-19 21:06:40,627 epoch 126 - iter 1590/2650 - loss 0.15255187 throughput (samples/sec): 710.51 -2019-08-19 21:06:52,842 epoch 126 - iter 1855/2650 - loss 0.15353634 throughput (samples/sec): 700.97 -2019-08-19 21:07:04,919 epoch 126 - iter 2120/2650 - loss 0.15308802 throughput (samples/sec): 708.89 -2019-08-19 21:07:17,639 epoch 126 - iter 2385/2650 - loss 0.15255991 throughput (samples/sec): 672.82 -2019-08-19 21:07:30,176 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:07:30,176 EPOCH 126 done: loss 0.1525 - lr 0.1000 -2019-08-19 21:07:30,176 BAD EPOCHS (no improvement): 0 -2019-08-19 21:07:30,177 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:07:30,218 epoch 127 - iter 0/2650 - loss 0.12046520 throughput (samples/sec): 255040.53 -2019-08-19 21:07:42,126 epoch 127 - iter 265/2650 - loss 0.15323241 throughput (samples/sec): 718.54 -2019-08-19 21:07:54,366 epoch 127 - iter 530/2650 - loss 0.15291379 throughput (samples/sec): 699.25 -2019-08-19 21:08:06,707 epoch 127 - iter 795/2650 - loss 0.15288953 throughput (samples/sec): 693.76 -2019-08-19 21:08:18,197 epoch 127 - iter 1060/2650 - loss 0.15188041 throughput (samples/sec): 744.46 -2019-08-19 21:08:29,837 epoch 127 - iter 1325/2650 - loss 0.15235724 throughput (samples/sec): 734.96 -2019-08-19 21:08:42,467 epoch 127 - iter 1590/2650 - loss 0.15224826 throughput (samples/sec): 677.68 -2019-08-19 21:08:54,459 epoch 127 - iter 1855/2650 - loss 0.15217029 throughput (samples/sec): 713.80 -2019-08-19 21:09:06,803 epoch 127 - iter 2120/2650 - loss 0.15266175 throughput (samples/sec): 693.40 -2019-08-19 21:09:18,955 epoch 127 - iter 2385/2650 - loss 0.15231002 throughput (samples/sec): 704.49 -2019-08-19 21:09:31,321 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:09:31,322 EPOCH 127 done: loss 0.1518 - lr 0.1000 -2019-08-19 21:09:31,322 BAD EPOCHS (no improvement): 0 -2019-08-19 21:09:31,323 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:09:31,369 epoch 128 - iter 0/2650 - loss 0.17846347 throughput (samples/sec): 200836.25 -2019-08-19 21:09:43,026 epoch 128 - iter 265/2650 - loss 0.15304842 throughput (samples/sec): 733.82 -2019-08-19 21:09:55,057 epoch 128 - iter 530/2650 - loss 0.15029060 throughput (samples/sec): 711.42 -2019-08-19 21:10:06,522 epoch 128 - iter 795/2650 - loss 0.15093131 throughput (samples/sec): 746.14 -2019-08-19 21:10:18,974 epoch 128 - iter 1060/2650 - loss 0.15196061 throughput (samples/sec): 687.30 -2019-08-19 21:10:31,768 epoch 128 - iter 1325/2650 - loss 0.15266905 throughput (samples/sec): 668.93 -2019-08-19 21:10:44,017 epoch 128 - iter 1590/2650 - loss 0.15205650 throughput (samples/sec): 698.72 -2019-08-19 21:10:56,215 epoch 128 - iter 1855/2650 - loss 0.15107123 throughput (samples/sec): 702.01 -2019-08-19 21:11:08,157 epoch 128 - iter 2120/2650 - loss 0.15205129 throughput (samples/sec): 717.23 -2019-08-19 21:11:20,427 epoch 128 - iter 2385/2650 - loss 0.15212570 throughput (samples/sec): 697.66 -2019-08-19 21:11:32,122 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:11:32,122 EPOCH 128 done: loss 0.1516 - lr 0.1000 -2019-08-19 21:11:32,122 BAD EPOCHS (no improvement): 0 -2019-08-19 21:11:32,123 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:11:32,175 epoch 129 - iter 0/2650 - loss 0.10275340 throughput (samples/sec): 180747.62 -2019-08-19 21:11:44,239 epoch 129 - iter 265/2650 - loss 0.15086532 throughput (samples/sec): 709.38 -2019-08-19 21:11:56,747 epoch 129 - iter 530/2650 - loss 0.15093756 throughput (samples/sec): 683.42 -2019-08-19 21:12:08,963 epoch 129 - iter 795/2650 - loss 0.15126994 throughput (samples/sec): 700.54 -2019-08-19 21:12:21,493 epoch 129 - iter 1060/2650 - loss 0.15038539 throughput (samples/sec): 683.41 -2019-08-19 21:12:33,840 epoch 129 - iter 1325/2650 - loss 0.15071660 throughput (samples/sec): 693.50 -2019-08-19 21:12:45,584 epoch 129 - iter 1590/2650 - loss 0.15022671 throughput (samples/sec): 728.30 -2019-08-19 21:12:58,453 epoch 129 - iter 1855/2650 - loss 0.14983873 throughput (samples/sec): 665.03 -2019-08-19 21:13:11,429 epoch 129 - iter 2120/2650 - loss 0.14985678 throughput (samples/sec): 659.45 -2019-08-19 21:13:23,709 epoch 129 - iter 2385/2650 - loss 0.14974865 throughput (samples/sec): 696.79 -2019-08-19 21:13:35,595 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:13:35,596 EPOCH 129 done: loss 0.1494 - lr 0.1000 -2019-08-19 21:13:35,596 BAD EPOCHS (no improvement): 0 -2019-08-19 21:13:35,596 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:13:35,664 epoch 130 - iter 0/2650 - loss 0.17236404 throughput (samples/sec): 136467.12 -2019-08-19 21:13:47,626 epoch 130 - iter 265/2650 - loss 0.15214208 throughput (samples/sec): 715.76 -2019-08-19 21:13:58,890 epoch 130 - iter 530/2650 - loss 0.15224246 throughput (samples/sec): 760.16 -2019-08-19 21:14:10,825 epoch 130 - iter 795/2650 - loss 0.15372126 throughput (samples/sec): 717.23 -2019-08-19 21:14:23,205 epoch 130 - iter 1060/2650 - loss 0.15223700 throughput (samples/sec): 691.32 -2019-08-19 21:14:35,917 epoch 130 - iter 1325/2650 - loss 0.15285141 throughput (samples/sec): 673.26 -2019-08-19 21:14:48,074 epoch 130 - iter 1590/2650 - loss 0.15296676 throughput (samples/sec): 704.14 -2019-08-19 21:15:00,116 epoch 130 - iter 1855/2650 - loss 0.15270690 throughput (samples/sec): 710.84 -2019-08-19 21:15:12,084 epoch 130 - iter 2120/2650 - loss 0.15176418 throughput (samples/sec): 715.42 -2019-08-19 21:15:24,699 epoch 130 - iter 2385/2650 - loss 0.15150326 throughput (samples/sec): 678.54 -2019-08-19 21:15:36,686 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:15:36,686 EPOCH 130 done: loss 0.1511 - lr 0.1000 -2019-08-19 21:15:36,686 BAD EPOCHS (no improvement): 1 -2019-08-19 21:15:36,687 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:15:36,762 epoch 131 - iter 0/2650 - loss 0.12510037 throughput (samples/sec): 121947.93 -2019-08-19 21:15:49,417 epoch 131 - iter 265/2650 - loss 0.14597526 throughput (samples/sec): 676.01 -2019-08-19 21:16:01,699 epoch 131 - iter 530/2650 - loss 0.14402551 throughput (samples/sec): 696.58 -2019-08-19 21:16:14,486 epoch 131 - iter 795/2650 - loss 0.14641341 throughput (samples/sec): 669.15 -2019-08-19 21:16:26,679 epoch 131 - iter 1060/2650 - loss 0.14757437 throughput (samples/sec): 702.14 -2019-08-19 21:16:39,276 epoch 131 - iter 1325/2650 - loss 0.14819115 throughput (samples/sec): 679.49 -2019-08-19 21:16:51,947 epoch 131 - iter 1590/2650 - loss 0.14768044 throughput (samples/sec): 675.26 -2019-08-19 21:17:04,097 epoch 131 - iter 1855/2650 - loss 0.14837959 throughput (samples/sec): 704.36 -2019-08-19 21:17:16,791 epoch 131 - iter 2120/2650 - loss 0.14894337 throughput (samples/sec): 674.12 -2019-08-19 21:17:29,635 epoch 131 - iter 2385/2650 - loss 0.14916202 throughput (samples/sec): 666.08 -2019-08-19 21:17:41,573 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:17:41,574 EPOCH 131 done: loss 0.1499 - lr 0.1000 -2019-08-19 21:17:41,574 BAD EPOCHS (no improvement): 2 -2019-08-19 21:17:41,575 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:17:41,615 epoch 132 - iter 0/2650 - loss 0.08958975 throughput (samples/sec): 232508.13 -2019-08-19 21:17:53,562 epoch 132 - iter 265/2650 - loss 0.14504561 throughput (samples/sec): 716.80 -2019-08-19 21:18:05,732 epoch 132 - iter 530/2650 - loss 0.14775463 throughput (samples/sec): 703.39 -2019-08-19 21:18:18,148 epoch 132 - iter 795/2650 - loss 0.14762622 throughput (samples/sec): 689.46 -2019-08-19 21:18:30,280 epoch 132 - iter 1060/2650 - loss 0.14972764 throughput (samples/sec): 705.44 -2019-08-19 21:18:42,272 epoch 132 - iter 1325/2650 - loss 0.14963105 throughput (samples/sec): 713.88 -2019-08-19 21:18:54,184 epoch 132 - iter 1590/2650 - loss 0.14846162 throughput (samples/sec): 718.55 -2019-08-19 21:19:06,224 epoch 132 - iter 1855/2650 - loss 0.14872974 throughput (samples/sec): 711.22 -2019-08-19 21:19:17,820 epoch 132 - iter 2120/2650 - loss 0.14913118 throughput (samples/sec): 737.72 -2019-08-19 21:19:29,734 epoch 132 - iter 2385/2650 - loss 0.14931789 throughput (samples/sec): 718.58 -2019-08-19 21:19:41,848 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:19:41,848 EPOCH 132 done: loss 0.1500 - lr 0.1000 -2019-08-19 21:19:41,848 BAD EPOCHS (no improvement): 3 -2019-08-19 21:19:41,849 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:19:41,905 epoch 133 - iter 0/2650 - loss 0.09084061 throughput (samples/sec): 184990.21 -2019-08-19 21:19:54,264 epoch 133 - iter 265/2650 - loss 0.15317668 throughput (samples/sec): 692.30 -2019-08-19 21:20:06,725 epoch 133 - iter 530/2650 - loss 0.15080797 throughput (samples/sec): 686.73 -2019-08-19 21:20:18,546 epoch 133 - iter 795/2650 - loss 0.15196702 throughput (samples/sec): 723.78 -2019-08-19 21:20:30,410 epoch 133 - iter 1060/2650 - loss 0.15082621 throughput (samples/sec): 721.83 -2019-08-19 21:20:42,513 epoch 133 - iter 1325/2650 - loss 0.15038042 throughput (samples/sec): 707.25 -2019-08-19 21:20:54,749 epoch 133 - iter 1590/2650 - loss 0.14969984 throughput (samples/sec): 699.41 -2019-08-19 21:21:07,413 epoch 133 - iter 1855/2650 - loss 0.15029185 throughput (samples/sec): 675.71 -2019-08-19 21:21:20,012 epoch 133 - iter 2120/2650 - loss 0.14993458 throughput (samples/sec): 679.02 -2019-08-19 21:21:31,574 epoch 133 - iter 2385/2650 - loss 0.14968470 throughput (samples/sec): 739.54 -2019-08-19 21:21:43,663 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:21:43,664 EPOCH 133 done: loss 0.1497 - lr 0.1000 -2019-08-19 21:21:43,664 BAD EPOCHS (no improvement): 4 -2019-08-19 21:21:43,665 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:21:43,717 epoch 134 - iter 0/2650 - loss 0.06456186 throughput (samples/sec): 189103.38 -2019-08-19 21:21:55,792 epoch 134 - iter 265/2650 - loss 0.14976298 throughput (samples/sec): 708.91 -2019-08-19 21:22:07,956 epoch 134 - iter 530/2650 - loss 0.14896148 throughput (samples/sec): 703.91 -2019-08-19 21:22:19,825 epoch 134 - iter 795/2650 - loss 0.15018284 throughput (samples/sec): 720.88 -2019-08-19 21:22:31,447 epoch 134 - iter 1060/2650 - loss 0.15137764 throughput (samples/sec): 735.70 -2019-08-19 21:22:43,307 epoch 134 - iter 1325/2650 - loss 0.14975091 throughput (samples/sec): 720.92 -2019-08-19 21:22:55,833 epoch 134 - iter 1590/2650 - loss 0.15027392 throughput (samples/sec): 683.20 -2019-08-19 21:23:07,560 epoch 134 - iter 1855/2650 - loss 0.14933187 throughput (samples/sec): 730.08 -2019-08-19 21:23:18,988 epoch 134 - iter 2120/2650 - loss 0.14858683 throughput (samples/sec): 748.37 -2019-08-19 21:23:30,262 epoch 134 - iter 2385/2650 - loss 0.14866186 throughput (samples/sec): 758.78 -2019-08-19 21:23:41,695 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:23:41,696 EPOCH 134 done: loss 0.1478 - lr 0.0500 -2019-08-19 21:23:41,696 BAD EPOCHS (no improvement): 0 -2019-08-19 21:23:41,696 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:23:41,748 epoch 135 - iter 0/2650 - loss 0.15422532 throughput (samples/sec): 177252.67 -2019-08-19 21:23:53,621 epoch 135 - iter 265/2650 - loss 0.14475537 throughput (samples/sec): 720.10 -2019-08-19 21:24:06,138 epoch 135 - iter 530/2650 - loss 0.14277589 throughput (samples/sec): 683.52 -2019-08-19 21:24:17,980 epoch 135 - iter 795/2650 - loss 0.14448171 throughput (samples/sec): 722.49 -2019-08-19 21:24:30,359 epoch 135 - iter 1060/2650 - loss 0.14458382 throughput (samples/sec): 691.23 -2019-08-19 21:24:41,938 epoch 135 - iter 1325/2650 - loss 0.14417413 throughput (samples/sec): 738.82 -2019-08-19 21:24:54,539 epoch 135 - iter 1590/2650 - loss 0.14545263 throughput (samples/sec): 679.34 -2019-08-19 21:25:07,232 epoch 135 - iter 1855/2650 - loss 0.14652581 throughput (samples/sec): 674.11 -2019-08-19 21:25:19,169 epoch 135 - iter 2120/2650 - loss 0.14630023 throughput (samples/sec): 717.25 -2019-08-19 21:25:31,072 epoch 135 - iter 2385/2650 - loss 0.14686364 throughput (samples/sec): 719.08 -2019-08-19 21:25:42,887 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:25:42,888 EPOCH 135 done: loss 0.1473 - lr 0.0500 -2019-08-19 21:25:42,888 BAD EPOCHS (no improvement): 0 -2019-08-19 21:25:42,888 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:25:42,934 epoch 136 - iter 0/2650 - loss 0.10102805 throughput (samples/sec): 200864.60 -2019-08-19 21:25:54,825 epoch 136 - iter 265/2650 - loss 0.14935222 throughput (samples/sec): 719.80 -2019-08-19 21:26:06,414 epoch 136 - iter 530/2650 - loss 0.14669831 throughput (samples/sec): 738.61 -2019-08-19 21:26:18,615 epoch 136 - iter 795/2650 - loss 0.14645962 throughput (samples/sec): 701.69 -2019-08-19 21:26:30,399 epoch 136 - iter 1060/2650 - loss 0.14682925 throughput (samples/sec): 726.50 -2019-08-19 21:26:42,467 epoch 136 - iter 1325/2650 - loss 0.14764070 throughput (samples/sec): 709.18 -2019-08-19 21:26:54,810 epoch 136 - iter 1590/2650 - loss 0.14824996 throughput (samples/sec): 692.73 -2019-08-19 21:27:06,915 epoch 136 - iter 1855/2650 - loss 0.14803025 throughput (samples/sec): 707.13 -2019-08-19 21:27:18,892 epoch 136 - iter 2120/2650 - loss 0.14752515 throughput (samples/sec): 714.44 -2019-08-19 21:27:31,070 epoch 136 - iter 2385/2650 - loss 0.14742225 throughput (samples/sec): 702.93 -2019-08-19 21:27:42,661 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:27:42,662 EPOCH 136 done: loss 0.1468 - lr 0.0500 -2019-08-19 21:27:42,662 BAD EPOCHS (no improvement): 0 -2019-08-19 21:27:42,663 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:27:42,715 epoch 137 - iter 0/2650 - loss 0.10385603 throughput (samples/sec): 183180.96 -2019-08-19 21:27:54,800 epoch 137 - iter 265/2650 - loss 0.14797075 throughput (samples/sec): 708.14 -2019-08-19 21:28:07,011 epoch 137 - iter 530/2650 - loss 0.14838092 throughput (samples/sec): 700.62 -2019-08-19 21:28:19,476 epoch 137 - iter 795/2650 - loss 0.14697822 throughput (samples/sec): 686.39 -2019-08-19 21:28:31,926 epoch 137 - iter 1060/2650 - loss 0.14575715 throughput (samples/sec): 687.83 -2019-08-19 21:28:44,215 epoch 137 - iter 1325/2650 - loss 0.14578760 throughput (samples/sec): 696.64 -2019-08-19 21:28:55,822 epoch 137 - iter 1590/2650 - loss 0.14588339 throughput (samples/sec): 737.01 -2019-08-19 21:29:07,241 epoch 137 - iter 1855/2650 - loss 0.14593737 throughput (samples/sec): 748.84 -2019-08-19 21:29:18,665 epoch 137 - iter 2120/2650 - loss 0.14664858 throughput (samples/sec): 748.30 -2019-08-19 21:29:30,352 epoch 137 - iter 2385/2650 - loss 0.14744709 throughput (samples/sec): 731.57 -2019-08-19 21:29:42,765 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:29:42,765 EPOCH 137 done: loss 0.1477 - lr 0.0500 -2019-08-19 21:29:42,765 BAD EPOCHS (no improvement): 1 -2019-08-19 21:29:42,766 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:29:42,819 epoch 138 - iter 0/2650 - loss 0.19973886 throughput (samples/sec): 186113.08 -2019-08-19 21:29:55,515 epoch 138 - iter 265/2650 - loss 0.14798241 throughput (samples/sec): 674.33 -2019-08-19 21:30:06,689 epoch 138 - iter 530/2650 - loss 0.14589746 throughput (samples/sec): 765.62 -2019-08-19 21:30:18,447 epoch 138 - iter 795/2650 - loss 0.14563504 throughput (samples/sec): 727.60 -2019-08-19 21:30:30,736 epoch 138 - iter 1060/2650 - loss 0.14728166 throughput (samples/sec): 696.36 -2019-08-19 21:30:42,895 epoch 138 - iter 1325/2650 - loss 0.14870437 throughput (samples/sec): 703.38 -2019-08-19 21:30:54,246 epoch 138 - iter 1590/2650 - loss 0.14721783 throughput (samples/sec): 754.16 -2019-08-19 21:31:05,359 epoch 138 - iter 1855/2650 - loss 0.14718789 throughput (samples/sec): 769.88 -2019-08-19 21:31:16,485 epoch 138 - iter 2120/2650 - loss 0.14714337 throughput (samples/sec): 769.29 -2019-08-19 21:31:28,251 epoch 138 - iter 2385/2650 - loss 0.14691464 throughput (samples/sec): 727.60 -2019-08-19 21:31:40,987 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:31:40,987 EPOCH 138 done: loss 0.1472 - lr 0.0500 -2019-08-19 21:31:40,988 BAD EPOCHS (no improvement): 2 -2019-08-19 21:31:40,988 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:31:41,037 epoch 139 - iter 0/2650 - loss 0.10552792 throughput (samples/sec): 194057.84 -2019-08-19 21:31:52,983 epoch 139 - iter 265/2650 - loss 0.14136131 throughput (samples/sec): 715.84 -2019-08-19 21:32:04,746 epoch 139 - iter 530/2650 - loss 0.14254131 throughput (samples/sec): 726.92 -2019-08-19 21:32:17,398 epoch 139 - iter 795/2650 - loss 0.14347761 throughput (samples/sec): 676.10 -2019-08-19 21:32:29,560 epoch 139 - iter 1060/2650 - loss 0.14385035 throughput (samples/sec): 703.74 -2019-08-19 21:32:42,297 epoch 139 - iter 1325/2650 - loss 0.14417817 throughput (samples/sec): 672.37 -2019-08-19 21:32:54,537 epoch 139 - iter 1590/2650 - loss 0.14515712 throughput (samples/sec): 699.41 -2019-08-19 21:33:06,068 epoch 139 - iter 1855/2650 - loss 0.14556143 throughput (samples/sec): 741.60 -2019-08-19 21:33:18,327 epoch 139 - iter 2120/2650 - loss 0.14580895 throughput (samples/sec): 698.21 -2019-08-19 21:33:30,983 epoch 139 - iter 2385/2650 - loss 0.14548948 throughput (samples/sec): 676.19 -2019-08-19 21:33:43,450 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:33:43,450 EPOCH 139 done: loss 0.1453 - lr 0.0500 -2019-08-19 21:33:43,450 BAD EPOCHS (no improvement): 0 -2019-08-19 21:33:43,452 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:33:43,501 epoch 140 - iter 0/2650 - loss 0.21929766 throughput (samples/sec): 186042.99 -2019-08-19 21:33:55,457 epoch 140 - iter 265/2650 - loss 0.14440290 throughput (samples/sec): 715.29 -2019-08-19 21:34:07,930 epoch 140 - iter 530/2650 - loss 0.14288549 throughput (samples/sec): 686.50 -2019-08-19 21:34:19,225 epoch 140 - iter 795/2650 - loss 0.14560689 throughput (samples/sec): 757.37 -2019-08-19 21:34:31,004 epoch 140 - iter 1060/2650 - loss 0.14649058 throughput (samples/sec): 726.16 -2019-08-19 21:34:43,136 epoch 140 - iter 1325/2650 - loss 0.14704833 throughput (samples/sec): 705.33 -2019-08-19 21:34:55,276 epoch 140 - iter 1590/2650 - loss 0.14729987 throughput (samples/sec): 704.82 -2019-08-19 21:35:07,363 epoch 140 - iter 1855/2650 - loss 0.14672036 throughput (samples/sec): 707.69 -2019-08-19 21:35:19,514 epoch 140 - iter 2120/2650 - loss 0.14695336 throughput (samples/sec): 704.46 -2019-08-19 21:35:32,218 epoch 140 - iter 2385/2650 - loss 0.14663410 throughput (samples/sec): 673.85 -2019-08-19 21:35:43,833 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:35:43,833 EPOCH 140 done: loss 0.1462 - lr 0.0500 -2019-08-19 21:35:43,833 BAD EPOCHS (no improvement): 1 -2019-08-19 21:35:43,834 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:35:43,879 epoch 141 - iter 0/2650 - loss 0.09471304 throughput (samples/sec): 204171.51 -2019-08-19 21:35:56,046 epoch 141 - iter 265/2650 - loss 0.14850177 throughput (samples/sec): 703.03 -2019-08-19 21:36:08,405 epoch 141 - iter 530/2650 - loss 0.14955585 throughput (samples/sec): 692.18 -2019-08-19 21:36:21,103 epoch 141 - iter 795/2650 - loss 0.14789642 throughput (samples/sec): 673.68 -2019-08-19 21:36:33,347 epoch 141 - iter 1060/2650 - loss 0.14677939 throughput (samples/sec): 698.91 -2019-08-19 21:36:45,639 epoch 141 - iter 1325/2650 - loss 0.14631216 throughput (samples/sec): 696.52 -2019-08-19 21:36:57,889 epoch 141 - iter 1590/2650 - loss 0.14632113 throughput (samples/sec): 698.89 -2019-08-19 21:37:10,556 epoch 141 - iter 1855/2650 - loss 0.14486085 throughput (samples/sec): 675.75 -2019-08-19 21:37:22,586 epoch 141 - iter 2120/2650 - loss 0.14492007 throughput (samples/sec): 711.38 -2019-08-19 21:37:35,122 epoch 141 - iter 2385/2650 - loss 0.14500903 throughput (samples/sec): 682.59 -2019-08-19 21:37:47,081 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:37:47,081 EPOCH 141 done: loss 0.1454 - lr 0.0500 -2019-08-19 21:37:47,082 BAD EPOCHS (no improvement): 2 -2019-08-19 21:37:47,082 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:37:47,139 epoch 142 - iter 0/2650 - loss 0.14256661 throughput (samples/sec): 166824.72 -2019-08-19 21:37:59,461 epoch 142 - iter 265/2650 - loss 0.15041484 throughput (samples/sec): 694.49 -2019-08-19 21:38:11,223 epoch 142 - iter 530/2650 - loss 0.14615409 throughput (samples/sec): 727.40 -2019-08-19 21:38:22,981 epoch 142 - iter 795/2650 - loss 0.14496129 throughput (samples/sec): 727.87 -2019-08-19 21:38:35,294 epoch 142 - iter 1060/2650 - loss 0.14573798 throughput (samples/sec): 695.18 -2019-08-19 21:38:47,808 epoch 142 - iter 1325/2650 - loss 0.14636349 throughput (samples/sec): 684.08 -2019-08-19 21:39:00,333 epoch 142 - iter 1590/2650 - loss 0.14619545 throughput (samples/sec): 683.36 -2019-08-19 21:39:12,017 epoch 142 - iter 1855/2650 - loss 0.14613222 throughput (samples/sec): 731.87 -2019-08-19 21:39:24,537 epoch 142 - iter 2120/2650 - loss 0.14588512 throughput (samples/sec): 683.73 -2019-08-19 21:39:36,034 epoch 142 - iter 2385/2650 - loss 0.14664347 throughput (samples/sec): 745.35 -2019-08-19 21:39:47,810 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:39:47,811 EPOCH 142 done: loss 0.1467 - lr 0.0500 -2019-08-19 21:39:47,811 BAD EPOCHS (no improvement): 3 -2019-08-19 21:39:47,811 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:39:47,857 epoch 143 - iter 0/2650 - loss 0.16868088 throughput (samples/sec): 209336.27 -2019-08-19 21:40:00,522 epoch 143 - iter 265/2650 - loss 0.15188645 throughput (samples/sec): 675.70 -2019-08-19 21:40:13,253 epoch 143 - iter 530/2650 - loss 0.14961777 throughput (samples/sec): 672.44 -2019-08-19 21:40:25,976 epoch 143 - iter 795/2650 - loss 0.14702663 throughput (samples/sec): 672.64 -2019-08-19 21:40:38,484 epoch 143 - iter 1060/2650 - loss 0.14654193 throughput (samples/sec): 684.77 -2019-08-19 21:40:50,671 epoch 143 - iter 1325/2650 - loss 0.14639855 throughput (samples/sec): 702.91 -2019-08-19 21:41:02,681 epoch 143 - iter 1590/2650 - loss 0.14635661 throughput (samples/sec): 712.82 -2019-08-19 21:41:14,554 epoch 143 - iter 1855/2650 - loss 0.14634126 throughput (samples/sec): 721.09 -2019-08-19 21:41:26,501 epoch 143 - iter 2120/2650 - loss 0.14604410 throughput (samples/sec): 716.43 -2019-08-19 21:41:39,162 epoch 143 - iter 2385/2650 - loss 0.14629707 throughput (samples/sec): 676.04 -2019-08-19 21:41:51,459 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:41:51,459 EPOCH 143 done: loss 0.1463 - lr 0.0500 -2019-08-19 21:41:51,459 BAD EPOCHS (no improvement): 4 -2019-08-19 21:41:51,460 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:41:51,496 epoch 144 - iter 0/2650 - loss 0.11901164 throughput (samples/sec): 260302.24 -2019-08-19 21:42:03,584 epoch 144 - iter 265/2650 - loss 0.14357652 throughput (samples/sec): 707.61 -2019-08-19 21:42:15,145 epoch 144 - iter 530/2650 - loss 0.14273012 throughput (samples/sec): 740.10 -2019-08-19 21:42:27,754 epoch 144 - iter 795/2650 - loss 0.14210383 throughput (samples/sec): 679.11 -2019-08-19 21:42:39,975 epoch 144 - iter 1060/2650 - loss 0.14259210 throughput (samples/sec): 700.47 -2019-08-19 21:42:51,534 epoch 144 - iter 1325/2650 - loss 0.14362608 throughput (samples/sec): 739.95 -2019-08-19 21:43:03,820 epoch 144 - iter 1590/2650 - loss 0.14493209 throughput (samples/sec): 696.69 -2019-08-19 21:43:15,295 epoch 144 - iter 1855/2650 - loss 0.14482704 throughput (samples/sec): 744.90 -2019-08-19 21:43:26,922 epoch 144 - iter 2120/2650 - loss 0.14537472 throughput (samples/sec): 735.40 -2019-08-19 21:43:38,900 epoch 144 - iter 2385/2650 - loss 0.14536512 throughput (samples/sec): 714.89 -2019-08-19 21:43:51,214 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:43:51,215 EPOCH 144 done: loss 0.1452 - lr 0.0250 -2019-08-19 21:43:51,215 BAD EPOCHS (no improvement): 0 -2019-08-19 21:43:51,216 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:43:51,275 epoch 145 - iter 0/2650 - loss 0.17150716 throughput (samples/sec): 158515.46 -2019-08-19 21:44:03,567 epoch 145 - iter 265/2650 - loss 0.14408051 throughput (samples/sec): 696.13 -2019-08-19 21:44:15,217 epoch 145 - iter 530/2650 - loss 0.14527135 throughput (samples/sec): 733.92 -2019-08-19 21:44:27,312 epoch 145 - iter 795/2650 - loss 0.14425343 throughput (samples/sec): 707.47 -2019-08-19 21:44:39,859 epoch 145 - iter 1060/2650 - loss 0.14347769 throughput (samples/sec): 682.03 -2019-08-19 21:44:51,615 epoch 145 - iter 1325/2650 - loss 0.14394280 throughput (samples/sec): 727.69 -2019-08-19 21:45:04,456 epoch 145 - iter 1590/2650 - loss 0.14452889 throughput (samples/sec): 666.92 -2019-08-19 21:45:16,610 epoch 145 - iter 1855/2650 - loss 0.14409251 throughput (samples/sec): 704.67 -2019-08-19 21:45:28,704 epoch 145 - iter 2120/2650 - loss 0.14433454 throughput (samples/sec): 713.74 -2019-08-19 21:45:40,950 epoch 145 - iter 2385/2650 - loss 0.14474077 throughput (samples/sec): 698.82 -2019-08-19 21:45:52,996 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:45:52,997 EPOCH 145 done: loss 0.1454 - lr 0.0250 -2019-08-19 21:45:52,997 BAD EPOCHS (no improvement): 1 -2019-08-19 21:45:52,997 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:45:53,040 epoch 146 - iter 0/2650 - loss 0.22471941 throughput (samples/sec): 216630.52 -2019-08-19 21:46:04,362 epoch 146 - iter 265/2650 - loss 0.13985584 throughput (samples/sec): 755.93 -2019-08-19 21:46:16,821 epoch 146 - iter 530/2650 - loss 0.14263551 throughput (samples/sec): 687.35 -2019-08-19 21:46:29,025 epoch 146 - iter 795/2650 - loss 0.14262331 throughput (samples/sec): 701.64 -2019-08-19 21:46:40,624 epoch 146 - iter 1060/2650 - loss 0.14407508 throughput (samples/sec): 737.85 -2019-08-19 21:46:53,032 epoch 146 - iter 1325/2650 - loss 0.14467938 throughput (samples/sec): 689.28 -2019-08-19 21:47:05,804 epoch 146 - iter 1590/2650 - loss 0.14546377 throughput (samples/sec): 670.01 -2019-08-19 21:47:18,664 epoch 146 - iter 1855/2650 - loss 0.14477937 throughput (samples/sec): 665.31 -2019-08-19 21:47:30,897 epoch 146 - iter 2120/2650 - loss 0.14444699 throughput (samples/sec): 699.73 -2019-08-19 21:47:43,273 epoch 146 - iter 2385/2650 - loss 0.14495938 throughput (samples/sec): 691.48 -2019-08-19 21:47:55,038 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:47:55,038 EPOCH 146 done: loss 0.1447 - lr 0.0250 -2019-08-19 21:47:55,039 BAD EPOCHS (no improvement): 0 -2019-08-19 21:47:55,039 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:47:55,087 epoch 147 - iter 0/2650 - loss 0.12938000 throughput (samples/sec): 193659.50 -2019-08-19 21:48:06,199 epoch 147 - iter 265/2650 - loss 0.14726862 throughput (samples/sec): 769.90 -2019-08-19 21:48:17,962 epoch 147 - iter 530/2650 - loss 0.14560647 throughput (samples/sec): 727.08 -2019-08-19 21:48:30,418 epoch 147 - iter 795/2650 - loss 0.14635695 throughput (samples/sec): 687.58 -2019-08-19 21:48:43,129 epoch 147 - iter 1060/2650 - loss 0.14679666 throughput (samples/sec): 673.17 -2019-08-19 21:48:55,000 epoch 147 - iter 1325/2650 - loss 0.14614944 throughput (samples/sec): 720.46 -2019-08-19 21:49:06,918 epoch 147 - iter 1590/2650 - loss 0.14589227 throughput (samples/sec): 718.68 -2019-08-19 21:49:18,367 epoch 147 - iter 1855/2650 - loss 0.14490752 throughput (samples/sec): 747.29 -2019-08-19 21:49:30,637 epoch 147 - iter 2120/2650 - loss 0.14454018 throughput (samples/sec): 697.80 -2019-08-19 21:49:43,139 epoch 147 - iter 2385/2650 - loss 0.14487669 throughput (samples/sec): 684.60 -2019-08-19 21:49:55,153 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:49:55,153 EPOCH 147 done: loss 0.1446 - lr 0.0250 -2019-08-19 21:49:55,154 BAD EPOCHS (no improvement): 0 -2019-08-19 21:49:55,154 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:49:55,196 epoch 148 - iter 0/2650 - loss 0.10625295 throughput (samples/sec): 231880.58 -2019-08-19 21:50:07,171 epoch 148 - iter 265/2650 - loss 0.14030612 throughput (samples/sec): 714.70 -2019-08-19 21:50:19,695 epoch 148 - iter 530/2650 - loss 0.14230193 throughput (samples/sec): 683.67 -2019-08-19 21:50:31,783 epoch 148 - iter 795/2650 - loss 0.14301540 throughput (samples/sec): 708.47 -2019-08-19 21:50:43,795 epoch 148 - iter 1060/2650 - loss 0.14506234 throughput (samples/sec): 712.18 -2019-08-19 21:50:56,054 epoch 148 - iter 1325/2650 - loss 0.14460309 throughput (samples/sec): 698.25 -2019-08-19 21:51:07,694 epoch 148 - iter 1590/2650 - loss 0.14407021 throughput (samples/sec): 735.32 -2019-08-19 21:51:19,121 epoch 148 - iter 1855/2650 - loss 0.14476563 throughput (samples/sec): 748.20 -2019-08-19 21:51:30,860 epoch 148 - iter 2120/2650 - loss 0.14466534 throughput (samples/sec): 728.17 -2019-08-19 21:51:43,158 epoch 148 - iter 2385/2650 - loss 0.14423366 throughput (samples/sec): 695.62 -2019-08-19 21:51:55,123 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:51:55,123 EPOCH 148 done: loss 0.1441 - lr 0.0250 -2019-08-19 21:51:55,123 BAD EPOCHS (no improvement): 0 -2019-08-19 21:51:55,124 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:51:55,170 epoch 149 - iter 0/2650 - loss 0.10099556 throughput (samples/sec): 201914.81 -2019-08-19 21:52:07,416 epoch 149 - iter 265/2650 - loss 0.15033938 throughput (samples/sec): 698.51 -2019-08-19 21:52:19,989 epoch 149 - iter 530/2650 - loss 0.14584964 throughput (samples/sec): 680.95 -2019-08-19 21:52:32,456 epoch 149 - iter 795/2650 - loss 0.14457668 throughput (samples/sec): 686.52 -2019-08-19 21:52:44,320 epoch 149 - iter 1060/2650 - loss 0.14672254 throughput (samples/sec): 720.75 -2019-08-19 21:52:56,380 epoch 149 - iter 1325/2650 - loss 0.14639197 throughput (samples/sec): 709.59 -2019-08-19 21:53:08,724 epoch 149 - iter 1590/2650 - loss 0.14602114 throughput (samples/sec): 693.68 -2019-08-19 21:53:21,390 epoch 149 - iter 1855/2650 - loss 0.14574314 throughput (samples/sec): 675.99 -2019-08-19 21:53:33,161 epoch 149 - iter 2120/2650 - loss 0.14557587 throughput (samples/sec): 727.30 -2019-08-19 21:53:45,233 epoch 149 - iter 2385/2650 - loss 0.14526130 throughput (samples/sec): 708.45 -2019-08-19 21:53:57,479 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:53:57,480 EPOCH 149 done: loss 0.1451 - lr 0.0250 -2019-08-19 21:53:57,480 BAD EPOCHS (no improvement): 1 -2019-08-19 21:53:57,481 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:53:57,536 epoch 150 - iter 0/2650 - loss 0.17845322 throughput (samples/sec): 176604.90 -2019-08-19 21:54:10,276 epoch 150 - iter 265/2650 - loss 0.13988595 throughput (samples/sec): 671.71 -2019-08-19 21:54:23,035 epoch 150 - iter 530/2650 - loss 0.14458330 throughput (samples/sec): 670.68 -2019-08-19 21:54:35,601 epoch 150 - iter 795/2650 - loss 0.14217215 throughput (samples/sec): 681.56 -2019-08-19 21:54:47,307 epoch 150 - iter 1060/2650 - loss 0.14289340 throughput (samples/sec): 731.52 -2019-08-19 21:54:58,783 epoch 150 - iter 1325/2650 - loss 0.14339658 throughput (samples/sec): 746.03 -2019-08-19 21:55:10,676 epoch 150 - iter 1590/2650 - loss 0.14347641 throughput (samples/sec): 719.16 -2019-08-19 21:55:22,325 epoch 150 - iter 1855/2650 - loss 0.14394641 throughput (samples/sec): 733.98 -2019-08-19 21:55:34,718 epoch 150 - iter 2120/2650 - loss 0.14391863 throughput (samples/sec): 690.42 -2019-08-19 21:55:46,826 epoch 150 - iter 2385/2650 - loss 0.14464286 throughput (samples/sec): 707.04 -2019-08-19 21:55:58,902 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:55:58,902 EPOCH 150 done: loss 0.1447 - lr 0.0250 -2019-08-19 21:55:58,902 BAD EPOCHS (no improvement): 2 -2019-08-19 21:56:02,509 ---------------------------------------------------------------------------------------------------- -2019-08-19 21:56:02,510 Testing using best model ... -2019-08-19 22:35:39,649 0.9731 0.9731 0.9731 -2019-08-19 22:35:39,649 -MICRO_AVG: acc 0.9475 - f1-score 0.9731 -MACRO_AVG: acc 0.4379 - f1-score 0.4845036363636343 -_ tp: 141154 - fp: 841 - fn: 1657 - tn: 141154 - precision: 0.9941 - recall: 0.9884 - accuracy: 0.9826 - f1-score: 0.9912 -abandon.01 tp: 8 - fp: 0 - fn: 0 - tn: 8 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -abate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -abduct.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -abide.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -abort.01 tp: 5 - fp: 0 - fn: 0 - tn: 5 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -abound.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -absent.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -absorb.01 tp: 1 - fp: 2 - fn: 0 - tn: 1 - precision: 0.3333 - recall: 1.0000 - accuracy: 0.3333 - f1-score: 0.5000 -abuse.01 tp: 5 - fp: 16 - fn: 1 - tn: 5 - precision: 0.2381 - recall: 0.8333 - accuracy: 0.2273 - f1-score: 0.3704 -abuse.02 tp: 0 - fp: 1 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -abut.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -accelerate.01 tp: 8 - fp: 0 - fn: 0 - tn: 8 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -accept.01 tp: 34 - fp: 2 - fn: 1 - tn: 34 - precision: 0.9444 - recall: 0.9714 - accuracy: 0.9189 - f1-score: 0.9577 -access.01 tp: 4 - fp: 0 - fn: 1 - tn: 4 - precision: 1.0000 - recall: 0.8000 - accuracy: 0.8000 - f1-score: 0.8889 -accession.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -accommodate.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -accompany.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -accomplish.01 tp: 6 - fp: 0 - fn: 0 - tn: 6 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -accord.02 tp: 6 - fp: 0 - fn: 0 - tn: 6 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -account.01 tp: 30 - fp: 1 - fn: 7 - tn: 30 - precision: 0.9677 - recall: 0.8108 - accuracy: 0.7895 - f1-score: 0.8823 -accumulate.01 tp: 7 - fp: 0 - fn: 2 - tn: 7 - precision: 1.0000 - recall: 0.7778 - accuracy: 0.7778 - f1-score: 0.8750 -accuse.01 tp: 7 - fp: 0 - fn: 0 - tn: 7 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -achieve.01 tp: 18 - fp: 0 - fn: 2 - tn: 18 - precision: 1.0000 - recall: 0.9000 - accuracy: 0.9000 - f1-score: 0.9474 -acknowledge.01 tp: 11 - fp: 4 - fn: 0 - tn: 11 - precision: 0.7333 - recall: 1.0000 - accuracy: 0.7333 - f1-score: 0.8461 -acquiesce.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -acquire.01 tp: 14 - fp: 1 - fn: 0 - tn: 14 - precision: 0.9333 - recall: 1.0000 - accuracy: 0.9333 - f1-score: 0.9655 -act.01 tp: 3 - fp: 3 - fn: 1 - tn: 3 - precision: 0.5000 - recall: 0.7500 - accuracy: 0.4286 - f1-score: 0.6000 -act.02 tp: 18 - fp: 14 - fn: 2 - tn: 18 - precision: 0.5625 - recall: 0.9000 - accuracy: 0.5294 - f1-score: 0.6923 -activate.01 tp: 0 - fp: 0 - fn: 8 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -adapt.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -add.01 tp: 19 - fp: 0 - fn: 0 - tn: 19 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -add.02 tp: 36 - fp: 12 - fn: 0 - tn: 36 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -add.03 tp: 0 - fp: 1 - fn: 4 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -add_up.04 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -address.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -address.02 tp: 6 - fp: 2 - fn: 0 - tn: 6 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -address.03 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -adhere.02 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -adjust.01 tp: 11 - fp: 2 - fn: 0 - tn: 11 - precision: 0.8462 - recall: 1.0000 - accuracy: 0.8462 - f1-score: 0.9167 -administer.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -admire.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -admit.01 tp: 4 - fp: 1 - fn: 0 - tn: 4 - precision: 0.8000 - recall: 1.0000 - accuracy: 0.8000 - f1-score: 0.8889 -admit.02 tp: 2 - fp: 0 - fn: 1 - tn: 2 - precision: 1.0000 - recall: 0.6667 - accuracy: 0.6667 - f1-score: 0.8000 -admonish.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -adopt.01 tp: 8 - fp: 0 - fn: 0 - tn: 8 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -advance.01 tp: 3 - fp: 6 - fn: 1 - tn: 3 - precision: 0.3333 - recall: 0.7500 - accuracy: 0.3000 - f1-score: 0.4615 -advertise.01 tp: 2 - fp: 4 - fn: 0 - tn: 2 - precision: 0.3333 - recall: 1.0000 - accuracy: 0.3333 - f1-score: 0.5000 -advise.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -advocate.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -affect.01 tp: 16 - fp: 1 - fn: 0 - tn: 16 - precision: 0.9412 - recall: 1.0000 - accuracy: 0.9412 - f1-score: 0.9697 -affiliate.01 tp: 0 - fp: 0 - fn: 4 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -affirm.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -afford.01 tp: 5 - fp: 0 - fn: 0 - tn: 5 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -age.01 tp: 5 - fp: 1 - fn: 2 - tn: 5 - precision: 0.8333 - recall: 0.7143 - accuracy: 0.6250 - f1-score: 0.7692 -agitate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -agree.01 tp: 50 - fp: 0 - fn: 3 - tn: 50 - precision: 1.0000 - recall: 0.9434 - accuracy: 0.9434 - f1-score: 0.9709 -aid.01 tp: 3 - fp: 1 - fn: 0 - tn: 3 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -aim.01 tp: 1 - fp: 3 - fn: 0 - tn: 1 - precision: 0.2500 - recall: 1.0000 - accuracy: 0.2500 - f1-score: 0.4000 -aim.02 tp: 10 - fp: 0 - fn: 1 - tn: 10 - precision: 1.0000 - recall: 0.9091 - accuracy: 0.9091 - f1-score: 0.9524 -air.01 tp: 5 - fp: 1 - fn: 1 - tn: 5 - precision: 0.8333 - recall: 0.8333 - accuracy: 0.7143 - f1-score: 0.8333 -alert.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -align.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -allege.01 tp: 11 - fp: 3 - fn: 1 - tn: 11 - precision: 0.7857 - recall: 0.9167 - accuracy: 0.7333 - f1-score: 0.8462 -alleviate.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -allocate.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -allot.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -allow.01 tp: 27 - fp: 2 - fn: 0 - tn: 27 - precision: 0.9310 - recall: 1.0000 - accuracy: 0.9310 - f1-score: 0.9643 -allow.02 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -ally.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -amaze.01 tp: 0 - fp: 2 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -ambush.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -amend.01 tp: 5 - fp: 4 - fn: 0 - tn: 5 - precision: 0.5556 - recall: 1.0000 - accuracy: 0.5556 - f1-score: 0.7143 -amount.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -amplify.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -analyze.01 tp: 18 - fp: 4 - fn: 0 - tn: 18 - precision: 0.8182 - recall: 1.0000 - accuracy: 0.8182 - f1-score: 0.9000 -anchor.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -anger.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -animate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -annihilate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -anniversary.01 tp: 3 - fp: 0 - fn: 1 - tn: 3 - precision: 1.0000 - recall: 0.7500 - accuracy: 0.7500 - f1-score: 0.8571 -announce.01 tp: 31 - fp: 7 - fn: 1 - tn: 31 - precision: 0.8158 - recall: 0.9688 - accuracy: 0.7949 - f1-score: 0.8857 -annoy.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -answer.01 tp: 55 - fp: 5 - fn: 0 - tn: 55 - precision: 0.9167 - recall: 1.0000 - accuracy: 0.9167 - f1-score: 0.9565 -anticipate.01 tp: 5 - fp: 0 - fn: 0 - tn: 5 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -apologize.01 tp: 7 - fp: 1 - fn: 0 - tn: 7 - precision: 0.8750 - recall: 1.0000 - accuracy: 0.8750 - f1-score: 0.9333 -appeal.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -appeal.02 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -appear.01 tp: 12 - fp: 5 - fn: 1 - tn: 12 - precision: 0.7059 - recall: 0.9231 - accuracy: 0.6667 - f1-score: 0.8000 -appear.02 tp: 20 - fp: 1 - fn: 4 - tn: 20 - precision: 0.9524 - recall: 0.8333 - accuracy: 0.8000 - f1-score: 0.8889 -appease.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -apply.01 tp: 3 - fp: 0 - fn: 1 - tn: 3 - precision: 1.0000 - recall: 0.7500 - accuracy: 0.7500 - f1-score: 0.8571 -apply.02 tp: 9 - fp: 1 - fn: 1 - tn: 9 - precision: 0.9000 - recall: 0.9000 - accuracy: 0.8182 - f1-score: 0.9000 -appoint.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -appraise.01 tp: 0 - fp: 0 - fn: 4 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -appreciate.02 tp: 6 - fp: 0 - fn: 0 - tn: 6 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -approach.01 tp: 6 - fp: 1 - fn: 0 - tn: 6 - precision: 0.8571 - recall: 1.0000 - accuracy: 0.8571 - f1-score: 0.9231 -approach.02 tp: 3 - fp: 1 - fn: 1 - tn: 3 - precision: 0.7500 - recall: 0.7500 - accuracy: 0.6000 - f1-score: 0.7500 -appropriate.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -approve.01 tp: 26 - fp: 4 - fn: 0 - tn: 26 - precision: 0.8667 - recall: 1.0000 - accuracy: 0.8667 - f1-score: 0.9286 -argue.01 tp: 13 - fp: 2 - fn: 1 - tn: 13 - precision: 0.8667 - recall: 0.9286 - accuracy: 0.8125 - f1-score: 0.8966 -argue.02 tp: 8 - fp: 1 - fn: 2 - tn: 8 - precision: 0.8889 - recall: 0.8000 - accuracy: 0.7273 - f1-score: 0.8421 -arise.02 tp: 4 - fp: 0 - fn: 0 - tn: 4 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -arm.01 tp: 1 - fp: 1 - fn: 1 - tn: 1 - precision: 0.5000 - recall: 0.5000 - accuracy: 0.3333 - f1-score: 0.5000 -arrange.01 tp: 4 - fp: 1 - fn: 0 - tn: 4 - precision: 0.8000 - recall: 1.0000 - accuracy: 0.8000 - f1-score: 0.8889 -arrest.01 tp: 7 - fp: 1 - fn: 0 - tn: 7 - precision: 0.8750 - recall: 1.0000 - accuracy: 0.8750 - f1-score: 0.9333 -arrive.01 tp: 24 - fp: 1 - fn: 0 - tn: 24 - precision: 0.9600 - recall: 1.0000 - accuracy: 0.9600 - f1-score: 0.9796 -articulate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -ascend.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -ask.01 tp: 59 - fp: 11 - fn: 1 - tn: 59 - precision: 0.8429 - recall: 0.9833 - accuracy: 0.8310 - f1-score: 0.9077 -ask.02 tp: 58 - fp: 0 - fn: 11 - tn: 58 - precision: 1.0000 - recall: 0.8406 - accuracy: 0.8406 - f1-score: 0.9134 -assail.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -assassinate.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -assault.01 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -assemble.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -assemble.02 tp: 1 - fp: 2 - fn: 0 - tn: 1 - precision: 0.3333 - recall: 1.0000 - accuracy: 0.3333 - f1-score: 0.5000 -assert.03 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -assess.01 tp: 5 - fp: 2 - fn: 0 - tn: 5 - precision: 0.7143 - recall: 1.0000 - accuracy: 0.7143 - f1-score: 0.8333 -assign.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -assimilate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -assist.01 tp: 13 - fp: 3 - fn: 0 - tn: 13 - precision: 0.8125 - recall: 1.0000 - accuracy: 0.8125 - f1-score: 0.8966 -associate.01 tp: 3 - fp: 0 - fn: 2 - tn: 3 - precision: 1.0000 - recall: 0.6000 - accuracy: 0.6000 - f1-score: 0.7500 -assume.01 tp: 3 - fp: 0 - fn: 3 - tn: 3 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -assume.02 tp: 4 - fp: 4 - fn: 0 - tn: 4 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -assure.01 tp: 8 - fp: 0 - fn: 2 - tn: 8 - precision: 1.0000 - recall: 0.8000 - accuracy: 0.8000 - f1-score: 0.8889 -attach.01 tp: 2 - fp: 2 - fn: 0 - tn: 2 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -attack.01 tp: 24 - fp: 0 - fn: 0 - tn: 24 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -attain.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -attempt.01 tp: 7 - fp: 2 - fn: 0 - tn: 7 - precision: 0.7778 - recall: 1.0000 - accuracy: 0.7778 - f1-score: 0.8750 -attend.01 tp: 8 - fp: 1 - fn: 0 - tn: 8 - precision: 0.8889 - recall: 1.0000 - accuracy: 0.8889 - f1-score: 0.9412 -attract.01 tp: 22 - fp: 0 - fn: 1 - tn: 22 - precision: 1.0000 - recall: 0.9565 - accuracy: 0.9565 - f1-score: 0.9778 -attribute.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -auction_off.01 tp: 2 - fp: 0 - fn: 1 - tn: 2 - precision: 1.0000 - recall: 0.6667 - accuracy: 0.6667 - f1-score: 0.8000 -audit.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -authorize.01 tp: 4 - fp: 0 - fn: 1 - tn: 4 - precision: 1.0000 - recall: 0.8000 - accuracy: 0.8000 - f1-score: 0.8889 -automate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -average.01 tp: 4 - fp: 0 - fn: 0 - tn: 4 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -avoid.01 tp: 5 - fp: 0 - fn: 0 - tn: 5 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -await.01 tp: 1 - fp: 1 - fn: 1 - tn: 1 - precision: 0.5000 - recall: 0.5000 - accuracy: 0.3333 - f1-score: 0.5000 -award.01 tp: 10 - fp: 2 - fn: 0 - tn: 10 - precision: 0.8333 - recall: 1.0000 - accuracy: 0.8333 - f1-score: 0.9091 -back.01 tp: 6 - fp: 1 - fn: 1 - tn: 6 - precision: 0.8571 - recall: 0.8571 - accuracy: 0.7500 - f1-score: 0.8571 -back.02 tp: 3 - fp: 1 - fn: 1 - tn: 3 - precision: 0.7500 - recall: 0.7500 - accuracy: 0.6000 - f1-score: 0.7500 -back_off.11 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -bail_out.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -ban.01 tp: 3 - fp: 1 - fn: 0 - tn: 3 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -bank.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -bankrupt.01 tp: 4 - fp: 2 - fn: 0 - tn: 4 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -baptize.02 tp: 3 - fp: 4 - fn: 0 - tn: 3 - precision: 0.4286 - recall: 1.0000 - accuracy: 0.4286 - f1-score: 0.6000 -bar.01 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -bargain.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -barrage.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -barricade.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -base.01 tp: 7 - fp: 7 - fn: 1 - tn: 7 - precision: 0.5000 - recall: 0.8750 - accuracy: 0.4667 - f1-score: 0.6364 -base.02 tp: 11 - fp: 11 - fn: 3 - tn: 11 - precision: 0.5000 - recall: 0.7857 - accuracy: 0.4400 - f1-score: 0.6111 -bathe.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -battle.01 tp: 8 - fp: 6 - fn: 1 - tn: 8 - precision: 0.5714 - recall: 0.8889 - accuracy: 0.5333 - f1-score: 0.6956 -be.01 tp: 3481 - fp: 135 - fn: 81 - tn: 3481 - precision: 0.9627 - recall: 0.9773 - accuracy: 0.9416 - f1-score: 0.9699 -be.02 tp: 296 - fp: 21 - fn: 14 - tn: 296 - precision: 0.9338 - recall: 0.9548 - accuracy: 0.8943 - f1-score: 0.9442 -be.03 tp: 1865 - fp: 121 - fn: 97 - tn: 1865 - precision: 0.9391 - recall: 0.9506 - accuracy: 0.8953 - f1-score: 0.9448 -be_like.04 tp: 3 - fp: 0 - fn: 2 - tn: 3 - precision: 1.0000 - recall: 0.6000 - accuracy: 0.6000 - f1-score: 0.7500 -beam.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -bear.01 tp: 9 - fp: 3 - fn: 1 - tn: 9 - precision: 0.7500 - recall: 0.9000 - accuracy: 0.6923 - f1-score: 0.8182 -bear.02 tp: 24 - fp: 0 - fn: 0 - tn: 24 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -bear_up.04 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -beat.01 tp: 2 - fp: 3 - fn: 0 - tn: 2 - precision: 0.4000 - recall: 1.0000 - accuracy: 0.4000 - f1-score: 0.5714 -beat.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -beat.03 tp: 1 - fp: 3 - fn: 0 - tn: 1 - precision: 0.2500 - recall: 1.0000 - accuracy: 0.2500 - f1-score: 0.4000 -beat_out.04 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -beat_up.05 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -become.01 tp: 106 - fp: 2 - fn: 0 - tn: 106 - precision: 0.9815 - recall: 1.0000 - accuracy: 0.9815 - f1-score: 0.9907 -beg.01 tp: 4 - fp: 1 - fn: 1 - tn: 4 - precision: 0.8000 - recall: 0.8000 - accuracy: 0.6667 - f1-score: 0.8000 -begin.01 tp: 76 - fp: 5 - fn: 1 - tn: 76 - precision: 0.9383 - recall: 0.9870 - accuracy: 0.9268 - f1-score: 0.9620 -believe.01 tp: 113 - fp: 0 - fn: 0 - tn: 113 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -belong.01 tp: 14 - fp: 0 - fn: 0 - tn: 14 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -bemoan.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -benefit.01 tp: 7 - fp: 0 - fn: 0 - tn: 7 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -besiege.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -besmirch.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -bet.01 tp: 5 - fp: 1 - fn: 0 - tn: 5 - precision: 0.8333 - recall: 1.0000 - accuracy: 0.8333 - f1-score: 0.9091 -bid.01 tp: 14 - fp: 2 - fn: 0 - tn: 14 - precision: 0.8750 - recall: 1.0000 - accuracy: 0.8750 - f1-score: 0.9333 -bid.03 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -bill.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -bill.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -bind.01 tp: 4 - fp: 1 - fn: 1 - tn: 4 - precision: 0.8000 - recall: 0.8000 - accuracy: 0.6667 - f1-score: 0.8000 -bind.02 tp: 3 - fp: 2 - fn: 0 - tn: 3 - precision: 0.6000 - recall: 1.0000 - accuracy: 0.6000 - f1-score: 0.7500 -bite.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -blame.01 tp: 9 - fp: 1 - fn: 2 - tn: 9 - precision: 0.9000 - recall: 0.8182 - accuracy: 0.7500 - f1-score: 0.8572 -blare.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -blast.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -blast.05 tp: 5 - fp: 1 - fn: 0 - tn: 5 - precision: 0.8333 - recall: 1.0000 - accuracy: 0.8333 - f1-score: 0.9091 -bleed.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -bless.01 tp: 15 - fp: 1 - fn: 0 - tn: 15 - precision: 0.9375 - recall: 1.0000 - accuracy: 0.9375 - f1-score: 0.9677 -blind.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -blink.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -block.01 tp: 4 - fp: 3 - fn: 2 - tn: 4 - precision: 0.5714 - recall: 0.6667 - accuracy: 0.4444 - f1-score: 0.6154 -block_up.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -blossom.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -blow.01 tp: 2 - fp: 0 - fn: 1 - tn: 2 - precision: 1.0000 - recall: 0.6667 - accuracy: 0.6667 - f1-score: 0.8000 -blow.08 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -blow.09 tp: 2 - fp: 2 - fn: 0 - tn: 2 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -blow.14 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -blow_up.06 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -blunt.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -board.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -boast.01 tp: 6 - fp: 0 - fn: 0 - tn: 6 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -bob.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -bog_down.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -boil.01 tp: 1 - fp: 2 - fn: 0 - tn: 1 - precision: 0.3333 - recall: 1.0000 - accuracy: 0.3333 - f1-score: 0.5000 -boil_over.02 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -bolster.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -bomb.01 tp: 23 - fp: 1 - fn: 0 - tn: 23 - precision: 0.9583 - recall: 1.0000 - accuracy: 0.9583 - f1-score: 0.9787 -bomb.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -bond.02 tp: 16 - fp: 0 - fn: 1 - tn: 16 - precision: 1.0000 - recall: 0.9412 - accuracy: 0.9412 - f1-score: 0.9697 -boost.01 tp: 4 - fp: 1 - fn: 0 - tn: 4 - precision: 0.8000 - recall: 1.0000 - accuracy: 0.8000 - f1-score: 0.8889 -borrow.01 tp: 11 - fp: 3 - fn: 0 - tn: 11 - precision: 0.7857 - recall: 1.0000 - accuracy: 0.7857 - f1-score: 0.8800 -bother.01 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -bother.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -bounce.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -bound.05 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -bow.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -bow.02 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -bow_down.04 tp: 3 - fp: 1 - fn: 0 - tn: 3 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -bowl.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -box.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -boycott.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -brag.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -brainwash.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -braise.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -brand.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -brandish.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -break.01 tp: 12 - fp: 13 - fn: 2 - tn: 12 - precision: 0.4800 - recall: 0.8571 - accuracy: 0.4444 - f1-score: 0.6154 -break.02 tp: 0 - fp: 0 - fn: 5 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -break.13 tp: 0 - fp: 0 - fn: 4 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -break.16 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -break.18 tp: 2 - fp: 4 - fn: 2 - tn: 2 - precision: 0.3333 - recall: 0.5000 - accuracy: 0.2500 - f1-score: 0.4000 -break.19 tp: 2 - fp: 2 - fn: 0 - tn: 2 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -break_down.11 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -break_down.12 tp: 0 - fp: 4 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -break_off.04 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -break_out.06 tp: 0 - fp: 1 - fn: 4 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -break_through.22 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -break_up.08 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -breathe.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -breed.01 tp: 4 - fp: 0 - fn: 1 - tn: 4 - precision: 1.0000 - recall: 0.8000 - accuracy: 0.8000 - f1-score: 0.8889 -bribe.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -bridge.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -brief.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -bring.01 tp: 74 - fp: 6 - fn: 0 - tn: 74 - precision: 0.9250 - recall: 1.0000 - accuracy: 0.9250 - f1-score: 0.9610 -bring_about.05 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -bring_down.03 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -broadcast.01 tp: 11 - fp: 2 - fn: 0 - tn: 11 - precision: 0.8462 - recall: 1.0000 - accuracy: 0.8462 - f1-score: 0.9167 -broker.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -buck.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -bud.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -build.01 tp: 29 - fp: 6 - fn: 0 - tn: 29 - precision: 0.8286 - recall: 1.0000 - accuracy: 0.8286 - f1-score: 0.9063 -build.02 tp: 0 - fp: 0 - fn: 4 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -build_up.05 tp: 7 - fp: 1 - fn: 1 - tn: 7 - precision: 0.8750 - recall: 0.8750 - accuracy: 0.7778 - f1-score: 0.8750 -bulldoze.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -bump.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -burden.01 tp: 3 - fp: 3 - fn: 0 - tn: 3 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -burn.01 tp: 9 - fp: 2 - fn: 0 - tn: 9 - precision: 0.8182 - recall: 1.0000 - accuracy: 0.8182 - f1-score: 0.9000 -burn_up.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -burst.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -burst.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -bury.01 tp: 6 - fp: 2 - fn: 0 - tn: 6 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -buy.01 tp: 47 - fp: 2 - fn: 0 - tn: 47 - precision: 0.9592 - recall: 1.0000 - accuracy: 0.9592 - f1-score: 0.9792 -buy_out.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -bypass.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -calculate.01 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -call.01 tp: 74 - fp: 16 - fn: 1 - tn: 74 - precision: 0.8222 - recall: 0.9867 - accuracy: 0.8132 - f1-score: 0.8970 -call.02 tp: 35 - fp: 5 - fn: 17 - tn: 35 - precision: 0.8750 - recall: 0.6731 - accuracy: 0.6140 - f1-score: 0.7609 -call.03 tp: 12 - fp: 4 - fn: 1 - tn: 12 - precision: 0.7500 - recall: 0.9231 - accuracy: 0.7059 - f1-score: 0.8276 -call.07 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -call_off.06 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -call_on.05 tp: 3 - fp: 1 - fn: 1 - tn: 3 - precision: 0.7500 - recall: 0.7500 - accuracy: 0.6000 - f1-score: 0.7500 -call_up.08 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -calm_down.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -campaign.01 tp: 12 - fp: 0 - fn: 0 - tn: 12 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -cancel.01 tp: 8 - fp: 4 - fn: 0 - tn: 8 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -cap.01 tp: 0 - fp: 0 - fn: 7 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -cap.02 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -caption.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -captivate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -capture.01 tp: 7 - fp: 0 - fn: 0 - tn: 7 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -care.01 tp: 14 - fp: 1 - fn: 1 - tn: 14 - precision: 0.9333 - recall: 0.9333 - accuracy: 0.8750 - f1-score: 0.9333 -care.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -care.03 tp: 5 - fp: 10 - fn: 0 - tn: 5 - precision: 0.3333 - recall: 1.0000 - accuracy: 0.3333 - f1-score: 0.5000 -carouse.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -carry.01 tp: 23 - fp: 5 - fn: 1 - tn: 23 - precision: 0.8214 - recall: 0.9583 - accuracy: 0.7931 - f1-score: 0.8846 -carry_on.02 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -carry_out.03 tp: 25 - fp: 2 - fn: 0 - tn: 25 - precision: 0.9259 - recall: 1.0000 - accuracy: 0.9259 - f1-score: 0.9615 -carry_over.04 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -carve.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -carve.02 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -cast.01 tp: 7 - fp: 0 - fn: 0 - tn: 7 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -cast.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -casualties.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -catch.01 tp: 1 - fp: 3 - fn: 1 - tn: 1 - precision: 0.2500 - recall: 0.5000 - accuracy: 0.2000 - f1-score: 0.3333 -catch.02 tp: 0 - fp: 0 - fn: 4 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -catch.03 tp: 9 - fp: 1 - fn: 1 - tn: 9 - precision: 0.9000 - recall: 0.9000 - accuracy: 0.8182 - f1-score: 0.9000 -catch_on.05 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -catch_on.06 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -catch_up.04 tp: 2 - fp: 4 - fn: 0 - tn: 2 - precision: 0.3333 - recall: 1.0000 - accuracy: 0.3333 - f1-score: 0.5000 -categorize.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -cater.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -cause.01 tp: 30 - fp: 2 - fn: 0 - tn: 30 - precision: 0.9375 - recall: 1.0000 - accuracy: 0.9375 - f1-score: 0.9677 -caution.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -cave.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -cave_in.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -cease.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -celebrate.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -celebrate.02 tp: 4 - fp: 4 - fn: 0 - tn: 4 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -centralize.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -ceremony.01 tp: 5 - fp: 0 - fn: 0 - tn: 5 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -certify.01 tp: 3 - fp: 1 - fn: 0 - tn: 3 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -chain.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -chair.01 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -chalk_up.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -challenge.01 tp: 16 - fp: 0 - fn: 0 - tn: 16 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -championship.02 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -change.01 tp: 55 - fp: 1 - fn: 0 - tn: 55 - precision: 0.9821 - recall: 1.0000 - accuracy: 0.9821 - f1-score: 0.9910 -channel.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -characterize.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -charge.01 tp: 8 - fp: 11 - fn: 0 - tn: 8 - precision: 0.4211 - recall: 1.0000 - accuracy: 0.4211 - f1-score: 0.5926 -charge.05 tp: 33 - fp: 2 - fn: 5 - tn: 33 - precision: 0.9429 - recall: 0.8684 - accuracy: 0.8250 - f1-score: 0.9041 -charge.06 tp: 1 - fp: 0 - fn: 2 - tn: 1 - precision: 1.0000 - recall: 0.3333 - accuracy: 0.3333 - f1-score: 0.5000 -charge.08 tp: 0 - fp: 2 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -chase.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -chat.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -cheat.01 tp: 0 - fp: 1 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -cheat.02 tp: 5 - fp: 2 - fn: 1 - tn: 5 - precision: 0.7143 - recall: 0.8333 - accuracy: 0.6250 - f1-score: 0.7692 -check.01 tp: 5 - fp: 1 - fn: 2 - tn: 5 - precision: 0.8333 - recall: 0.7143 - accuracy: 0.6250 - f1-score: 0.7692 -check_out.05 tp: 7 - fp: 1 - fn: 0 - tn: 7 - precision: 0.8750 - recall: 1.0000 - accuracy: 0.8750 - f1-score: 0.9333 -cheer.02 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -cherish.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -chew.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -chip_in.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -choose.01 tp: 23 - fp: 1 - fn: 0 - tn: 23 - precision: 0.9583 - recall: 1.0000 - accuracy: 0.9583 - f1-score: 0.9787 -christen.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -chronicle.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -chug.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -circuit.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -circulate.01 tp: 2 - fp: 5 - fn: 0 - tn: 2 - precision: 0.2857 - recall: 1.0000 - accuracy: 0.2857 - f1-score: 0.4444 -cite.01 tp: 12 - fp: 0 - fn: 0 - tn: 12 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -claim.01 tp: 8 - fp: 2 - fn: 1 - tn: 8 - precision: 0.8000 - recall: 0.8889 - accuracy: 0.7273 - f1-score: 0.8421 -claim.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -clamber.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -clamor.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -clap.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -clarify.10 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -clash.01 tp: 6 - fp: 0 - fn: 0 - tn: 6 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -classify.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -classify.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -clean.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -clean_up.02 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -cleanse.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -clear.01 tp: 4 - fp: 3 - fn: 1 - tn: 4 - precision: 0.5714 - recall: 0.8000 - accuracy: 0.5000 - f1-score: 0.6666 -clear.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -clear.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -clench.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -click.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -climax.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -climb.01 tp: 7 - fp: 1 - fn: 0 - tn: 7 - precision: 0.8750 - recall: 1.0000 - accuracy: 0.8750 - f1-score: 0.9333 -climb.02 tp: 8 - fp: 1 - fn: 0 - tn: 8 - precision: 0.8889 - recall: 1.0000 - accuracy: 0.8889 - f1-score: 0.9412 -cling.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -clobber.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -clock.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -clock.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -close.01 tp: 15 - fp: 6 - fn: 1 - tn: 15 - precision: 0.7143 - recall: 0.9375 - accuracy: 0.6818 - f1-score: 0.8108 -close.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -close_down.04 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -close_off.05 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -coanchor.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -coat.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -coexist.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -coincide.01 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -collaborate.01 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -collapse.01 tp: 4 - fp: 0 - fn: 0 - tn: 4 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -collateralize.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -collect.01 tp: 9 - fp: 0 - fn: 0 - tn: 9 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -collide.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -colonize.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -color.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -combat.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -combine.01 tp: 12 - fp: 5 - fn: 3 - tn: 12 - precision: 0.7059 - recall: 0.8000 - accuracy: 0.6000 - f1-score: 0.7500 -combust.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -come.01 tp: 237 - fp: 32 - fn: 6 - tn: 237 - precision: 0.8810 - recall: 0.9753 - accuracy: 0.8618 - f1-score: 0.9258 -come.03 tp: 14 - fp: 4 - fn: 7 - tn: 14 - precision: 0.7778 - recall: 0.6667 - accuracy: 0.5600 - f1-score: 0.7180 -come.04 tp: 5 - fp: 2 - fn: 14 - tn: 5 - precision: 0.7143 - recall: 0.2632 - accuracy: 0.2381 - f1-score: 0.3847 -come.05 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -come.12 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -come.14 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -come.16 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -come_about.06 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -come_across.21 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -come_by.20 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -come_out.09 tp: 5 - fp: 1 - fn: 2 - tn: 5 - precision: 0.8333 - recall: 0.7143 - accuracy: 0.6250 - f1-score: 0.7692 -come_up.11 tp: 8 - fp: 3 - fn: 0 - tn: 8 - precision: 0.7273 - recall: 1.0000 - accuracy: 0.7273 - f1-score: 0.8421 -come_up.13 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -comeback.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -comfort.01 tp: 2 - fp: 4 - fn: 0 - tn: 2 - precision: 0.3333 - recall: 1.0000 - accuracy: 0.3333 - f1-score: 0.5000 -command.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -command.02 tp: 4 - fp: 1 - fn: 0 - tn: 4 - precision: 0.8000 - recall: 1.0000 - accuracy: 0.8000 - f1-score: 0.8889 -commence.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -commend.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -comment.01 tp: 10 - fp: 5 - fn: 0 - tn: 10 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -commercialize.01 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -commiserate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -commission.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -commit.01 tp: 1 - fp: 1 - fn: 3 - tn: 1 - precision: 0.5000 - recall: 0.2500 - accuracy: 0.2000 - f1-score: 0.3333 -commit.02 tp: 10 - fp: 2 - fn: 0 - tn: 10 - precision: 0.8333 - recall: 1.0000 - accuracy: 0.8333 - f1-score: 0.9091 -communicate.01 tp: 5 - fp: 4 - fn: 0 - tn: 5 - precision: 0.5556 - recall: 1.0000 - accuracy: 0.5556 - f1-score: 0.7143 -compare.01 tp: 15 - fp: 1 - fn: 1 - tn: 15 - precision: 0.9375 - recall: 0.9375 - accuracy: 0.8824 - f1-score: 0.9375 -compel.01 tp: 2 - fp: 0 - fn: 1 - tn: 2 - precision: 1.0000 - recall: 0.6667 - accuracy: 0.6667 - f1-score: 0.8000 -compensate.01 tp: 6 - fp: 5 - fn: 0 - tn: 6 - precision: 0.5455 - recall: 1.0000 - accuracy: 0.5455 - f1-score: 0.7059 -compete.01 tp: 13 - fp: 4 - fn: 0 - tn: 13 - precision: 0.7647 - recall: 1.0000 - accuracy: 0.7647 - f1-score: 0.8667 -compile.01 tp: 2 - fp: 0 - fn: 1 - tn: 2 - precision: 1.0000 - recall: 0.6667 - accuracy: 0.6667 - f1-score: 0.8000 -complain.01 tp: 3 - fp: 0 - fn: 1 - tn: 3 - precision: 1.0000 - recall: 0.7500 - accuracy: 0.7500 - f1-score: 0.8571 -complement.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -complete.01 tp: 13 - fp: 1 - fn: 0 - tn: 13 - precision: 0.9286 - recall: 1.0000 - accuracy: 0.9286 - f1-score: 0.9630 -complicate.01 tp: 2 - fp: 0 - fn: 2 - tn: 2 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -comply.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -compose.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -compose.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -comprehend.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -compromise.01 tp: 0 - fp: 2 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -compromise.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -conceal.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -concede.01 tp: 4 - fp: 0 - fn: 0 - tn: 4 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -conceive.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -concentrate.01 tp: 4 - fp: 2 - fn: 0 - tn: 4 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -concentrate.02 tp: 0 - fp: 0 - fn: 4 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -concern.01 tp: 23 - fp: 6 - fn: 0 - tn: 23 - precision: 0.7931 - recall: 1.0000 - accuracy: 0.7931 - f1-score: 0.8846 -concern.02 tp: 3 - fp: 5 - fn: 5 - tn: 3 - precision: 0.3750 - recall: 0.3750 - accuracy: 0.2308 - f1-score: 0.3750 -conclude.01 tp: 4 - fp: 1 - fn: 1 - tn: 4 - precision: 0.8000 - recall: 0.8000 - accuracy: 0.6667 - f1-score: 0.8000 -conclude.02 tp: 2 - fp: 1 - fn: 1 - tn: 2 - precision: 0.6667 - recall: 0.6667 - accuracy: 0.5000 - f1-score: 0.6667 -concrete_over.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -concur.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -condemn.01 tp: 6 - fp: 0 - fn: 0 - tn: 6 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -conduct.01 tp: 13 - fp: 0 - fn: 0 - tn: 13 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -conduct.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -confer.01 tp: 12 - fp: 5 - fn: 0 - tn: 12 - precision: 0.7059 - recall: 1.0000 - accuracy: 0.7059 - f1-score: 0.8276 -confess.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -confine.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -confirm.01 tp: 9 - fp: 1 - fn: 0 - tn: 9 - precision: 0.9000 - recall: 1.0000 - accuracy: 0.9000 - f1-score: 0.9474 -confiscate.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -conflict.01 tp: 10 - fp: 5 - fn: 0 - tn: 10 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -conform.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -confront.01 tp: 6 - fp: 0 - fn: 0 - tn: 6 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -confuse.01 tp: 4 - fp: 0 - fn: 1 - tn: 4 - precision: 1.0000 - recall: 0.8000 - accuracy: 0.8000 - f1-score: 0.8889 -congest.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -congratulate.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -connect.01 tp: 11 - fp: 7 - fn: 0 - tn: 11 - precision: 0.6111 - recall: 1.0000 - accuracy: 0.6111 - f1-score: 0.7586 -conquer.01 tp: 2 - fp: 0 - fn: 1 - tn: 2 - precision: 1.0000 - recall: 0.6667 - accuracy: 0.6667 - f1-score: 0.8000 -conserve.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -consider.01 tp: 15 - fp: 4 - fn: 5 - tn: 15 - precision: 0.7895 - recall: 0.7500 - accuracy: 0.6250 - f1-score: 0.7692 -consider.02 tp: 9 - fp: 4 - fn: 4 - tn: 9 - precision: 0.6923 - recall: 0.6923 - accuracy: 0.5294 - f1-score: 0.6923 -consist.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -consolidate.01 tp: 2 - fp: 4 - fn: 1 - tn: 2 - precision: 0.3333 - recall: 0.6667 - accuracy: 0.2857 - f1-score: 0.4444 -constitute.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -construct.01 tp: 19 - fp: 5 - fn: 0 - tn: 19 - precision: 0.7917 - recall: 1.0000 - accuracy: 0.7917 - f1-score: 0.8837 -consult.01 tp: 5 - fp: 0 - fn: 0 - tn: 5 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -consume.01 tp: 2 - fp: 3 - fn: 0 - tn: 2 - precision: 0.4000 - recall: 1.0000 - accuracy: 0.4000 - f1-score: 0.5714 -contact.01 tp: 11 - fp: 3 - fn: 2 - tn: 11 - precision: 0.7857 - recall: 0.8462 - accuracy: 0.6875 - f1-score: 0.8148 -contain.01 tp: 8 - fp: 1 - fn: 0 - tn: 8 - precision: 0.8889 - recall: 1.0000 - accuracy: 0.8889 - f1-score: 0.9412 -contaminate.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -contend.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -contest.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -contest.02 tp: 4 - fp: 0 - fn: 0 - tn: 4 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -continue.01 tp: 73 - fp: 3 - fn: 0 - tn: 73 - precision: 0.9605 - recall: 1.0000 - accuracy: 0.9605 - f1-score: 0.9799 -contract.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -contract.02 tp: 3 - fp: 0 - fn: 3 - tn: 3 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -contradict.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -contrast.01 tp: 5 - fp: 1 - fn: 0 - tn: 5 - precision: 0.8333 - recall: 1.0000 - accuracy: 0.8333 - f1-score: 0.9091 -contribute.01 tp: 17 - fp: 0 - fn: 0 - tn: 17 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -control.01 tp: 25 - fp: 6 - fn: 0 - tn: 25 - precision: 0.8065 - recall: 1.0000 - accuracy: 0.8065 - f1-score: 0.8929 -convene.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -converge.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -converse.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -convert.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -convey.01 tp: 1 - fp: 3 - fn: 0 - tn: 1 - precision: 0.2500 - recall: 1.0000 - accuracy: 0.2500 - f1-score: 0.4000 -convict.01 tp: 12 - fp: 1 - fn: 0 - tn: 12 - precision: 0.9231 - recall: 1.0000 - accuracy: 0.9231 - f1-score: 0.9600 -conviction.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -convince.01 tp: 3 - fp: 4 - fn: 0 - tn: 3 - precision: 0.4286 - recall: 1.0000 - accuracy: 0.4286 - f1-score: 0.6000 -cook.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -cool_down.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -cooperate.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -coordinate.01 tp: 3 - fp: 2 - fn: 0 - tn: 3 - precision: 0.6000 - recall: 1.0000 - accuracy: 0.6000 - f1-score: 0.7500 -cop.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -cope.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -copy.01 tp: 4 - fp: 0 - fn: 0 - tn: 4 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -copyright.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -corner.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -correct.01 tp: 3 - fp: 0 - fn: 1 - tn: 3 - precision: 1.0000 - recall: 0.7500 - accuracy: 0.7500 - f1-score: 0.8571 -corrupt.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -cost.01 tp: 8 - fp: 0 - fn: 0 - tn: 8 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -count.01 tp: 3 - fp: 4 - fn: 3 - tn: 3 - precision: 0.4286 - recall: 0.5000 - accuracy: 0.3000 - f1-score: 0.4616 -count.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -count.03 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -count.04 tp: 1 - fp: 2 - fn: 2 - tn: 1 - precision: 0.3333 - recall: 0.3333 - accuracy: 0.2000 - f1-score: 0.3333 -counter.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -couple.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -court.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -cover.01 tp: 2 - fp: 4 - fn: 1 - tn: 2 - precision: 0.3333 - recall: 0.6667 - accuracy: 0.2857 - f1-score: 0.4444 -cover.02 tp: 11 - fp: 4 - fn: 0 - tn: 11 - precision: 0.7333 - recall: 1.0000 - accuracy: 0.7333 - f1-score: 0.8461 -cover.03 tp: 14 - fp: 0 - fn: 5 - tn: 14 - precision: 1.0000 - recall: 0.7368 - accuracy: 0.7368 - f1-score: 0.8485 -cover_up.04 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -crack.02 tp: 0 - fp: 2 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -crack_down.06 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -craft.01 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -crash.01 tp: 22 - fp: 3 - fn: 0 - tn: 22 - precision: 0.8800 - recall: 1.0000 - accuracy: 0.8800 - f1-score: 0.9362 -crave.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -crawl.01 tp: 3 - fp: 2 - fn: 0 - tn: 3 - precision: 0.6000 - recall: 1.0000 - accuracy: 0.6000 - f1-score: 0.7500 -create.01 tp: 31 - fp: 1 - fn: 0 - tn: 31 - precision: 0.9688 - recall: 1.0000 - accuracy: 0.9688 - f1-score: 0.9842 -credit.01 tp: 2 - fp: 0 - fn: 2 - tn: 2 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -criticize.01 tp: 11 - fp: 2 - fn: 1 - tn: 11 - precision: 0.8462 - recall: 0.9167 - accuracy: 0.7857 - f1-score: 0.8800 -critique.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -cross.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -cross.02 tp: 12 - fp: 4 - fn: 1 - tn: 12 - precision: 0.7500 - recall: 0.9231 - accuracy: 0.7059 - f1-score: 0.8276 -crumble.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -crusade.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -crush.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -cry.01 tp: 0 - fp: 2 - fn: 4 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -cry.02 tp: 5 - fp: 6 - fn: 0 - tn: 5 - precision: 0.4545 - recall: 1.0000 - accuracy: 0.4545 - f1-score: 0.6250 -cry_out.03 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -cultivate.01 tp: 3 - fp: 0 - fn: 1 - tn: 3 - precision: 1.0000 - recall: 0.7500 - accuracy: 0.7500 - f1-score: 0.8571 -cum.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -curb.01 tp: 2 - fp: 1 - fn: 1 - tn: 2 - precision: 0.6667 - recall: 0.6667 - accuracy: 0.5000 - f1-score: 0.6667 -cure.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -curry.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -curse.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -curse.02 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -curtail.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -custody.01 tp: 19 - fp: 0 - fn: 1 - tn: 19 - precision: 1.0000 - recall: 0.9500 - accuracy: 0.9500 - f1-score: 0.9744 -cut.01 tp: 7 - fp: 3 - fn: 2 - tn: 7 - precision: 0.7000 - recall: 0.7778 - accuracy: 0.5833 - f1-score: 0.7369 -cut.02 tp: 25 - fp: 15 - fn: 2 - tn: 25 - precision: 0.6250 - recall: 0.9259 - accuracy: 0.5952 - f1-score: 0.7463 -cut_back.05 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -cut_off.04 tp: 5 - fp: 2 - fn: 0 - tn: 5 - precision: 0.7143 - recall: 1.0000 - accuracy: 0.7143 - f1-score: 0.8333 -cut_out.06 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -damage.01 tp: 16 - fp: 1 - fn: 0 - tn: 16 - precision: 0.9412 - recall: 1.0000 - accuracy: 0.9412 - f1-score: 0.9697 -damp.04 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -dampen.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -dance.01 tp: 3 - fp: 2 - fn: 0 - tn: 3 - precision: 0.6000 - recall: 1.0000 - accuracy: 0.6000 - f1-score: 0.7500 -dance.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -dangle.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -dare.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -darken.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -date.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -date.02 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -daunt.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -dawn.02 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -deadly.04 tp: 8 - fp: 1 - fn: 0 - tn: 8 - precision: 0.8889 - recall: 1.0000 - accuracy: 0.8889 - f1-score: 0.9412 -deal.01 tp: 61 - fp: 4 - fn: 0 - tn: 61 - precision: 0.9385 - recall: 1.0000 - accuracy: 0.9385 - f1-score: 0.9683 -debate.01 tp: 7 - fp: 0 - fn: 0 - tn: 7 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -debit.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -debut.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -decide.01 tp: 59 - fp: 6 - fn: 0 - tn: 59 - precision: 0.9077 - recall: 1.0000 - accuracy: 0.9077 - f1-score: 0.9516 -declare.01 tp: 9 - fp: 1 - fn: 0 - tn: 9 - precision: 0.9000 - recall: 1.0000 - accuracy: 0.9000 - f1-score: 0.9474 -decline.01 tp: 13 - fp: 0 - fn: 0 - tn: 13 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -decline.02 tp: 4 - fp: 0 - fn: 0 - tn: 4 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -decorate.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -decrease.01 tp: 2 - fp: 3 - fn: 1 - tn: 2 - precision: 0.4000 - recall: 0.6667 - accuracy: 0.3333 - f1-score: 0.5000 -dedicate.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -deduct.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -deemphasize.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -deepen.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -default.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -defeat.01 tp: 5 - fp: 0 - fn: 0 - tn: 5 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -defend.01 tp: 13 - fp: 2 - fn: 0 - tn: 13 - precision: 0.8667 - recall: 1.0000 - accuracy: 0.8667 - f1-score: 0.9286 -defile.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -define.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -deflate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -defraud.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -defray.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -defuse.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -defy.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -degrade.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -delay.01 tp: 5 - fp: 5 - fn: 0 - tn: 5 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -delete.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -delight.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -deliver.01 tp: 12 - fp: 0 - fn: 0 - tn: 12 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -delve.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -demand.01 tp: 14 - fp: 3 - fn: 0 - tn: 14 - precision: 0.8235 - recall: 1.0000 - accuracy: 0.8235 - f1-score: 0.9032 -demonstrate.01 tp: 9 - fp: 0 - fn: 0 - tn: 9 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -denuclearize.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -deny.01 tp: 15 - fp: 0 - fn: 0 - tn: 15 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -depart.01 tp: 5 - fp: 0 - fn: 0 - tn: 5 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -depend.01 tp: 13 - fp: 0 - fn: 0 - tn: 13 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -deploy.01 tp: 5 - fp: 0 - fn: 0 - tn: 5 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -depress.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -deregulate.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -derive.01 tp: 2 - fp: 0 - fn: 1 - tn: 2 - precision: 1.0000 - recall: 0.6667 - accuracy: 0.6667 - f1-score: 0.8000 -describe.01 tp: 14 - fp: 2 - fn: 0 - tn: 14 - precision: 0.8750 - recall: 1.0000 - accuracy: 0.8750 - f1-score: 0.9333 -desecrate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -deserve.01 tp: 6 - fp: 0 - fn: 0 - tn: 6 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -design.01 tp: 9 - fp: 0 - fn: 0 - tn: 9 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -designate.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -desire.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -destine.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -destroy.01 tp: 25 - fp: 0 - fn: 0 - tn: 25 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -detach.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -detail.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -detain.01 tp: 5 - fp: 0 - fn: 0 - tn: 5 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -detect.01 tp: 3 - fp: 0 - fn: 1 - tn: 3 - precision: 1.0000 - recall: 0.7500 - accuracy: 0.7500 - f1-score: 0.8571 -deter.01 tp: 3 - fp: 1 - fn: 0 - tn: 3 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -deteriorate.01 tp: 1 - fp: 2 - fn: 0 - tn: 1 - precision: 0.3333 - recall: 1.0000 - accuracy: 0.3333 - f1-score: 0.5000 -determine.01 tp: 6 - fp: 2 - fn: 1 - tn: 6 - precision: 0.7500 - recall: 0.8571 - accuracy: 0.6667 - f1-score: 0.8000 -detour.01 tp: 0 - fp: 0 - fn: 4 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -devalue.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -devastate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -develop.01 tp: 19 - fp: 3 - fn: 7 - tn: 19 - precision: 0.8636 - recall: 0.7308 - accuracy: 0.6552 - f1-score: 0.7917 -develop.02 tp: 48 - fp: 7 - fn: 4 - tn: 48 - precision: 0.8727 - recall: 0.9231 - accuracy: 0.8136 - f1-score: 0.8972 -deviate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -devour.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -diagnose.01 tp: 6 - fp: 0 - fn: 1 - tn: 6 - precision: 1.0000 - recall: 0.8571 - accuracy: 0.8571 - f1-score: 0.9231 -dial.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -dialogue.01 tp: 3 - fp: 6 - fn: 0 - tn: 3 - precision: 0.3333 - recall: 1.0000 - accuracy: 0.3333 - f1-score: 0.5000 -dictate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -die.01 tp: 69 - fp: 1 - fn: 0 - tn: 69 - precision: 0.9857 - recall: 1.0000 - accuracy: 0.9857 - f1-score: 0.9928 -differ.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -differ.02 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -differentiate.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -dig.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -dilute.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -dim.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -diminish.01 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -dip.02 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -direct.01 tp: 4 - fp: 2 - fn: 6 - tn: 4 - precision: 0.6667 - recall: 0.4000 - accuracy: 0.3333 - f1-score: 0.5000 -disagree.01 tp: 7 - fp: 1 - fn: 0 - tn: 7 - precision: 0.8750 - recall: 1.0000 - accuracy: 0.8750 - f1-score: 0.9333 -disappear.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -disappoint.01 tp: 2 - fp: 1 - fn: 1 - tn: 2 - precision: 0.6667 - recall: 0.6667 - accuracy: 0.5000 - f1-score: 0.6667 -disarm.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -disavow.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -discard.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -discern.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -discharge.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -disclose.01 tp: 9 - fp: 3 - fn: 0 - tn: 9 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -disconnect.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -discount.01 tp: 4 - fp: 1 - fn: 0 - tn: 4 - precision: 0.8000 - recall: 1.0000 - accuracy: 0.8000 - f1-score: 0.8889 -discount.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -discourage.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -discover.01 tp: 12 - fp: 1 - fn: 0 - tn: 12 - precision: 0.9231 - recall: 1.0000 - accuracy: 0.9231 - f1-score: 0.9600 -discriminate.02 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -discuss.01 tp: 17 - fp: 0 - fn: 0 - tn: 17 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -disdain.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -disgrace.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -disintegrate.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -dislike.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -dismantle.01 tp: 9 - fp: 0 - fn: 0 - tn: 9 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -dismiss.01 tp: 1 - fp: 2 - fn: 0 - tn: 1 - precision: 0.3333 - recall: 1.0000 - accuracy: 0.3333 - f1-score: 0.5000 -dismiss.02 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -disparage.01 tp: 0 - fp: 0 - fn: 5 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -dispatch.01 tp: 3 - fp: 1 - fn: 0 - tn: 3 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -display.01 tp: 4 - fp: 1 - fn: 0 - tn: 4 - precision: 0.8000 - recall: 1.0000 - accuracy: 0.8000 - f1-score: 0.8889 -dispute.01 tp: 11 - fp: 0 - fn: 0 - tn: 11 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -disrupt.01 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -dissatisfy.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -dissent.01 tp: 0 - fp: 0 - fn: 7 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -dissolve.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -distill.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -distinguish.01 tp: 3 - fp: 2 - fn: 0 - tn: 3 - precision: 0.6000 - recall: 1.0000 - accuracy: 0.6000 - f1-score: 0.7500 -distort.01 tp: 3 - fp: 2 - fn: 0 - tn: 3 - precision: 0.6000 - recall: 1.0000 - accuracy: 0.6000 - f1-score: 0.7500 -distract.01 tp: 0 - fp: 0 - fn: 6 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -distribute.01 tp: 3 - fp: 4 - fn: 0 - tn: 3 - precision: 0.4286 - recall: 1.0000 - accuracy: 0.4286 - f1-score: 0.6000 -diversify.01 tp: 0 - fp: 3 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -divert.01 tp: 3 - fp: 0 - fn: 1 - tn: 3 - precision: 1.0000 - recall: 0.7500 - accuracy: 0.7500 - f1-score: 0.8571 -divest.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -divide.02 tp: 9 - fp: 2 - fn: 1 - tn: 9 - precision: 0.8182 - recall: 0.9000 - accuracy: 0.7500 - f1-score: 0.8572 -divide_up.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -divorce.01 tp: 7 - fp: 0 - fn: 0 - tn: 7 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -divvy_up.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -do.01 tp: 630 - fp: 22 - fn: 17 - tn: 630 - precision: 0.9663 - recall: 0.9737 - accuracy: 0.9417 - f1-score: 0.9700 -do.02 tp: 274 - fp: 60 - fn: 7 - tn: 274 - precision: 0.8204 - recall: 0.9751 - accuracy: 0.8035 - f1-score: 0.8911 -do.04 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -do.LV tp: 1 - fp: 0 - fn: 16 - tn: 1 - precision: 1.0000 - recall: 0.0588 - accuracy: 0.0588 - f1-score: 0.1111 -dock.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -dominate.01 tp: 2 - fp: 1 - fn: 1 - tn: 2 - precision: 0.6667 - recall: 0.6667 - accuracy: 0.5000 - f1-score: 0.6667 -don.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -donate.01 tp: 5 - fp: 0 - fn: 0 - tn: 5 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -dot.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -double.01 tp: 4 - fp: 4 - fn: 0 - tn: 4 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -doubt.01 tp: 4 - fp: 0 - fn: 0 - tn: 4 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -downgrade.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -downplay.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -draft.01 tp: 4 - fp: 0 - fn: 0 - tn: 4 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -drag.01 tp: 2 - fp: 7 - fn: 1 - tn: 2 - precision: 0.2222 - recall: 0.6667 - accuracy: 0.2000 - f1-score: 0.3333 -drain.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -drape.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -draw.01 tp: 0 - fp: 0 - fn: 11 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -draw.02 tp: 14 - fp: 13 - fn: 1 - tn: 14 - precision: 0.5185 - recall: 0.9333 - accuracy: 0.5000 - f1-score: 0.6666 -draw_up.03 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -dream.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -dredge.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -dress.01 tp: 2 - fp: 2 - fn: 0 - tn: 2 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -drift.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -drill.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -drink.01 tp: 13 - fp: 1 - fn: 0 - tn: 13 - precision: 0.9286 - recall: 1.0000 - accuracy: 0.9286 - f1-score: 0.9630 -drip.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -drive.01 tp: 12 - fp: 5 - fn: 3 - tn: 12 - precision: 0.7059 - recall: 0.8000 - accuracy: 0.6000 - f1-score: 0.7500 -drive.02 tp: 1 - fp: 6 - fn: 2 - tn: 1 - precision: 0.1429 - recall: 0.3333 - accuracy: 0.1111 - f1-score: 0.2000 -drive.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -drive.04 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -drop.01 tp: 32 - fp: 11 - fn: 0 - tn: 32 - precision: 0.7442 - recall: 1.0000 - accuracy: 0.7442 - f1-score: 0.8533 -drop.05 tp: 4 - fp: 0 - fn: 6 - tn: 4 - precision: 1.0000 - recall: 0.4000 - accuracy: 0.4000 - f1-score: 0.5714 -drought.01 tp: 3 - fp: 1 - fn: 0 - tn: 3 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -drown.02 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -drug.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -dry.02 tp: 0 - fp: 3 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -dub.01 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -dump.01 tp: 1 - fp: 3 - fn: 0 - tn: 1 - precision: 0.2500 - recall: 1.0000 - accuracy: 0.2500 - f1-score: 0.4000 -duplicate.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -dwindle.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -dyke.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -dysfunction.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -earn.01 tp: 18 - fp: 0 - fn: 0 - tn: 18 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -earthquake.01 tp: 5 - fp: 0 - fn: 0 - tn: 5 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -ease.02 tp: 6 - fp: 4 - fn: 0 - tn: 6 - precision: 0.6000 - recall: 1.0000 - accuracy: 0.6000 - f1-score: 0.7500 -eat.01 tp: 31 - fp: 1 - fn: 0 - tn: 31 - precision: 0.9688 - recall: 1.0000 - accuracy: 0.9688 - f1-score: 0.9842 -eat_up.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -ebb.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -echo.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -edge.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -edit.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -educate.01 tp: 4 - fp: 4 - fn: 1 - tn: 4 - precision: 0.5000 - recall: 0.8000 - accuracy: 0.4444 - f1-score: 0.6154 -effort.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -eke_out.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -elect.01 tp: 6 - fp: 0 - fn: 0 - tn: 6 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -eliminate.01 tp: 19 - fp: 1 - fn: 0 - tn: 19 - precision: 0.9500 - recall: 1.0000 - accuracy: 0.9500 - f1-score: 0.9744 -email.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -embark.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -embarrass.01 tp: 2 - fp: 2 - fn: 0 - tn: 2 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -embed.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -emblazon.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -embrace.01 tp: 7 - fp: 0 - fn: 1 - tn: 7 - precision: 1.0000 - recall: 0.8750 - accuracy: 0.8750 - f1-score: 0.9333 -emerge.01 tp: 7 - fp: 2 - fn: 0 - tn: 7 - precision: 0.7778 - recall: 1.0000 - accuracy: 0.7778 - f1-score: 0.8750 -emerge.02 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -emigrate.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -emphasize.01 tp: 13 - fp: 1 - fn: 0 - tn: 13 - precision: 0.9286 - recall: 1.0000 - accuracy: 0.9286 - f1-score: 0.9630 -employ.01 tp: 6 - fp: 6 - fn: 1 - tn: 6 - precision: 0.5000 - recall: 0.8571 - accuracy: 0.4615 - f1-score: 0.6316 -employ.02 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -empower.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -enable.01 tp: 5 - fp: 0 - fn: 0 - tn: 5 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -enact.01 tp: 4 - fp: 1 - fn: 1 - tn: 4 - precision: 0.8000 - recall: 0.8000 - accuracy: 0.6667 - f1-score: 0.8000 -encounter.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -encourage.01 tp: 3 - fp: 4 - fn: 12 - tn: 3 - precision: 0.4286 - recall: 0.2000 - accuracy: 0.1579 - f1-score: 0.2727 -encourage.02 tp: 2 - fp: 12 - fn: 2 - tn: 2 - precision: 0.1429 - recall: 0.5000 - accuracy: 0.1250 - f1-score: 0.2223 -end.01 tp: 38 - fp: 20 - fn: 0 - tn: 38 - precision: 0.6552 - recall: 1.0000 - accuracy: 0.6552 - f1-score: 0.7917 -end.02 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -end_up.03 tp: 6 - fp: 0 - fn: 0 - tn: 6 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -endeavor.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -endorse.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -endow.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -endure.01 tp: 6 - fp: 0 - fn: 0 - tn: 6 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -enforce.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -engage.01 tp: 8 - fp: 1 - fn: 2 - tn: 8 - precision: 0.8889 - recall: 0.8000 - accuracy: 0.7273 - f1-score: 0.8421 -engender.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -engineer.01 tp: 4 - fp: 1 - fn: 0 - tn: 4 - precision: 0.8000 - recall: 1.0000 - accuracy: 0.8000 - f1-score: 0.8889 -enhance.01 tp: 6 - fp: 0 - fn: 0 - tn: 6 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -enjoy.01 tp: 12 - fp: 2 - fn: 0 - tn: 12 - precision: 0.8571 - recall: 1.0000 - accuracy: 0.8571 - f1-score: 0.9231 -enlarge.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -enlighten.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -enrich.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -enroll.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -ensure.01 tp: 9 - fp: 0 - fn: 0 - tn: 9 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -entail.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -enter.01 tp: 35 - fp: 3 - fn: 0 - tn: 35 - precision: 0.9211 - recall: 1.0000 - accuracy: 0.9211 - f1-score: 0.9589 -enter.02 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -entertain.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -entertain.02 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -enthrall.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -entitle.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -entrust.01 tp: 3 - fp: 0 - fn: 1 - tn: 3 - precision: 1.0000 - recall: 0.7500 - accuracy: 0.7500 - f1-score: 0.8571 -envision.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -envy.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -epidemic.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -equal.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -erase.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -erect.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -erode.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -erupt.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -escalate.01 tp: 1 - fp: 0 - fn: 2 - tn: 1 - precision: 1.0000 - recall: 0.3333 - accuracy: 0.3333 - f1-score: 0.5000 -escape.01 tp: 7 - fp: 0 - fn: 0 - tn: 7 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -escort.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -establish.01 tp: 51 - fp: 5 - fn: 0 - tn: 51 - precision: 0.9107 - recall: 1.0000 - accuracy: 0.9107 - f1-score: 0.9533 -estimate.01 tp: 9 - fp: 2 - fn: 2 - tn: 9 - precision: 0.8182 - recall: 0.8182 - accuracy: 0.6923 - f1-score: 0.8182 -evacuate.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -evade.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -evaluate.01 tp: 0 - fp: 1 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -evidence.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -evoke.01 tp: 4 - fp: 0 - fn: 1 - tn: 4 - precision: 1.0000 - recall: 0.8000 - accuracy: 0.8000 - f1-score: 0.8889 -evolve.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -exacerbate.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -exaggerate.01 tp: 0 - fp: 4 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -exalt.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -examine.01 tp: 2 - fp: 2 - fn: 0 - tn: 2 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -exceed.01 tp: 10 - fp: 0 - fn: 0 - tn: 10 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -exchange.01 tp: 27 - fp: 6 - fn: 0 - tn: 27 - precision: 0.8182 - recall: 1.0000 - accuracy: 0.8182 - f1-score: 0.9000 -excise.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -exclude.01 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -excuse.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -excuse.02 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -execute.01 tp: 5 - fp: 1 - fn: 1 - tn: 5 - precision: 0.8333 - recall: 0.8333 - accuracy: 0.7143 - f1-score: 0.8333 -execute.02 tp: 1 - fp: 1 - fn: 1 - tn: 1 - precision: 0.5000 - recall: 0.5000 - accuracy: 0.3333 - f1-score: 0.5000 -exempt.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -exercise.01 tp: 2 - fp: 1 - fn: 1 - tn: 2 - precision: 0.6667 - recall: 0.6667 - accuracy: 0.5000 - f1-score: 0.6667 -exercise.02 tp: 1 - fp: 2 - fn: 2 - tn: 1 - precision: 0.3333 - recall: 0.3333 - accuracy: 0.2000 - f1-score: 0.3333 -exert.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -exhaust.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -exile.01 tp: 2 - fp: 0 - fn: 1 - tn: 2 - precision: 1.0000 - recall: 0.6667 - accuracy: 0.6667 - f1-score: 0.8000 -exist.01 tp: 11 - fp: 5 - fn: 0 - tn: 11 - precision: 0.6875 - recall: 1.0000 - accuracy: 0.6875 - f1-score: 0.8148 -exonerate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -expand.01 tp: 35 - fp: 2 - fn: 1 - tn: 35 - precision: 0.9459 - recall: 0.9722 - accuracy: 0.9211 - f1-score: 0.9589 -expect.01 tp: 67 - fp: 0 - fn: 0 - tn: 67 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -experience.01 tp: 16 - fp: 10 - fn: 2 - tn: 16 - precision: 0.6154 - recall: 0.8889 - accuracy: 0.5714 - f1-score: 0.7273 -experiment.01 tp: 6 - fp: 2 - fn: 0 - tn: 6 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -expire.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -explain.01 tp: 30 - fp: 0 - fn: 0 - tn: 30 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -explode.01 tp: 10 - fp: 8 - fn: 0 - tn: 10 - precision: 0.5556 - recall: 1.0000 - accuracy: 0.5556 - f1-score: 0.7143 -explode.02 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -explode.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -exploit.01 tp: 5 - fp: 0 - fn: 0 - tn: 5 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -explore.01 tp: 7 - fp: 3 - fn: 0 - tn: 7 - precision: 0.7000 - recall: 1.0000 - accuracy: 0.7000 - f1-score: 0.8235 -export.01 tp: 11 - fp: 1 - fn: 0 - tn: 11 - precision: 0.9167 - recall: 1.0000 - accuracy: 0.9167 - f1-score: 0.9565 -expose.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -express.01 tp: 25 - fp: 2 - fn: 1 - tn: 25 - precision: 0.9259 - recall: 0.9615 - accuracy: 0.8929 - f1-score: 0.9434 -extend.01 tp: 9 - fp: 7 - fn: 0 - tn: 9 - precision: 0.5625 - recall: 1.0000 - accuracy: 0.5625 - f1-score: 0.7200 -extend.02 tp: 0 - fp: 0 - fn: 4 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -extract.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -extrapolate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -face.01 tp: 29 - fp: 10 - fn: 1 - tn: 29 - precision: 0.7436 - recall: 0.9667 - accuracy: 0.7250 - f1-score: 0.8406 -facilitate.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -fade.01 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -fail.01 tp: 15 - fp: 0 - fn: 0 - tn: 15 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -fake.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -fall.01 tp: 34 - fp: 4 - fn: 0 - tn: 34 - precision: 0.8947 - recall: 1.0000 - accuracy: 0.8947 - f1-score: 0.9444 -fall.04 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -fall.05 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -fall_through.06 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -falsify.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -farm.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -fascinate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -fast.01 tp: 4 - fp: 1 - fn: 0 - tn: 4 - precision: 0.8000 - recall: 1.0000 - accuracy: 0.8000 - f1-score: 0.8889 -favor.01 tp: 8 - fp: 0 - fn: 3 - tn: 8 - precision: 1.0000 - recall: 0.7273 - accuracy: 0.7273 - f1-score: 0.8421 -fax.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -fear.01 tp: 10 - fp: 4 - fn: 0 - tn: 10 - precision: 0.7143 - recall: 1.0000 - accuracy: 0.7143 - f1-score: 0.8333 -feature.01 tp: 7 - fp: 1 - fn: 0 - tn: 7 - precision: 0.8750 - recall: 1.0000 - accuracy: 0.8750 - f1-score: 0.9333 -feed.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -feel.01 tp: 44 - fp: 10 - fn: 5 - tn: 44 - precision: 0.8148 - recall: 0.8980 - accuracy: 0.7458 - f1-score: 0.8544 -feel.02 tp: 22 - fp: 6 - fn: 7 - tn: 22 - precision: 0.7857 - recall: 0.7586 - accuracy: 0.6286 - f1-score: 0.7719 -feel.05 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -ferment.01 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -ferry.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -fester.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -fetch.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -feud.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -fight.01 tp: 17 - fp: 6 - fn: 0 - tn: 17 - precision: 0.7391 - recall: 1.0000 - accuracy: 0.7391 - f1-score: 0.8500 -figure.01 tp: 1 - fp: 2 - fn: 0 - tn: 1 - precision: 0.3333 - recall: 1.0000 - accuracy: 0.3333 - f1-score: 0.5000 -figure.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -figure_out.05 tp: 6 - fp: 1 - fn: 0 - tn: 6 - precision: 0.8571 - recall: 1.0000 - accuracy: 0.8571 - f1-score: 0.9231 -file.01 tp: 19 - fp: 1 - fn: 1 - tn: 19 - precision: 0.9500 - recall: 0.9500 - accuracy: 0.9048 - f1-score: 0.9500 -fill.01 tp: 15 - fp: 8 - fn: 0 - tn: 15 - precision: 0.6522 - recall: 1.0000 - accuracy: 0.6522 - f1-score: 0.7895 -fill.06 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -fill_out.03 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -fill_up.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -finalize.01 tp: 0 - fp: 0 - fn: 5 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -finance.01 tp: 12 - fp: 3 - fn: 0 - tn: 12 - precision: 0.8000 - recall: 1.0000 - accuracy: 0.8000 - f1-score: 0.8889 -find.01 tp: 97 - fp: 11 - fn: 2 - tn: 97 - precision: 0.8981 - recall: 0.9798 - accuracy: 0.8818 - f1-score: 0.9372 -find.02 tp: 3 - fp: 1 - fn: 9 - tn: 3 - precision: 0.7500 - recall: 0.2500 - accuracy: 0.2308 - f1-score: 0.3750 -find_out.03 tp: 23 - fp: 1 - fn: 0 - tn: 23 - precision: 0.9583 - recall: 1.0000 - accuracy: 0.9583 - f1-score: 0.9787 -fine.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -finger.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -finish.01 tp: 8 - fp: 7 - fn: 0 - tn: 8 - precision: 0.5333 - recall: 1.0000 - accuracy: 0.5333 - f1-score: 0.6956 -finish.02 tp: 1 - fp: 0 - fn: 5 - tn: 1 - precision: 1.0000 - recall: 0.1667 - accuracy: 0.1667 - f1-score: 0.2858 -fire.01 tp: 11 - fp: 2 - fn: 2 - tn: 11 - precision: 0.8462 - recall: 0.8462 - accuracy: 0.7333 - f1-score: 0.8462 -fire.02 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -fish.01 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -fit.06 tp: 3 - fp: 2 - fn: 2 - tn: 3 - precision: 0.6000 - recall: 0.6000 - accuracy: 0.4286 - f1-score: 0.6000 -fit_in.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -fix.02 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -fix.03 tp: 4 - fp: 1 - fn: 0 - tn: 4 - precision: 0.8000 - recall: 1.0000 - accuracy: 0.8000 - f1-score: 0.8889 -flash.01 tp: 1 - fp: 1 - fn: 1 - tn: 1 - precision: 0.5000 - recall: 0.5000 - accuracy: 0.3333 - f1-score: 0.5000 -flash_back.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -flatten.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -flaw.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -flee.05 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -flip.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -flirt.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -float.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -flock.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -flock.02 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -flood.01 tp: 2 - fp: 2 - fn: 1 - tn: 2 - precision: 0.5000 - recall: 0.6667 - accuracy: 0.4000 - f1-score: 0.5714 -flop.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -flow.01 tp: 6 - fp: 1 - fn: 0 - tn: 6 - precision: 0.8571 - recall: 1.0000 - accuracy: 0.8571 - f1-score: 0.9231 -fluctuate.01 tp: 0 - fp: 0 - fn: 4 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -fly.01 tp: 18 - fp: 3 - fn: 0 - tn: 18 - precision: 0.8571 - recall: 1.0000 - accuracy: 0.8571 - f1-score: 0.9231 -foam.01 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -focus.01 tp: 10 - fp: 5 - fn: 0 - tn: 10 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -follow.01 tp: 15 - fp: 11 - fn: 9 - tn: 15 - precision: 0.5769 - recall: 0.6250 - accuracy: 0.4286 - f1-score: 0.6000 -follow.02 tp: 22 - fp: 13 - fn: 6 - tn: 22 - precision: 0.6286 - recall: 0.7857 - accuracy: 0.5366 - f1-score: 0.6984 -follow.04 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -follow_suit.06 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -follow_through.07 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -follow_up.03 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -fool.01 tp: 2 - fp: 3 - fn: 0 - tn: 2 - precision: 0.4000 - recall: 1.0000 - accuracy: 0.4000 - f1-score: 0.5714 -forbid.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -force.01 tp: 28 - fp: 7 - fn: 0 - tn: 28 - precision: 0.8000 - recall: 1.0000 - accuracy: 0.8000 - f1-score: 0.8889 -force.03 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -forecast.01 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -foreclose.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -foresee.01 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -foreshadow.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -foretell.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -forget.01 tp: 11 - fp: 0 - fn: 0 - tn: 11 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -forgive.01 tp: 6 - fp: 0 - fn: 0 - tn: 6 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -form.01 tp: 14 - fp: 1 - fn: 0 - tn: 14 - precision: 0.9333 - recall: 1.0000 - accuracy: 0.9333 - f1-score: 0.9655 -form.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -former.01 tp: 59 - fp: 4 - fn: 0 - tn: 59 - precision: 0.9365 - recall: 1.0000 - accuracy: 0.9365 - f1-score: 0.9672 -formulate.01 tp: 3 - fp: 2 - fn: 0 - tn: 3 - precision: 0.6000 - recall: 1.0000 - accuracy: 0.6000 - f1-score: 0.7500 -foster.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -found.01 tp: 8 - fp: 0 - fn: 0 - tn: 8 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -fraction.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -frame.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -freak_out.02 tp: 0 - fp: 2 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -free.01 tp: 5 - fp: 0 - fn: 2 - tn: 5 - precision: 1.0000 - recall: 0.7143 - accuracy: 0.7143 - f1-score: 0.8333 -free_up.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -freeze.01 tp: 3 - fp: 3 - fn: 1 - tn: 3 - precision: 0.5000 - recall: 0.7500 - accuracy: 0.4286 - f1-score: 0.6000 -fret.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -front.01 tp: 5 - fp: 3 - fn: 0 - tn: 5 - precision: 0.6250 - recall: 1.0000 - accuracy: 0.6250 - f1-score: 0.7692 -frustrate.01 tp: 1 - fp: 3 - fn: 0 - tn: 1 - precision: 0.2500 - recall: 1.0000 - accuracy: 0.2500 - f1-score: 0.4000 -fry.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -fuck.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -fuel.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -fulfill.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -fun.01 tp: 3 - fp: 1 - fn: 0 - tn: 3 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -function.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -fund.01 tp: 11 - fp: 0 - fn: 0 - tn: 11 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -gain.02 tp: 9 - fp: 0 - fn: 0 - tn: 9 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -gaming.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -garner.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -gasp.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -gather.01 tp: 9 - fp: 4 - fn: 0 - tn: 9 - precision: 0.6923 - recall: 1.0000 - accuracy: 0.6923 - f1-score: 0.8182 -gaze.01 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -gear.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -generate.01 tp: 5 - fp: 1 - fn: 4 - tn: 5 - precision: 0.8333 - recall: 0.5556 - accuracy: 0.5000 - f1-score: 0.6667 -genocide.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -gesture.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -get.01 tp: 112 - fp: 28 - fn: 6 - tn: 112 - precision: 0.8000 - recall: 0.9492 - accuracy: 0.7671 - f1-score: 0.8682 -get.02 tp: 17 - fp: 1 - fn: 3 - tn: 17 - precision: 0.9444 - recall: 0.8500 - accuracy: 0.8095 - f1-score: 0.8947 -get.03 tp: 55 - fp: 6 - fn: 12 - tn: 55 - precision: 0.9016 - recall: 0.8209 - accuracy: 0.7534 - f1-score: 0.8594 -get.04 tp: 3 - fp: 1 - fn: 19 - tn: 3 - precision: 0.7500 - recall: 0.1364 - accuracy: 0.1304 - f1-score: 0.2308 -get.05 tp: 49 - fp: 17 - fn: 9 - tn: 49 - precision: 0.7424 - recall: 0.8448 - accuracy: 0.6533 - f1-score: 0.7903 -get.06 tp: 29 - fp: 4 - fn: 0 - tn: 29 - precision: 0.8788 - recall: 1.0000 - accuracy: 0.8788 - f1-score: 0.9355 -get.22 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -get.LV tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -get_back.09 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -get_back.10 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -get_down.15 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -get_even.16 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -get_through.13 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -giggle.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -give.01 tp: 142 - fp: 11 - fn: 1 - tn: 142 - precision: 0.9281 - recall: 0.9930 - accuracy: 0.9221 - f1-score: 0.9595 -give.LV tp: 1 - fp: 0 - fn: 7 - tn: 1 - precision: 1.0000 - recall: 0.1250 - accuracy: 0.1250 - f1-score: 0.2222 -give_away.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -give_up.07 tp: 8 - fp: 5 - fn: 1 - tn: 8 - precision: 0.6154 - recall: 0.8889 - accuracy: 0.5714 - f1-score: 0.7273 -give_up.08 tp: 0 - fp: 1 - fn: 4 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -glamorize.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -glance.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -go.01 tp: 20 - fp: 14 - fn: 25 - tn: 20 - precision: 0.5882 - recall: 0.4444 - accuracy: 0.3390 - f1-score: 0.5063 -go.02 tp: 217 - fp: 53 - fn: 9 - tn: 217 - precision: 0.8037 - recall: 0.9602 - accuracy: 0.7778 - f1-score: 0.8750 -go.04 tp: 106 - fp: 4 - fn: 2 - tn: 106 - precision: 0.9636 - recall: 0.9815 - accuracy: 0.9464 - f1-score: 0.9725 -go.05 tp: 7 - fp: 2 - fn: 8 - tn: 7 - precision: 0.7778 - recall: 0.4667 - accuracy: 0.4118 - f1-score: 0.5834 -go.06 tp: 6 - fp: 16 - fn: 13 - tn: 6 - precision: 0.2727 - recall: 0.3158 - accuracy: 0.1714 - f1-score: 0.2927 -go.07 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -go.08 tp: 3 - fp: 1 - fn: 9 - tn: 3 - precision: 0.7500 - recall: 0.2500 - accuracy: 0.2308 - f1-score: 0.3750 -go.09 tp: 0 - fp: 0 - fn: 4 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -go.10 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -go.11 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -go.12 tp: 0 - fp: 0 - fn: 7 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -go.22 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -go.23 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -go_on.15 tp: 14 - fp: 2 - fn: 1 - tn: 14 - precision: 0.8750 - recall: 0.9333 - accuracy: 0.8235 - f1-score: 0.9032 -go_out.17 tp: 1 - fp: 2 - fn: 3 - tn: 1 - precision: 0.3333 - recall: 0.2500 - accuracy: 0.1667 - f1-score: 0.2857 -golf.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -govern.01 tp: 5 - fp: 0 - fn: 0 - tn: 5 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -grab.01 tp: 3 - fp: 1 - fn: 0 - tn: 3 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -graduate.01 tp: 0 - fp: 2 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -grant.01 tp: 10 - fp: 1 - fn: 0 - tn: 10 - precision: 0.9091 - recall: 1.0000 - accuracy: 0.9091 - f1-score: 0.9524 -grapple.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -grasp.01 tp: 0 - fp: 2 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -greet.01 tp: 5 - fp: 3 - fn: 0 - tn: 5 - precision: 0.6250 - recall: 1.0000 - accuracy: 0.6250 - f1-score: 0.7692 -grieve.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -grind.01 tp: 0 - fp: 3 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -grip.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -groom.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -ground.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -grow.01 tp: 43 - fp: 13 - fn: 5 - tn: 43 - precision: 0.7679 - recall: 0.8958 - accuracy: 0.7049 - f1-score: 0.8269 -grow.02 tp: 6 - fp: 0 - fn: 1 - tn: 6 - precision: 1.0000 - recall: 0.8571 - accuracy: 0.8571 - f1-score: 0.9231 -grow.03 tp: 7 - fp: 5 - fn: 4 - tn: 7 - precision: 0.5833 - recall: 0.6364 - accuracy: 0.4375 - f1-score: 0.6087 -grow_up.04 tp: 4 - fp: 0 - fn: 0 - tn: 4 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -guarantee.01 tp: 11 - fp: 4 - fn: 0 - tn: 11 - precision: 0.7333 - recall: 1.0000 - accuracy: 0.7333 - f1-score: 0.8461 -guard.01 tp: 3 - fp: 1 - fn: 0 - tn: 3 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -guess.01 tp: 10 - fp: 0 - fn: 0 - tn: 10 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -guide.01 tp: 4 - fp: 2 - fn: 1 - tn: 4 - precision: 0.6667 - recall: 0.8000 - accuracy: 0.5714 - f1-score: 0.7273 -gun_down.01 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -hail.02 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -halt.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -halve.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -hamper.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -hand.01 tp: 2 - fp: 0 - fn: 2 - tn: 2 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -hand_over.02 tp: 6 - fp: 2 - fn: 0 - tn: 6 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -handcuff.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -handle.01 tp: 21 - fp: 1 - fn: 0 - tn: 21 - precision: 0.9545 - recall: 1.0000 - accuracy: 0.9545 - f1-score: 0.9767 -hang.01 tp: 3 - fp: 5 - fn: 1 - tn: 3 - precision: 0.3750 - recall: 0.7500 - accuracy: 0.3333 - f1-score: 0.5000 -hang.02 tp: 0 - fp: 1 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -hang_on.05 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -hang_up.03 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -hanging.07 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -happen.01 tp: 91 - fp: 2 - fn: 0 - tn: 91 - precision: 0.9785 - recall: 1.0000 - accuracy: 0.9785 - f1-score: 0.9891 -happen.02 tp: 6 - fp: 0 - fn: 2 - tn: 6 - precision: 1.0000 - recall: 0.7500 - accuracy: 0.7500 - f1-score: 0.8571 -harm.01 tp: 8 - fp: 0 - fn: 0 - tn: 8 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -harvest.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -hate.01 tp: 5 - fp: 1 - fn: 0 - tn: 5 - precision: 0.8333 - recall: 1.0000 - accuracy: 0.8333 - f1-score: 0.9091 -have.01 tp: 1202 - fp: 43 - fn: 23 - tn: 1202 - precision: 0.9655 - recall: 0.9812 - accuracy: 0.9479 - f1-score: 0.9733 -have.02 tp: 128 - fp: 8 - fn: 2 - tn: 128 - precision: 0.9412 - recall: 0.9846 - accuracy: 0.9275 - f1-score: 0.9624 -have.03 tp: 541 - fp: 69 - fn: 11 - tn: 541 - precision: 0.8869 - recall: 0.9801 - accuracy: 0.8712 - f1-score: 0.9312 -have.04 tp: 10 - fp: 1 - fn: 16 - tn: 10 - precision: 0.9091 - recall: 0.3846 - accuracy: 0.3704 - f1-score: 0.5405 -have.05 tp: 0 - fp: 1 - fn: 5 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -have.LV tp: 0 - fp: 0 - fn: 17 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -head.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -head.02 tp: 8 - fp: 1 - fn: 0 - tn: 8 - precision: 0.8889 - recall: 1.0000 - accuracy: 0.8889 - f1-score: 0.9412 -head_up.04 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -headquarter.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -heal.01 tp: 19 - fp: 0 - fn: 0 - tn: 19 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -heap.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -hear.01 tp: 75 - fp: 0 - fn: 0 - tn: 75 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -hearing.02 tp: 4 - fp: 0 - fn: 0 - tn: 4 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -heartbreak.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -heat.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -heat_up.02 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -heighten.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -help.01 tp: 65 - fp: 7 - fn: 0 - tn: 65 - precision: 0.9028 - recall: 1.0000 - accuracy: 0.9028 - f1-score: 0.9489 -help.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -hide.01 tp: 9 - fp: 1 - fn: 0 - tn: 9 - precision: 0.9000 - recall: 1.0000 - accuracy: 0.9000 - f1-score: 0.9474 -highlight.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -hijack.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -hinder.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -hint.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -hire.01 tp: 5 - fp: 0 - fn: 0 - tn: 5 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -hit.01 tp: 11 - fp: 12 - fn: 0 - tn: 11 - precision: 0.4783 - recall: 1.0000 - accuracy: 0.4783 - f1-score: 0.6471 -hit.02 tp: 2 - fp: 0 - fn: 6 - tn: 2 - precision: 1.0000 - recall: 0.2500 - accuracy: 0.2500 - f1-score: 0.4000 -hit_up.05 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -hoe.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -hoist.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -hold.01 tp: 27 - fp: 15 - fn: 4 - tn: 27 - precision: 0.6429 - recall: 0.8710 - accuracy: 0.5870 - f1-score: 0.7398 -hold.02 tp: 1 - fp: 1 - fn: 4 - tn: 1 - precision: 0.5000 - recall: 0.2000 - accuracy: 0.1667 - f1-score: 0.2857 -hold.03 tp: 0 - fp: 2 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -hold.04 tp: 22 - fp: 1 - fn: 3 - tn: 22 - precision: 0.9565 - recall: 0.8800 - accuracy: 0.8462 - f1-score: 0.9167 -hold.13 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -hold_on.05 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -hone.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -honor.01 tp: 15 - fp: 1 - fn: 0 - tn: 15 - precision: 0.9375 - recall: 1.0000 - accuracy: 0.9375 - f1-score: 0.9677 -hook.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -hop.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -hope.01 tp: 37 - fp: 2 - fn: 0 - tn: 37 - precision: 0.9487 - recall: 1.0000 - accuracy: 0.9487 - f1-score: 0.9737 -host.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -house.01 tp: 4 - fp: 1 - fn: 0 - tn: 4 - precision: 0.8000 - recall: 1.0000 - accuracy: 0.8000 - f1-score: 0.8889 -hover.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -hug.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -humanize.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -hunker.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -hunt.01 tp: 2 - fp: 3 - fn: 0 - tn: 2 - precision: 0.4000 - recall: 1.0000 - accuracy: 0.4000 - f1-score: 0.5714 -hurry.01 tp: 5 - fp: 1 - fn: 1 - tn: 5 - precision: 0.8333 - recall: 0.8333 - accuracy: 0.7143 - f1-score: 0.8333 -hurt.01 tp: 9 - fp: 0 - fn: 0 - tn: 9 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -hype.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -identify.01 tp: 9 - fp: 1 - fn: 0 - tn: 9 - precision: 0.9000 - recall: 1.0000 - accuracy: 0.9000 - f1-score: 0.9474 -idle.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -ignite.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -ignore.01 tp: 4 - fp: 3 - fn: 0 - tn: 4 - precision: 0.5714 - recall: 1.0000 - accuracy: 0.5714 - f1-score: 0.7272 -illusion.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -illustrate.01 tp: 2 - fp: 4 - fn: 0 - tn: 2 - precision: 0.3333 - recall: 1.0000 - accuracy: 0.3333 - f1-score: 0.5000 -imagine.01 tp: 17 - fp: 3 - fn: 1 - tn: 17 - precision: 0.8500 - recall: 0.9444 - accuracy: 0.8095 - f1-score: 0.8947 -imitate.01 tp: 1 - fp: 0 - fn: 2 - tn: 1 - precision: 1.0000 - recall: 0.3333 - accuracy: 0.3333 - f1-score: 0.5000 -impact.01 tp: 9 - fp: 14 - fn: 1 - tn: 9 - precision: 0.3913 - recall: 0.9000 - accuracy: 0.3750 - f1-score: 0.5455 -impend.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -impersonate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -implement.01 tp: 36 - fp: 1 - fn: 0 - tn: 36 - precision: 0.9730 - recall: 1.0000 - accuracy: 0.9730 - f1-score: 0.9863 -implicate.01 tp: 2 - fp: 0 - fn: 1 - tn: 2 - precision: 1.0000 - recall: 0.6667 - accuracy: 0.6667 - f1-score: 0.8000 -imply.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -import.01 tp: 18 - fp: 3 - fn: 6 - tn: 18 - precision: 0.8571 - recall: 0.7500 - accuracy: 0.6667 - f1-score: 0.8000 -impose.01 tp: 11 - fp: 2 - fn: 0 - tn: 11 - precision: 0.8462 - recall: 1.0000 - accuracy: 0.8462 - f1-score: 0.9167 -impress.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -impression.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -imprison.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -improve.01 tp: 18 - fp: 10 - fn: 0 - tn: 18 - precision: 0.6429 - recall: 1.0000 - accuracy: 0.6429 - f1-score: 0.7826 -improvise.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -inaction.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -inaugurate.01 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -inaugurate.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -inch.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -incite.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -incline.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -include.01 tp: 39 - fp: 1 - fn: 2 - tn: 39 - precision: 0.9750 - recall: 0.9512 - accuracy: 0.9286 - f1-score: 0.9630 -increase.01 tp: 73 - fp: 11 - fn: 0 - tn: 73 - precision: 0.8690 - recall: 1.0000 - accuracy: 0.8690 - f1-score: 0.9299 -incriminate.01 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -incur.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -indicate.01 tp: 20 - fp: 0 - fn: 0 - tn: 20 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -indict.01 tp: 11 - fp: 2 - fn: 0 - tn: 11 - precision: 0.8462 - recall: 1.0000 - accuracy: 0.8462 - f1-score: 0.9167 -induce.01 tp: 0 - fp: 4 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -infect.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -inflame.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -inflate.01 tp: 8 - fp: 2 - fn: 0 - tn: 8 - precision: 0.8000 - recall: 1.0000 - accuracy: 0.8000 - f1-score: 0.8889 -inflict.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -influence.01 tp: 15 - fp: 5 - fn: 0 - tn: 15 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -inform.01 tp: 10 - fp: 1 - fn: 0 - tn: 10 - precision: 0.9091 - recall: 1.0000 - accuracy: 0.9091 - f1-score: 0.9524 -infringe.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -infuse.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -inherit.01 tp: 1 - fp: 0 - fn: 2 - tn: 1 - precision: 1.0000 - recall: 0.3333 - accuracy: 0.3333 - f1-score: 0.5000 -inhibit.01 tp: 0 - fp: 0 - fn: 4 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -initiate.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -injure.01 tp: 8 - fp: 1 - fn: 0 - tn: 8 - precision: 0.8889 - recall: 1.0000 - accuracy: 0.8889 - f1-score: 0.9412 -innovate.01 tp: 0 - fp: 2 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -input.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -insist.01 tp: 13 - fp: 0 - fn: 0 - tn: 13 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -inspect.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -inspire.01 tp: 2 - fp: 0 - fn: 2 - tn: 2 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -install.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -instigate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -institute.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -institutionalize.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -instruct.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -insult.01 tp: 1 - fp: 5 - fn: 2 - tn: 1 - precision: 0.1667 - recall: 0.3333 - accuracy: 0.1250 - f1-score: 0.2222 -insure.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -intake.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -integrate.01 tp: 5 - fp: 3 - fn: 0 - tn: 5 - precision: 0.6250 - recall: 1.0000 - accuracy: 0.6250 - f1-score: 0.7692 -intend.01 tp: 12 - fp: 3 - fn: 0 - tn: 12 - precision: 0.8000 - recall: 1.0000 - accuracy: 0.8000 - f1-score: 0.8889 -intensify.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -interact.01 tp: 2 - fp: 2 - fn: 1 - tn: 2 - precision: 0.5000 - recall: 0.6667 - accuracy: 0.4000 - f1-score: 0.5714 -interest.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -interfere.01 tp: 4 - fp: 1 - fn: 0 - tn: 4 - precision: 0.8000 - recall: 1.0000 - accuracy: 0.8000 - f1-score: 0.8889 -intermarry.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -internalize.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -interpret.01 tp: 3 - fp: 1 - fn: 0 - tn: 3 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -interrogate.01 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -interrupt.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -intersect.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -intervene.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -interview.01 tp: 19 - fp: 11 - fn: 0 - tn: 19 - precision: 0.6333 - recall: 1.0000 - accuracy: 0.6333 - f1-score: 0.7755 -intimidate.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -introduce.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -introduce.02 tp: 18 - fp: 2 - fn: 1 - tn: 18 - precision: 0.9000 - recall: 0.9474 - accuracy: 0.8571 - f1-score: 0.9231 -invade.01 tp: 5 - fp: 1 - fn: 0 - tn: 5 - precision: 0.8333 - recall: 1.0000 - accuracy: 0.8333 - f1-score: 0.9091 -invent.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -invest.01 tp: 79 - fp: 15 - fn: 2 - tn: 79 - precision: 0.8404 - recall: 0.9753 - accuracy: 0.8229 - f1-score: 0.9028 -investigate.01 tp: 6 - fp: 0 - fn: 1 - tn: 6 - precision: 1.0000 - recall: 0.8571 - accuracy: 0.8571 - f1-score: 0.9231 -invite.01 tp: 18 - fp: 1 - fn: 1 - tn: 18 - precision: 0.9474 - recall: 0.9474 - accuracy: 0.9000 - f1-score: 0.9474 -invoke.01 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -involve.01 tp: 29 - fp: 4 - fn: 0 - tn: 29 - precision: 0.8788 - recall: 1.0000 - accuracy: 0.8788 - f1-score: 0.9355 -iron_out.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -irrigate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -irritate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -isolate.01 tp: 2 - fp: 3 - fn: 0 - tn: 2 - precision: 0.4000 - recall: 1.0000 - accuracy: 0.4000 - f1-score: 0.5714 -issue.01 tp: 23 - fp: 0 - fn: 1 - tn: 23 - precision: 1.0000 - recall: 0.9583 - accuracy: 0.9583 - f1-score: 0.9787 -jettison.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -jilt.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -jinx.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -join.01 tp: 18 - fp: 3 - fn: 0 - tn: 18 - precision: 0.8571 - recall: 1.0000 - accuracy: 0.8571 - f1-score: 0.9231 -join.04 tp: 8 - fp: 1 - fn: 0 - tn: 8 - precision: 0.8889 - recall: 1.0000 - accuracy: 0.8889 - f1-score: 0.9412 -join_in.05 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -join_up.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -joke.01 tp: 3 - fp: 0 - fn: 1 - tn: 3 - precision: 1.0000 - recall: 0.7500 - accuracy: 0.7500 - f1-score: 0.8571 -judge.01 tp: 10 - fp: 0 - fn: 4 - tn: 10 - precision: 1.0000 - recall: 0.7143 - accuracy: 0.7143 - f1-score: 0.8333 -jump.01 tp: 6 - fp: 2 - fn: 0 - tn: 6 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -jump.03 tp: 4 - fp: 1 - fn: 0 - tn: 4 - precision: 0.8000 - recall: 1.0000 - accuracy: 0.8000 - f1-score: 0.8889 -jump_in.04 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -jump_up.05 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -justify.01 tp: 7 - fp: 0 - fn: 0 - tn: 7 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -keep.01 tp: 12 - fp: 8 - fn: 7 - tn: 12 - precision: 0.6000 - recall: 0.6316 - accuracy: 0.4444 - f1-score: 0.6154 -keep.02 tp: 29 - fp: 6 - fn: 6 - tn: 29 - precision: 0.8286 - recall: 0.8286 - accuracy: 0.7073 - f1-score: 0.8286 -keep.04 tp: 9 - fp: 3 - fn: 7 - tn: 9 - precision: 0.7500 - recall: 0.5625 - accuracy: 0.4737 - f1-score: 0.6429 -keep_on.08 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -keep_up.05 tp: 1 - fp: 2 - fn: 0 - tn: 1 - precision: 0.3333 - recall: 1.0000 - accuracy: 0.3333 - f1-score: 0.5000 -kick.01 tp: 1 - fp: 3 - fn: 0 - tn: 1 - precision: 0.2500 - recall: 1.0000 - accuracy: 0.2500 - f1-score: 0.4000 -kick_in.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -kick_off.04 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -kid.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -kidnap.01 tp: 0 - fp: 1 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -kill.01 tp: 83 - fp: 5 - fn: 0 - tn: 83 - precision: 0.9432 - recall: 1.0000 - accuracy: 0.9432 - f1-score: 0.9708 -kill.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -kneel.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -knit.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -knock.01 tp: 0 - fp: 2 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -know.01 tp: 201 - fp: 16 - fn: 44 - tn: 201 - precision: 0.9263 - recall: 0.8204 - accuracy: 0.7701 - f1-score: 0.8701 -know.02 tp: 17 - fp: 13 - fn: 9 - tn: 17 - precision: 0.5667 - recall: 0.6538 - accuracy: 0.4359 - f1-score: 0.6071 -know.03 tp: 2 - fp: 0 - fn: 1 - tn: 2 - precision: 1.0000 - recall: 0.6667 - accuracy: 0.6667 - f1-score: 0.8000 -know.04 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -know.06 tp: 91 - fp: 40 - fn: 6 - tn: 91 - precision: 0.6947 - recall: 0.9381 - accuracy: 0.6642 - f1-score: 0.7983 -label.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -labor.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -lack.01 tp: 9 - fp: 0 - fn: 0 - tn: 9 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -lag.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -land.01 tp: 2 - fp: 1 - fn: 1 - tn: 2 - precision: 0.6667 - recall: 0.6667 - accuracy: 0.5000 - f1-score: 0.6667 -last.01 tp: 10 - fp: 1 - fn: 1 - tn: 10 - precision: 0.9091 - recall: 0.9091 - accuracy: 0.8333 - f1-score: 0.9091 -laugh.01 tp: 4 - fp: 0 - fn: 0 - tn: 4 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -launch.01 tp: 16 - fp: 3 - fn: 0 - tn: 16 - precision: 0.8421 - recall: 1.0000 - accuracy: 0.8421 - f1-score: 0.9143 -lay.01 tp: 8 - fp: 4 - fn: 0 - tn: 8 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -lay_off.02 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -lead.01 tp: 11 - fp: 5 - fn: 6 - tn: 11 - precision: 0.6875 - recall: 0.6471 - accuracy: 0.5000 - f1-score: 0.6667 -lead.02 tp: 27 - fp: 16 - fn: 3 - tn: 27 - precision: 0.6279 - recall: 0.9000 - accuracy: 0.5870 - f1-score: 0.7397 -lead.03 tp: 10 - fp: 1 - fn: 4 - tn: 10 - precision: 0.9091 - recall: 0.7143 - accuracy: 0.6667 - f1-score: 0.8000 -lead_up.05 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -leak.01 tp: 5 - fp: 2 - fn: 0 - tn: 5 - precision: 0.7143 - recall: 1.0000 - accuracy: 0.7143 - f1-score: 0.8333 -lean.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -learn.01 tp: 47 - fp: 0 - fn: 0 - tn: 47 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -leave.02 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -leave.05 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -leave.11 tp: 34 - fp: 11 - fn: 1 - tn: 34 - precision: 0.7556 - recall: 0.9714 - accuracy: 0.7391 - f1-score: 0.8500 -leave.12 tp: 7 - fp: 11 - fn: 10 - tn: 7 - precision: 0.3889 - recall: 0.4118 - accuracy: 0.2500 - f1-score: 0.4000 -leave.13 tp: 13 - fp: 3 - fn: 3 - tn: 13 - precision: 0.8125 - recall: 0.8125 - accuracy: 0.6842 - f1-score: 0.8125 -leave.14 tp: 0 - fp: 1 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -leave.15 tp: 6 - fp: 5 - fn: 7 - tn: 6 - precision: 0.5455 - recall: 0.4615 - accuracy: 0.3333 - f1-score: 0.5000 -leave.17 tp: 2 - fp: 11 - fn: 2 - tn: 2 - precision: 0.1538 - recall: 0.5000 - accuracy: 0.1333 - f1-score: 0.2352 -leave_behind.18 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -legalize.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -lend.01 tp: 5 - fp: 0 - fn: 0 - tn: 5 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -let.01 tp: 75 - fp: 1 - fn: 0 - tn: 75 - precision: 0.9868 - recall: 1.0000 - accuracy: 0.9868 - f1-score: 0.9934 -level.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -leverage.01 tp: 0 - fp: 0 - fn: 5 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -levy.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -liberalize.01 tp: 0 - fp: 0 - fn: 5 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -liberate.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -license.01 tp: 1 - fp: 0 - fn: 2 - tn: 1 - precision: 1.0000 - recall: 0.3333 - accuracy: 0.3333 - f1-score: 0.5000 -lie.07 tp: 3 - fp: 3 - fn: 2 - tn: 3 - precision: 0.5000 - recall: 0.6000 - accuracy: 0.3750 - f1-score: 0.5455 -lie.08 tp: 3 - fp: 2 - fn: 2 - tn: 3 - precision: 0.6000 - recall: 0.6000 - accuracy: 0.4286 - f1-score: 0.6000 -lie_down.09 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -lift.01 tp: 9 - fp: 2 - fn: 0 - tn: 9 - precision: 0.8182 - recall: 1.0000 - accuracy: 0.8182 - f1-score: 0.9000 -lift.02 tp: 2 - fp: 1 - fn: 1 - tn: 2 - precision: 0.6667 - recall: 0.6667 - accuracy: 0.5000 - f1-score: 0.6667 -light.04 tp: 1 - fp: 1 - fn: 2 - tn: 1 - precision: 0.5000 - recall: 0.3333 - accuracy: 0.2500 - f1-score: 0.4000 -light_up.08 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -lighten.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -like.02 tp: 25 - fp: 5 - fn: 3 - tn: 25 - precision: 0.8333 - recall: 0.8929 - accuracy: 0.7576 - f1-score: 0.8621 -limit.01 tp: 17 - fp: 4 - fn: 2 - tn: 17 - precision: 0.8095 - recall: 0.8947 - accuracy: 0.7391 - f1-score: 0.8500 -line.01 tp: 1 - fp: 1 - fn: 1 - tn: 1 - precision: 0.5000 - recall: 0.5000 - accuracy: 0.3333 - f1-score: 0.5000 -line_up.02 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -link.01 tp: 8 - fp: 2 - fn: 0 - tn: 8 - precision: 0.8000 - recall: 1.0000 - accuracy: 0.8000 - f1-score: 0.8889 -link_up.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -liquidate.01 tp: 0 - fp: 0 - fn: 4 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -list.01 tp: 7 - fp: 0 - fn: 1 - tn: 7 - precision: 1.0000 - recall: 0.8750 - accuracy: 0.8750 - f1-score: 0.9333 -listen.01 tp: 13 - fp: 0 - fn: 0 - tn: 13 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -litigate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -live.01 tp: 75 - fp: 13 - fn: 1 - tn: 75 - precision: 0.8523 - recall: 0.9868 - accuracy: 0.8427 - f1-score: 0.9146 -live.02 tp: 0 - fp: 0 - fn: 4 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -live_up.04 tp: 1 - fp: 1 - fn: 2 - tn: 1 - precision: 0.5000 - recall: 0.3333 - accuracy: 0.2500 - f1-score: 0.4000 -load.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -loan.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -loathe.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -lobby.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -locate.01 tp: 6 - fp: 1 - fn: 0 - tn: 6 - precision: 0.8571 - recall: 1.0000 - accuracy: 0.8571 - f1-score: 0.9231 -locate.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -lock.01 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -lock_up.04 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -lodge.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -log.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -long.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -look.01 tp: 86 - fp: 25 - fn: 5 - tn: 86 - precision: 0.7748 - recall: 0.9451 - accuracy: 0.7414 - f1-score: 0.8515 -look.02 tp: 28 - fp: 5 - fn: 6 - tn: 28 - precision: 0.8485 - recall: 0.8235 - accuracy: 0.7179 - f1-score: 0.8358 -look.04 tp: 0 - fp: 0 - fn: 4 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -look.09 tp: 3 - fp: 0 - fn: 2 - tn: 3 - precision: 1.0000 - recall: 0.6000 - accuracy: 0.6000 - f1-score: 0.7500 -look_after.07 tp: 0 - fp: 0 - fn: 8 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -look_forward.03 tp: 3 - fp: 1 - fn: 0 - tn: 3 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -loom.01 tp: 1 - fp: 0 - fn: 2 - tn: 1 - precision: 1.0000 - recall: 0.3333 - accuracy: 0.3333 - f1-score: 0.5000 -loosen.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -loosen_up.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -loot.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -lose.02 tp: 42 - fp: 10 - fn: 4 - tn: 42 - precision: 0.8077 - recall: 0.9130 - accuracy: 0.7500 - f1-score: 0.8571 -lose.03 tp: 1 - fp: 0 - fn: 4 - tn: 1 - precision: 1.0000 - recall: 0.2000 - accuracy: 0.2000 - f1-score: 0.3333 -love.01 tp: 22 - fp: 5 - fn: 3 - tn: 22 - precision: 0.8148 - recall: 0.8800 - accuracy: 0.7333 - f1-score: 0.8461 -love.02 tp: 7 - fp: 0 - fn: 0 - tn: 7 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -lower.05 tp: 4 - fp: 0 - fn: 0 - tn: 4 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -lug.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -lure.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -lurk.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -maintain.01 tp: 13 - fp: 0 - fn: 0 - tn: 13 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -make.01 tp: 65 - fp: 49 - fn: 25 - tn: 65 - precision: 0.5702 - recall: 0.7222 - accuracy: 0.4676 - f1-score: 0.6373 -make.02 tp: 129 - fp: 14 - fn: 17 - tn: 129 - precision: 0.9021 - recall: 0.8836 - accuracy: 0.8063 - f1-score: 0.8928 -make.05 tp: 8 - fp: 0 - fn: 7 - tn: 8 - precision: 1.0000 - recall: 0.5333 - accuracy: 0.5333 - f1-score: 0.6956 -make.18 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -make.LV tp: 71 - fp: 32 - fn: 21 - tn: 71 - precision: 0.6893 - recall: 0.7717 - accuracy: 0.5726 - f1-score: 0.7282 -make_it.14 tp: 0 - fp: 0 - fn: 5 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -make_out.12 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -make_over.22 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -make_up.07 tp: 5 - fp: 2 - fn: 0 - tn: 5 - precision: 0.7143 - recall: 1.0000 - accuracy: 0.7143 - f1-score: 0.8333 -make_up.10 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -make_up.16 tp: 1 - fp: 2 - fn: 1 - tn: 1 - precision: 0.3333 - recall: 0.5000 - accuracy: 0.2500 - f1-score: 0.4000 -malign.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -manage.01 tp: 21 - fp: 21 - fn: 0 - tn: 21 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -manage.02 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -mandate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -manifest.01 tp: 1 - fp: 1 - fn: 1 - tn: 1 - precision: 0.5000 - recall: 0.5000 - accuracy: 0.3333 - f1-score: 0.5000 -manipulate.02 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -manufacture.01 tp: 2 - fp: 3 - fn: 2 - tn: 2 - precision: 0.4000 - recall: 0.5000 - accuracy: 0.2857 - f1-score: 0.4444 -map.01 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -march.01 tp: 2 - fp: 0 - fn: 2 - tn: 2 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -marginalize.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -mark.01 tp: 7 - fp: 1 - fn: 0 - tn: 7 - precision: 0.8750 - recall: 1.0000 - accuracy: 0.8750 - f1-score: 0.9333 -market.01 tp: 7 - fp: 1 - fn: 0 - tn: 7 - precision: 0.8750 - recall: 1.0000 - accuracy: 0.8750 - f1-score: 0.9333 -marketize.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -marry.01 tp: 5 - fp: 2 - fn: 2 - tn: 5 - precision: 0.7143 - recall: 0.7143 - accuracy: 0.5556 - f1-score: 0.7143 -mask.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -massacre.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -master.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -match.01 tp: 3 - fp: 1 - fn: 0 - tn: 3 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -materialize.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -matter.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -matter.02 tp: 10 - fp: 6 - fn: 2 - tn: 10 - precision: 0.6250 - recall: 0.8333 - accuracy: 0.5556 - f1-score: 0.7143 -maturate.03 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -mean.01 tp: 93 - fp: 4 - fn: 1 - tn: 93 - precision: 0.9588 - recall: 0.9894 - accuracy: 0.9490 - f1-score: 0.9739 -mean.02 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -measure.01 tp: 4 - fp: 2 - fn: 0 - tn: 4 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -measure.02 tp: 4 - fp: 11 - fn: 0 - tn: 4 - precision: 0.2667 - recall: 1.0000 - accuracy: 0.2667 - f1-score: 0.4211 -mediate.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -meditate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -meet.01 tp: 14 - fp: 2 - fn: 1 - tn: 14 - precision: 0.8750 - recall: 0.9333 - accuracy: 0.8235 - f1-score: 0.9032 -meet.02 tp: 11 - fp: 14 - fn: 9 - tn: 11 - precision: 0.4400 - recall: 0.5500 - accuracy: 0.3235 - f1-score: 0.4889 -meet.03 tp: 25 - fp: 8 - fn: 6 - tn: 25 - precision: 0.7576 - recall: 0.8065 - accuracy: 0.6410 - f1-score: 0.7813 -melt.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -memorize.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -mention.01 tp: 24 - fp: 1 - fn: 0 - tn: 24 - precision: 0.9600 - recall: 1.0000 - accuracy: 0.9600 - f1-score: 0.9796 -merge.01 tp: 6 - fp: 2 - fn: 0 - tn: 6 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -merit.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -mess.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -mete_out.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -mind.01 tp: 5 - fp: 0 - fn: 0 - tn: 5 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -mind.04 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -mind.05 tp: 12 - fp: 20 - fn: 4 - tn: 12 - precision: 0.3750 - recall: 0.7500 - accuracy: 0.3333 - f1-score: 0.5000 -mine.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -miniaturize.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -minimize.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -mire.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -miscalculate.01 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -misperceive.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -misplace.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -miss.01 tp: 10 - fp: 2 - fn: 4 - tn: 10 - precision: 0.8333 - recall: 0.7143 - accuracy: 0.6250 - f1-score: 0.7692 -miss.02 tp: 4 - fp: 4 - fn: 2 - tn: 4 - precision: 0.5000 - recall: 0.6667 - accuracy: 0.4000 - f1-score: 0.5714 -mission.01 tp: 6 - fp: 2 - fn: 0 - tn: 6 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -mistake.02 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -mix.01 tp: 3 - fp: 3 - fn: 0 - tn: 3 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -moan.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -mobilize.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -mock.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -model.01 tp: 0 - fp: 1 - fn: 11 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -moderate.01 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -modernize.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -modify.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -mold.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -molest.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -monitor.01 tp: 3 - fp: 1 - fn: 0 - tn: 3 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -moot.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -mortgage.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -motivate.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -mount.02 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -mount.03 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -mourn.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -move.01 tp: 39 - fp: 1 - fn: 2 - tn: 39 - precision: 0.9750 - recall: 0.9512 - accuracy: 0.9286 - f1-score: 0.9630 -move.02 tp: 14 - fp: 0 - fn: 0 - tn: 14 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -movement.07 tp: 1 - fp: 4 - fn: 0 - tn: 1 - precision: 0.2000 - recall: 1.0000 - accuracy: 0.2000 - f1-score: 0.3333 -multiply.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -munch.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -murder.01 tp: 8 - fp: 3 - fn: 1 - tn: 8 - precision: 0.7273 - recall: 0.8889 - accuracy: 0.6667 - f1-score: 0.8000 -murmur.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -nail.01 tp: 5 - fp: 1 - fn: 0 - tn: 5 - precision: 0.8333 - recall: 1.0000 - accuracy: 0.8333 - f1-score: 0.9091 -name.01 tp: 26 - fp: 2 - fn: 0 - tn: 26 - precision: 0.9286 - recall: 1.0000 - accuracy: 0.9286 - f1-score: 0.9630 -name.02 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -narrate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -narrow.01 tp: 3 - fp: 1 - fn: 0 - tn: 3 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -near.01 tp: 1 - fp: 0 - fn: 2 - tn: 1 - precision: 1.0000 - recall: 0.3333 - accuracy: 0.3333 - f1-score: 0.5000 -necessitate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -need.01 tp: 91 - fp: 14 - fn: 0 - tn: 91 - precision: 0.8667 - recall: 1.0000 - accuracy: 0.8667 - f1-score: 0.9286 -negotiate.01 tp: 42 - fp: 1 - fn: 1 - tn: 42 - precision: 0.9767 - recall: 0.9767 - accuracy: 0.9545 - f1-score: 0.9767 -network.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -nibble.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -nominate.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -notate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -note.01 tp: 14 - fp: 3 - fn: 0 - tn: 14 - precision: 0.8235 - recall: 1.0000 - accuracy: 0.8235 - f1-score: 0.9032 -note.02 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -notice.01 tp: 8 - fp: 0 - fn: 0 - tn: 8 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -notice.03 tp: 0 - fp: 0 - fn: 6 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -notify.01 tp: 3 - fp: 0 - fn: 3 - tn: 3 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -nourish.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -numb.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -number.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -nuzzle.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -obey.01 tp: 12 - fp: 0 - fn: 0 - tn: 12 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -object.01 tp: 4 - fp: 0 - fn: 1 - tn: 4 - precision: 1.0000 - recall: 0.8000 - accuracy: 0.8000 - f1-score: 0.8889 -obligate.01 tp: 3 - fp: 1 - fn: 0 - tn: 3 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -observe.01 tp: 4 - fp: 5 - fn: 0 - tn: 4 - precision: 0.4444 - recall: 1.0000 - accuracy: 0.4444 - f1-score: 0.6153 -observe.02 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -obstruct.01 tp: 2 - fp: 2 - fn: 0 - tn: 2 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -obtain.01 tp: 12 - fp: 0 - fn: 0 - tn: 12 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -occupy.01 tp: 9 - fp: 3 - fn: 1 - tn: 9 - precision: 0.7500 - recall: 0.9000 - accuracy: 0.6923 - f1-score: 0.8182 -occur.01 tp: 19 - fp: 3 - fn: 1 - tn: 19 - precision: 0.8636 - recall: 0.9500 - accuracy: 0.8261 - f1-score: 0.9047 -offend.01 tp: 1 - fp: 0 - fn: 2 - tn: 1 - precision: 1.0000 - recall: 0.3333 - accuracy: 0.3333 - f1-score: 0.5000 -offer.01 tp: 73 - fp: 16 - fn: 0 - tn: 73 - precision: 0.8202 - recall: 1.0000 - accuracy: 0.8202 - f1-score: 0.9012 -offset.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -omit.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -open.01 tp: 27 - fp: 8 - fn: 0 - tn: 27 - precision: 0.7714 - recall: 1.0000 - accuracy: 0.7714 - f1-score: 0.8709 -open.02 tp: 1 - fp: 0 - fn: 3 - tn: 1 - precision: 1.0000 - recall: 0.2500 - accuracy: 0.2500 - f1-score: 0.4000 -open_up.03 tp: 8 - fp: 6 - fn: 0 - tn: 8 - precision: 0.5714 - recall: 1.0000 - accuracy: 0.5714 - f1-score: 0.7272 -operate.01 tp: 44 - fp: 7 - fn: 1 - tn: 44 - precision: 0.8627 - recall: 0.9778 - accuracy: 0.8462 - f1-score: 0.9167 -operate.101 tp: 0 - fp: 0 - fn: 4 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -oppose.01 tp: 11 - fp: 3 - fn: 0 - tn: 11 - precision: 0.7857 - recall: 1.0000 - accuracy: 0.7857 - f1-score: 0.8800 -oppress.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -opt.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -optimize.01 tp: 1 - fp: 0 - fn: 2 - tn: 1 - precision: 1.0000 - recall: 0.3333 - accuracy: 0.3333 - f1-score: 0.5000 -order.01 tp: 14 - fp: 1 - fn: 3 - tn: 14 - precision: 0.9333 - recall: 0.8235 - accuracy: 0.7778 - f1-score: 0.8750 -order.02 tp: 7 - fp: 3 - fn: 1 - tn: 7 - precision: 0.7000 - recall: 0.8750 - accuracy: 0.6364 - f1-score: 0.7778 -organize.01 tp: 6 - fp: 0 - fn: 1 - tn: 6 - precision: 1.0000 - recall: 0.8571 - accuracy: 0.8571 - f1-score: 0.9231 -orient.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -originate.01 tp: 3 - fp: 0 - fn: 2 - tn: 3 - precision: 1.0000 - recall: 0.6000 - accuracy: 0.6000 - f1-score: 0.7500 -oscillate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -oust.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -outbreak.01 tp: 0 - fp: 0 - fn: 4 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -outing.07 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -outlaw.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -outline.01 tp: 2 - fp: 2 - fn: 0 - tn: 2 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -outpace.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -outrage.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -outshine.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -outsource.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -outstrip.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -outweigh.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -overawe.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -overcome.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -overdo.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -overhaul.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -overheat.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -overlap.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -overlay.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -overlook.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -overreact.01 tp: 0 - fp: 2 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -override.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -overrule.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -oversee.01 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -overshadow.01 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -overthink.06 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -overthrow.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -overturn.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -overwhelm.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -owe.01 tp: 6 - fp: 0 - fn: 1 - tn: 6 - precision: 1.0000 - recall: 0.8571 - accuracy: 0.8571 - f1-score: 0.9231 -own.01 tp: 45 - fp: 0 - fn: 1 - tn: 45 - precision: 1.0000 - recall: 0.9783 - accuracy: 0.9783 - f1-score: 0.9890 -pack.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -package.01 tp: 1 - fp: 1 - fn: 1 - tn: 1 - precision: 0.5000 - recall: 0.5000 - accuracy: 0.3333 - f1-score: 0.5000 -paint.01 tp: 3 - fp: 2 - fn: 0 - tn: 3 - precision: 0.6000 - recall: 1.0000 - accuracy: 0.6000 - f1-score: 0.7500 -paint.03 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -pamper.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -pan_out.02 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -panic.01 tp: 2 - fp: 0 - fn: 1 - tn: 2 - precision: 1.0000 - recall: 0.6667 - accuracy: 0.6667 - f1-score: 0.8000 -parade.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -paralyze.01 tp: 0 - fp: 2 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -paraphrase.01 tp: 0 - fp: 2 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -pardon.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -pare.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -parent.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -park.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -part.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -participate.01 tp: 27 - fp: 0 - fn: 0 - tn: 27 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -party.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -pass.01 tp: 7 - fp: 8 - fn: 0 - tn: 7 - precision: 0.4667 - recall: 1.0000 - accuracy: 0.4667 - f1-score: 0.6364 -pass.02 tp: 0 - fp: 1 - fn: 4 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -pass.03 tp: 3 - fp: 3 - fn: 5 - tn: 3 - precision: 0.5000 - recall: 0.3750 - accuracy: 0.2727 - f1-score: 0.4286 -pass.04 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -pass.05 tp: 2 - fp: 4 - fn: 2 - tn: 2 - precision: 0.3333 - recall: 0.5000 - accuracy: 0.2500 - f1-score: 0.4000 -pass.07 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -pass.08 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -pass_away.16 tp: 5 - fp: 2 - fn: 0 - tn: 5 - precision: 0.7143 - recall: 1.0000 - accuracy: 0.7143 - f1-score: 0.8333 -pass_by.17 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -pass_off.18 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -pass_on.19 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -pass_out.11 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -pass_up.13 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -paste.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -patent.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -patrol.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -pause.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -pave.02 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -pay.01 tp: 72 - fp: 5 - fn: 3 - tn: 72 - precision: 0.9351 - recall: 0.9600 - accuracy: 0.9000 - f1-score: 0.9474 -pay.04 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -pay_off.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -pay_off.05 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -pay_out.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -peace.01 tp: 23 - fp: 0 - fn: 0 - tn: 23 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -peak.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -peddle.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -pederastize.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -penetrate.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -people.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -perceive.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -perfect.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -perform.01 tp: 7 - fp: 1 - fn: 0 - tn: 7 - precision: 0.8750 - recall: 1.0000 - accuracy: 0.8750 - f1-score: 0.9333 -perform.02 tp: 7 - fp: 2 - fn: 0 - tn: 7 - precision: 0.7778 - recall: 1.0000 - accuracy: 0.7778 - f1-score: 0.8750 -perish.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -permit.01 tp: 11 - fp: 0 - fn: 1 - tn: 11 - precision: 1.0000 - recall: 0.9167 - accuracy: 0.9167 - f1-score: 0.9565 -perpetrate.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -persecute.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -persevere.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -persist.01 tp: 3 - fp: 1 - fn: 0 - tn: 3 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -perspire.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -persuade.01 tp: 5 - fp: 2 - fn: 0 - tn: 5 - precision: 0.7143 - recall: 1.0000 - accuracy: 0.7143 - f1-score: 0.8333 -phase_out.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -photograph.01 tp: 7 - fp: 4 - fn: 0 - tn: 7 - precision: 0.6364 - recall: 1.0000 - accuracy: 0.6364 - f1-score: 0.7778 -pick.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -pick_off.08 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -pick_out.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -pick_up.04 tp: 6 - fp: 3 - fn: 0 - tn: 6 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -pick_up.05 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -pile_up.02 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -pine_away.02 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -piss_off.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -pity.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -pivot.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -place.01 tp: 9 - fp: 1 - fn: 0 - tn: 9 - precision: 0.9000 - recall: 1.0000 - accuracy: 0.9000 - f1-score: 0.9474 -plague.01 tp: 1 - fp: 3 - fn: 1 - tn: 1 - precision: 0.2500 - recall: 0.5000 - accuracy: 0.2000 - f1-score: 0.3333 -plan.01 tp: 41 - fp: 3 - fn: 2 - tn: 41 - precision: 0.9318 - recall: 0.9535 - accuracy: 0.8913 - f1-score: 0.9425 -plant.01 tp: 12 - fp: 1 - fn: 0 - tn: 12 - precision: 0.9231 - recall: 1.0000 - accuracy: 0.9231 - f1-score: 0.9600 -play.01 tp: 13 - fp: 9 - fn: 1 - tn: 13 - precision: 0.5909 - recall: 0.9286 - accuracy: 0.5652 - f1-score: 0.7222 -play.02 tp: 14 - fp: 2 - fn: 1 - tn: 14 - precision: 0.8750 - recall: 0.9333 - accuracy: 0.8235 - f1-score: 0.9032 -play.08 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -play.11 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -play_down.07 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -play_out.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -plead.02 tp: 4 - fp: 1 - fn: 1 - tn: 4 - precision: 0.8000 - recall: 0.8000 - accuracy: 0.6667 - f1-score: 0.8000 -plot.01 tp: 4 - fp: 0 - fn: 1 - tn: 4 - precision: 1.0000 - recall: 0.8000 - accuracy: 0.8000 - f1-score: 0.8889 -plow.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -plummet.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -plunge.01 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -ply.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -ply.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -point_out.02 tp: 27 - fp: 0 - fn: 0 - tn: 27 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -poll.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -pollute.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -ponder.01 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -pool.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -populate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -portray.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -pose.02 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -possess.01 tp: 4 - fp: 0 - fn: 0 - tn: 4 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -post.01 tp: 10 - fp: 0 - fn: 6 - tn: 10 - precision: 1.0000 - recall: 0.6250 - accuracy: 0.6250 - f1-score: 0.7692 -postpone.01 tp: 4 - fp: 3 - fn: 0 - tn: 4 - precision: 0.5714 - recall: 1.0000 - accuracy: 0.5714 - f1-score: 0.7272 -pound.02 tp: 2 - fp: 0 - fn: 1 - tn: 2 - precision: 1.0000 - recall: 0.6667 - accuracy: 0.6667 - f1-score: 0.8000 -pour.01 tp: 3 - fp: 4 - fn: 0 - tn: 3 - precision: 0.4286 - recall: 1.0000 - accuracy: 0.4286 - f1-score: 0.6000 -practice.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -praise.01 tp: 12 - fp: 4 - fn: 2 - tn: 12 - precision: 0.7500 - recall: 0.8571 - accuracy: 0.6667 - f1-score: 0.8000 -pray.01 tp: 14 - fp: 2 - fn: 0 - tn: 14 - precision: 0.8750 - recall: 1.0000 - accuracy: 0.8750 - f1-score: 0.9333 -preach.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -precede.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -preclude.01 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -precondition.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -predict.01 tp: 11 - fp: 2 - fn: 0 - tn: 11 - precision: 0.8462 - recall: 1.0000 - accuracy: 0.8462 - f1-score: 0.9167 -prefer.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -premiere.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -preoccupy.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -prepare.01 tp: 0 - fp: 2 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -prepare.02 tp: 16 - fp: 4 - fn: 2 - tn: 16 - precision: 0.8000 - recall: 0.8889 - accuracy: 0.7273 - f1-score: 0.8421 -prepay.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -present.01 tp: 17 - fp: 0 - fn: 0 - tn: 17 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -preserve.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -press.01 tp: 5 - fp: 3 - fn: 0 - tn: 5 - precision: 0.6250 - recall: 1.0000 - accuracy: 0.6250 - f1-score: 0.7692 -press.02 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -pressure.01 tp: 1 - fp: 2 - fn: 4 - tn: 1 - precision: 0.3333 - recall: 0.2000 - accuracy: 0.1429 - f1-score: 0.2500 -pretend.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -prevail.01 tp: 4 - fp: 1 - fn: 1 - tn: 4 - precision: 0.8000 - recall: 0.8000 - accuracy: 0.6667 - f1-score: 0.8000 -prevent.01 tp: 9 - fp: 0 - fn: 0 - tn: 9 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -price.01 tp: 132 - fp: 9 - fn: 1 - tn: 132 - precision: 0.9362 - recall: 0.9925 - accuracy: 0.9296 - f1-score: 0.9635 -prick.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -pride.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -print.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -privatize.01 tp: 1 - fp: 2 - fn: 0 - tn: 1 - precision: 0.3333 - recall: 1.0000 - accuracy: 0.3333 - f1-score: 0.5000 -procedure.01 tp: 1 - fp: 2 - fn: 0 - tn: 1 - precision: 0.3333 - recall: 1.0000 - accuracy: 0.3333 - f1-score: 0.5000 -proceed.01 tp: 4 - fp: 0 - fn: 0 - tn: 4 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -proceeding.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -process.01 tp: 5 - fp: 3 - fn: 2 - tn: 5 - precision: 0.6250 - recall: 0.7143 - accuracy: 0.5000 - f1-score: 0.6667 -process.02 tp: 15 - fp: 12 - fn: 0 - tn: 15 - precision: 0.5556 - recall: 1.0000 - accuracy: 0.5556 - f1-score: 0.7143 -proclaim.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -produce.01 tp: 50 - fp: 16 - fn: 1 - tn: 50 - precision: 0.7576 - recall: 0.9804 - accuracy: 0.7463 - f1-score: 0.8547 -profile.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -profit.01 tp: 17 - fp: 3 - fn: 0 - tn: 17 - precision: 0.8500 - recall: 1.0000 - accuracy: 0.8500 - f1-score: 0.9189 -program.01 tp: 9 - fp: 2 - fn: 1 - tn: 9 - precision: 0.8182 - recall: 0.9000 - accuracy: 0.7500 - f1-score: 0.8572 -progress.01 tp: 8 - fp: 4 - fn: 0 - tn: 8 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -project.02 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -proliferate.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -promise.01 tp: 20 - fp: 3 - fn: 0 - tn: 20 - precision: 0.8696 - recall: 1.0000 - accuracy: 0.8696 - f1-score: 0.9303 -promote.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -promote.02 tp: 23 - fp: 1 - fn: 0 - tn: 23 - precision: 0.9583 - recall: 1.0000 - accuracy: 0.9583 - f1-score: 0.9787 -prompt.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -prompt.02 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -promulgate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -pronounce.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -prophesy.01 tp: 1 - fp: 2 - fn: 0 - tn: 1 - precision: 0.3333 - recall: 1.0000 - accuracy: 0.3333 - f1-score: 0.5000 -propose.01 tp: 17 - fp: 1 - fn: 3 - tn: 17 - precision: 0.9444 - recall: 0.8500 - accuracy: 0.8095 - f1-score: 0.8947 -prosecute.01 tp: 5 - fp: 0 - fn: 0 - tn: 5 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -prospect.02 tp: 0 - fp: 1 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -prosper.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -protect.01 tp: 16 - fp: 2 - fn: 1 - tn: 16 - precision: 0.8889 - recall: 0.9412 - accuracy: 0.8421 - f1-score: 0.9143 -protest.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -protest.02 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -protrude.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -prove.01 tp: 12 - fp: 3 - fn: 1 - tn: 12 - precision: 0.8000 - recall: 0.9231 - accuracy: 0.7500 - f1-score: 0.8572 -provide.01 tp: 53 - fp: 0 - fn: 0 - tn: 53 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -provoke.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -publicize.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -publish.01 tp: 10 - fp: 2 - fn: 1 - tn: 10 - precision: 0.8333 - recall: 0.9091 - accuracy: 0.7692 - f1-score: 0.8696 -pull.01 tp: 6 - fp: 9 - fn: 0 - tn: 6 - precision: 0.4000 - recall: 1.0000 - accuracy: 0.4000 - f1-score: 0.5714 -pull.06 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -pull_out.02 tp: 0 - fp: 0 - fn: 5 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -pulsate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -pump.01 tp: 1 - fp: 3 - fn: 0 - tn: 1 - precision: 0.2500 - recall: 1.0000 - accuracy: 0.2500 - f1-score: 0.4000 -pump.04 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -pump_up.02 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -punish.01 tp: 7 - fp: 1 - fn: 0 - tn: 7 - precision: 0.8750 - recall: 1.0000 - accuracy: 0.8750 - f1-score: 0.9333 -purchase.01 tp: 16 - fp: 3 - fn: 1 - tn: 16 - precision: 0.8421 - recall: 0.9412 - accuracy: 0.8000 - f1-score: 0.8889 -purge.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -pursue.01 tp: 14 - fp: 1 - fn: 0 - tn: 14 - precision: 0.9333 - recall: 1.0000 - accuracy: 0.9333 - f1-score: 0.9655 -push.01 tp: 9 - fp: 4 - fn: 0 - tn: 9 - precision: 0.6923 - recall: 1.0000 - accuracy: 0.6923 - f1-score: 0.8182 -push.02 tp: 4 - fp: 2 - fn: 1 - tn: 4 - precision: 0.6667 - recall: 0.8000 - accuracy: 0.5714 - f1-score: 0.7273 -push.04 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -push.05 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -put.01 tp: 69 - fp: 30 - fn: 0 - tn: 69 - precision: 0.6970 - recall: 1.0000 - accuracy: 0.6970 - f1-score: 0.8214 -put.02 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -put.03 tp: 0 - fp: 0 - fn: 17 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -put.LV tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -put_in.05 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -put_off.06 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -put_on.08 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -put_out.10 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -put_up.11 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -quadruple.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -qualify.02 tp: 4 - fp: 0 - fn: 0 - tn: 4 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -question.01 tp: 16 - fp: 15 - fn: 9 - tn: 16 - precision: 0.5161 - recall: 0.6400 - accuracy: 0.4000 - f1-score: 0.5714 -question.03 tp: 1 - fp: 1 - fn: 2 - tn: 1 - precision: 0.5000 - recall: 0.3333 - accuracy: 0.2500 - f1-score: 0.4000 -quiet.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -quit.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -quote.01 tp: 20 - fp: 1 - fn: 2 - tn: 20 - precision: 0.9524 - recall: 0.9091 - accuracy: 0.8696 - f1-score: 0.9302 -race.02 tp: 3 - fp: 2 - fn: 0 - tn: 3 - precision: 0.6000 - recall: 1.0000 - accuracy: 0.6000 - f1-score: 0.7500 -rage.02 tp: 1 - fp: 2 - fn: 0 - tn: 1 - precision: 0.3333 - recall: 1.0000 - accuracy: 0.3333 - f1-score: 0.5000 -rain.01 tp: 1 - fp: 4 - fn: 1 - tn: 1 - precision: 0.2000 - recall: 0.5000 - accuracy: 0.1667 - f1-score: 0.2857 -raise.01 tp: 15 - fp: 9 - fn: 0 - tn: 15 - precision: 0.6250 - recall: 1.0000 - accuracy: 0.6250 - f1-score: 0.7692 -raise.02 tp: 0 - fp: 0 - fn: 6 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -raise.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -rally.01 tp: 3 - fp: 3 - fn: 0 - tn: 3 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -rally.02 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -ramble.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -range.01 tp: 5 - fp: 0 - fn: 1 - tn: 5 - precision: 1.0000 - recall: 0.8333 - accuracy: 0.8333 - f1-score: 0.9091 -rank.01 tp: 9 - fp: 2 - fn: 0 - tn: 9 - precision: 0.8182 - recall: 1.0000 - accuracy: 0.8182 - f1-score: 0.9000 -ransom.01 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -rap.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -rape.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -rate.01 tp: 10 - fp: 2 - fn: 0 - tn: 10 - precision: 0.8333 - recall: 1.0000 - accuracy: 0.8333 - f1-score: 0.9091 -ratify.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -ravage.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -ravish.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -reach.01 tp: 51 - fp: 6 - fn: 0 - tn: 51 - precision: 0.8947 - recall: 1.0000 - accuracy: 0.8947 - f1-score: 0.9444 -reach.02 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -reach.03 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -react.01 tp: 15 - fp: 5 - fn: 0 - tn: 15 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -reactivate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -read.01 tp: 28 - fp: 3 - fn: 1 - tn: 28 - precision: 0.9032 - recall: 0.9655 - accuracy: 0.8750 - f1-score: 0.9333 -reaffirm.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -realign.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -realize.01 tp: 14 - fp: 1 - fn: 1 - tn: 14 - precision: 0.9333 - recall: 0.9333 - accuracy: 0.8750 - f1-score: 0.9333 -realize.02 tp: 5 - fp: 1 - fn: 0 - tn: 5 - precision: 0.8333 - recall: 1.0000 - accuracy: 0.8333 - f1-score: 0.9091 -reap.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -rearrange.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -reason.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -reassess.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -rebound.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -rebuff.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -rebut.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -recall.01 tp: 0 - fp: 0 - fn: 9 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -recall.02 tp: 8 - fp: 10 - fn: 1 - tn: 8 - precision: 0.4444 - recall: 0.8889 - accuracy: 0.4211 - f1-score: 0.5926 -recap.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -receive.01 tp: 47 - fp: 1 - fn: 3 - tn: 47 - precision: 0.9792 - recall: 0.9400 - accuracy: 0.9216 - f1-score: 0.9592 -recession.02 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -recognize.01 tp: 9 - fp: 1 - fn: 3 - tn: 9 - precision: 0.9000 - recall: 0.7500 - accuracy: 0.6923 - f1-score: 0.8182 -recognize.02 tp: 0 - fp: 3 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -recommend.01 tp: 8 - fp: 0 - fn: 0 - tn: 8 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -reconcile.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -reconsider.01 tp: 1 - fp: 2 - fn: 0 - tn: 1 - precision: 0.3333 - recall: 1.0000 - accuracy: 0.3333 - f1-score: 0.5000 -record.01 tp: 7 - fp: 1 - fn: 1 - tn: 7 - precision: 0.8750 - recall: 0.8750 - accuracy: 0.7778 - f1-score: 0.8750 -recount.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -recover.01 tp: 1 - fp: 1 - fn: 2 - tn: 1 - precision: 0.5000 - recall: 0.3333 - accuracy: 0.2500 - f1-score: 0.4000 -recover.02 tp: 5 - fp: 2 - fn: 1 - tn: 5 - precision: 0.7143 - recall: 0.8333 - accuracy: 0.6250 - f1-score: 0.7692 -recreation.02 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -recruit.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -recur.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -redeem.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -redirect.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -rediscover.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -reduce.01 tp: 38 - fp: 17 - fn: 0 - tn: 38 - precision: 0.6909 - recall: 1.0000 - accuracy: 0.6909 - f1-score: 0.8172 -reengage.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -reevaluate.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -refer.01 tp: 14 - fp: 3 - fn: 0 - tn: 14 - precision: 0.8235 - recall: 1.0000 - accuracy: 0.8235 - f1-score: 0.9032 -refine.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -reflect.01 tp: 3 - fp: 1 - fn: 0 - tn: 3 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -reflect.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -reform.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -refrain.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -refuel.01 tp: 5 - fp: 1 - fn: 0 - tn: 5 - precision: 0.8333 - recall: 1.0000 - accuracy: 0.8333 - f1-score: 0.9091 -refurbish.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -refuse.01 tp: 11 - fp: 0 - fn: 0 - tn: 11 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -regard.01 tp: 10 - fp: 1 - fn: 5 - tn: 10 - precision: 0.9091 - recall: 0.6667 - accuracy: 0.6250 - f1-score: 0.7693 -regenerate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -register.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -register.02 tp: 6 - fp: 7 - fn: 0 - tn: 6 - precision: 0.4615 - recall: 1.0000 - accuracy: 0.4615 - f1-score: 0.6315 -regret.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -regulate.01 tp: 6 - fp: 2 - fn: 0 - tn: 6 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -rehabilitate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -rehearse.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -reinforce.01 tp: 2 - fp: 0 - fn: 1 - tn: 2 - precision: 1.0000 - recall: 0.6667 - accuracy: 0.6667 - f1-score: 0.8000 -reinstate.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -reintegrate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -reinvent.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -reinvigorate.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -reiterate.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -reject.01 tp: 9 - fp: 0 - fn: 0 - tn: 9 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -rejoice.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -relate.01 tp: 8 - fp: 9 - fn: 1 - tn: 8 - precision: 0.4706 - recall: 0.8889 - accuracy: 0.4444 - f1-score: 0.6154 -relate.02 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -relation.03 tp: 29 - fp: 11 - fn: 0 - tn: 29 - precision: 0.7250 - recall: 1.0000 - accuracy: 0.7250 - f1-score: 0.8406 -relax.01 tp: 4 - fp: 1 - fn: 0 - tn: 4 - precision: 0.8000 - recall: 1.0000 - accuracy: 0.8000 - f1-score: 0.8889 -release.01 tp: 19 - fp: 7 - fn: 0 - tn: 19 - precision: 0.7308 - recall: 1.0000 - accuracy: 0.7308 - f1-score: 0.8445 -relieve.01 tp: 6 - fp: 1 - fn: 0 - tn: 6 - precision: 0.8571 - recall: 1.0000 - accuracy: 0.8571 - f1-score: 0.9231 -relieve.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -relinquish.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -rely.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -remain.01 tp: 28 - fp: 0 - fn: 0 - tn: 28 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -remark.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -remember.01 tp: 42 - fp: 0 - fn: 1 - tn: 42 - precision: 1.0000 - recall: 0.9767 - accuracy: 0.9767 - f1-score: 0.9882 -remind.01 tp: 7 - fp: 1 - fn: 0 - tn: 7 - precision: 0.8750 - recall: 1.0000 - accuracy: 0.8750 - f1-score: 0.9333 -remission.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -remit.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -remove.01 tp: 5 - fp: 2 - fn: 0 - tn: 5 - precision: 0.7143 - recall: 1.0000 - accuracy: 0.7143 - f1-score: 0.8333 -rename.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -renew.01 tp: 6 - fp: 1 - fn: 0 - tn: 6 - precision: 0.8571 - recall: 1.0000 - accuracy: 0.8571 - f1-score: 0.9231 -renovate.01 tp: 2 - fp: 0 - fn: 1 - tn: 2 - precision: 1.0000 - recall: 0.6667 - accuracy: 0.6667 - f1-score: 0.8000 -rent.01 tp: 4 - fp: 1 - fn: 3 - tn: 4 - precision: 0.8000 - recall: 0.5714 - accuracy: 0.5000 - f1-score: 0.6666 -reopen.01 tp: 4 - fp: 0 - fn: 0 - tn: 4 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -reorganize.01 tp: 3 - fp: 0 - fn: 2 - tn: 3 - precision: 1.0000 - recall: 0.6000 - accuracy: 0.6000 - f1-score: 0.7500 -repackage.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -repair.01 tp: 10 - fp: 8 - fn: 0 - tn: 10 - precision: 0.5556 - recall: 1.0000 - accuracy: 0.5556 - f1-score: 0.7143 -repeal.01 tp: 0 - fp: 1 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -repeat.01 tp: 10 - fp: 2 - fn: 0 - tn: 10 - precision: 0.8333 - recall: 1.0000 - accuracy: 0.8333 - f1-score: 0.9091 -repent.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -replace.01 tp: 6 - fp: 4 - fn: 0 - tn: 6 - precision: 0.6000 - recall: 1.0000 - accuracy: 0.6000 - f1-score: 0.7500 -reply.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -report.01 tp: 67 - fp: 8 - fn: 6 - tn: 67 - precision: 0.8933 - recall: 0.9178 - accuracy: 0.8272 - f1-score: 0.9054 -reposition.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -represent.01 tp: 18 - fp: 0 - fn: 0 - tn: 18 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -reprieve.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -reproduce.01 tp: 2 - fp: 2 - fn: 0 - tn: 2 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -repudiate.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -request.01 tp: 10 - fp: 2 - fn: 0 - tn: 10 - precision: 0.8333 - recall: 1.0000 - accuracy: 0.8333 - f1-score: 0.9091 -require.01 tp: 34 - fp: 2 - fn: 0 - tn: 34 - precision: 0.9444 - recall: 1.0000 - accuracy: 0.9444 - f1-score: 0.9714 -reroute.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -rescue.01 tp: 3 - fp: 1 - fn: 0 - tn: 3 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -research.01 tp: 1 - fp: 0 - fn: 3 - tn: 1 - precision: 1.0000 - recall: 0.2500 - accuracy: 0.2500 - f1-score: 0.4000 -resemble.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -reserve.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -reshape.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -reside.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -resign.01 tp: 8 - fp: 0 - fn: 0 - tn: 8 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -resist.01 tp: 4 - fp: 0 - fn: 0 - tn: 4 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -resolve.01 tp: 12 - fp: 4 - fn: 0 - tn: 12 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -resolve.02 tp: 7 - fp: 1 - fn: 0 - tn: 7 - precision: 0.8750 - recall: 1.0000 - accuracy: 0.8750 - f1-score: 0.9333 -resort.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -respect.01 tp: 9 - fp: 2 - fn: 1 - tn: 9 - precision: 0.8182 - recall: 0.9000 - accuracy: 0.7500 - f1-score: 0.8572 -respond.01 tp: 22 - fp: 10 - fn: 0 - tn: 22 - precision: 0.6875 - recall: 1.0000 - accuracy: 0.6875 - f1-score: 0.8148 -rest.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -restart.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -restore.01 tp: 3 - fp: 1 - fn: 0 - tn: 3 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -restore.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -restrain.01 tp: 0 - fp: 3 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -restrict.01 tp: 5 - fp: 2 - fn: 1 - tn: 5 - precision: 0.7143 - recall: 0.8333 - accuracy: 0.6250 - f1-score: 0.7692 -restructure.01 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -result.01 tp: 11 - fp: 0 - fn: 0 - tn: 11 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -resume.01 tp: 8 - fp: 1 - fn: 0 - tn: 8 - precision: 0.8889 - recall: 1.0000 - accuracy: 0.8889 - f1-score: 0.9412 -resuscitate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -retain.01 tp: 2 - fp: 2 - fn: 0 - tn: 2 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -retaliate.01 tp: 2 - fp: 3 - fn: 0 - tn: 2 - precision: 0.4000 - recall: 1.0000 - accuracy: 0.4000 - f1-score: 0.5714 -rethink.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -retire.01 tp: 4 - fp: 0 - fn: 0 - tn: 4 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -retreat.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -retreat.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -retreat.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -retrogress.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -return.01 tp: 17 - fp: 7 - fn: 1 - tn: 17 - precision: 0.7083 - recall: 0.9444 - accuracy: 0.6800 - f1-score: 0.8095 -return.02 tp: 1 - fp: 0 - fn: 6 - tn: 1 - precision: 1.0000 - recall: 0.1429 - accuracy: 0.1429 - f1-score: 0.2501 -return.06 tp: 4 - fp: 2 - fn: 0 - tn: 4 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -reunify.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -reunite.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -reveal.01 tp: 13 - fp: 0 - fn: 1 - tn: 13 - precision: 1.0000 - recall: 0.9286 - accuracy: 0.9286 - f1-score: 0.9630 -reverse.01 tp: 9 - fp: 3 - fn: 0 - tn: 9 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -review.01 tp: 8 - fp: 0 - fn: 0 - tn: 8 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -revise.01 tp: 4 - fp: 0 - fn: 0 - tn: 4 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -revisit.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -revive.01 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -revolve.06 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -reward.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -rewrite.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -rhyme.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -rid.01 tp: 3 - fp: 1 - fn: 0 - tn: 3 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -ride.01 tp: 11 - fp: 1 - fn: 0 - tn: 11 - precision: 0.9167 - recall: 1.0000 - accuracy: 0.9167 - f1-score: 0.9565 -ride_out.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -ridicule.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -riff.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -ring.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -ring.05 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -riot.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -rip.01 tp: 2 - fp: 1 - fn: 1 - tn: 2 - precision: 0.6667 - recall: 0.6667 - accuracy: 0.5000 - f1-score: 0.6667 -rip.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -rise.01 tp: 38 - fp: 1 - fn: 0 - tn: 38 - precision: 0.9744 - recall: 1.0000 - accuracy: 0.9744 - f1-score: 0.9870 -rise_up.03 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -risk.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -roar.02 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -roast.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -rob.01 tp: 2 - fp: 0 - fn: 1 - tn: 2 - precision: 1.0000 - recall: 0.6667 - accuracy: 0.6667 - f1-score: 0.8000 -rock.01 tp: 1 - fp: 1 - fn: 1 - tn: 1 - precision: 0.5000 - recall: 0.5000 - accuracy: 0.3333 - f1-score: 0.5000 -roll.01 tp: 4 - fp: 7 - fn: 2 - tn: 4 - precision: 0.3636 - recall: 0.6667 - accuracy: 0.3077 - f1-score: 0.4706 -roll_up.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -roost.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -root.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -rot.01 tp: 0 - fp: 2 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -rotate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -round.05 tp: 3 - fp: 1 - fn: 3 - tn: 3 - precision: 0.7500 - recall: 0.5000 - accuracy: 0.4286 - f1-score: 0.6000 -rub.01 tp: 0 - fp: 4 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -ruin.01 tp: 3 - fp: 2 - fn: 0 - tn: 3 - precision: 0.6000 - recall: 1.0000 - accuracy: 0.6000 - f1-score: 0.7500 -rule.01 tp: 10 - fp: 8 - fn: 0 - tn: 10 - precision: 0.5556 - recall: 1.0000 - accuracy: 0.5556 - f1-score: 0.7143 -rule.03 tp: 15 - fp: 7 - fn: 1 - tn: 15 - precision: 0.6818 - recall: 0.9375 - accuracy: 0.6522 - f1-score: 0.7895 -rule_out.02 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -rumor.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -run.01 tp: 12 - fp: 7 - fn: 2 - tn: 12 - precision: 0.6316 - recall: 0.8571 - accuracy: 0.5714 - f1-score: 0.7273 -run.02 tp: 18 - fp: 9 - fn: 2 - tn: 18 - precision: 0.6667 - recall: 0.9000 - accuracy: 0.6207 - f1-score: 0.7660 -run.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -run.04 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -run.07 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -run.08 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -run.09 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -run.13 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -run_out.05 tp: 3 - fp: 3 - fn: 0 - tn: 3 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -run_up.06 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -rush.01 tp: 9 - fp: 3 - fn: 1 - tn: 9 - precision: 0.7500 - recall: 0.9000 - accuracy: 0.6923 - f1-score: 0.8182 -sacrifice.01 tp: 2 - fp: 2 - fn: 1 - tn: 2 - precision: 0.5000 - recall: 0.6667 - accuracy: 0.4000 - f1-score: 0.5714 -sadden.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -sail.01 tp: 0 - fp: 2 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -salt.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -salute.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -salvation.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -sample.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -sandwich.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -satisfy.01 tp: 6 - fp: 3 - fn: 0 - tn: 6 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -save.01 tp: 2 - fp: 0 - fn: 5 - tn: 2 - precision: 1.0000 - recall: 0.2857 - accuracy: 0.2857 - f1-score: 0.4444 -save.02 tp: 19 - fp: 6 - fn: 0 - tn: 19 - precision: 0.7600 - recall: 1.0000 - accuracy: 0.7600 - f1-score: 0.8636 -save.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -say.01 tp: 1047 - fp: 4 - fn: 1 - tn: 1047 - precision: 0.9962 - recall: 0.9990 - accuracy: 0.9952 - f1-score: 0.9976 -scale.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -scam.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -scandal.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -scare.01 tp: 4 - fp: 0 - fn: 1 - tn: 4 - precision: 1.0000 - recall: 0.8000 - accuracy: 0.8000 - f1-score: 0.8889 -scatter.01 tp: 1 - fp: 2 - fn: 0 - tn: 1 - precision: 0.3333 - recall: 1.0000 - accuracy: 0.3333 - f1-score: 0.5000 -schedule.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -scold.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -scoop_up.02 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -score.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -scrap.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -scream.01 tp: 5 - fp: 1 - fn: 0 - tn: 5 - precision: 0.8333 - recall: 1.0000 - accuracy: 0.8333 - f1-score: 0.9091 -screen.01 tp: 0 - fp: 1 - fn: 4 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -screen_out.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -scribble.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -script.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -scrutinize.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -scuttle.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -seal.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -search.01 tp: 4 - fp: 2 - fn: 0 - tn: 4 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -sedate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -see.01 tp: 283 - fp: 4 - fn: 1 - tn: 283 - precision: 0.9861 - recall: 0.9965 - accuracy: 0.9826 - f1-score: 0.9913 -see.03 tp: 0 - fp: 0 - fn: 4 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -seek.01 tp: 15 - fp: 1 - fn: 0 - tn: 15 - precision: 0.9375 - recall: 1.0000 - accuracy: 0.9375 - f1-score: 0.9677 -seek_out.02 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -seem.01 tp: 56 - fp: 0 - fn: 0 - tn: 56 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -seize.01 tp: 2 - fp: 2 - fn: 0 - tn: 2 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -select.01 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -sell.01 tp: 75 - fp: 15 - fn: 1 - tn: 75 - precision: 0.8333 - recall: 0.9868 - accuracy: 0.8242 - f1-score: 0.9036 -sell_out.03 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -send.01 tp: 20 - fp: 11 - fn: 3 - tn: 20 - precision: 0.6452 - recall: 0.8696 - accuracy: 0.5882 - f1-score: 0.7408 -send.02 tp: 4 - fp: 3 - fn: 11 - tn: 4 - precision: 0.5714 - recall: 0.2667 - accuracy: 0.2222 - f1-score: 0.3637 -send.03 tp: 9 - fp: 5 - fn: 5 - tn: 9 - precision: 0.6429 - recall: 0.6429 - accuracy: 0.4737 - f1-score: 0.6429 -send_out.04 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -sense.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -sentence.01 tp: 6 - fp: 3 - fn: 0 - tn: 6 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -separate.01 tp: 8 - fp: 1 - fn: 0 - tn: 8 - precision: 0.8889 - recall: 1.0000 - accuracy: 0.8889 - f1-score: 0.9412 -serve.01 tp: 31 - fp: 18 - fn: 2 - tn: 31 - precision: 0.6327 - recall: 0.9394 - accuracy: 0.6078 - f1-score: 0.7561 -serve.02 tp: 2 - fp: 3 - fn: 2 - tn: 2 - precision: 0.4000 - recall: 0.5000 - accuracy: 0.2857 - f1-score: 0.4444 -serve.04 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -serve_up.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -session.01 tp: 3 - fp: 2 - fn: 0 - tn: 3 - precision: 0.6000 - recall: 1.0000 - accuracy: 0.6000 - f1-score: 0.7500 -set.01 tp: 11 - fp: 12 - fn: 4 - tn: 11 - precision: 0.4783 - recall: 0.7333 - accuracy: 0.4074 - f1-score: 0.5790 -set.02 tp: 7 - fp: 6 - fn: 8 - tn: 7 - precision: 0.5385 - recall: 0.4667 - accuracy: 0.3333 - f1-score: 0.5000 -set.08 tp: 1 - fp: 0 - fn: 2 - tn: 1 - precision: 1.0000 - recall: 0.3333 - accuracy: 0.3333 - f1-score: 0.5000 -set.11 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -set_about.12 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -set_out.06 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -set_out.07 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -set_up.03 tp: 23 - fp: 4 - fn: 0 - tn: 23 - precision: 0.8519 - recall: 1.0000 - accuracy: 0.8519 - f1-score: 0.9200 -settle.02 tp: 5 - fp: 6 - fn: 0 - tn: 5 - precision: 0.4545 - recall: 1.0000 - accuracy: 0.4545 - f1-score: 0.6250 -settle.03 tp: 4 - fp: 2 - fn: 5 - tn: 4 - precision: 0.6667 - recall: 0.4444 - accuracy: 0.3636 - f1-score: 0.5333 -settle_down.04 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -sew.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -shackle.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -shake.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -shape.01 tp: 0 - fp: 1 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -share.01 tp: 29 - fp: 8 - fn: 0 - tn: 29 - precision: 0.7838 - recall: 1.0000 - accuracy: 0.7838 - f1-score: 0.8788 -sharpen.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -shatter.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -shave.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -shed.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -shelter.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -shelve.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -shift.01 tp: 6 - fp: 0 - fn: 0 - tn: 6 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -shine.01 tp: 2 - fp: 2 - fn: 0 - tn: 2 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -ship.01 tp: 2 - fp: 4 - fn: 0 - tn: 2 - precision: 0.3333 - recall: 1.0000 - accuracy: 0.3333 - f1-score: 0.5000 -shock.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -shoo.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -shoot.01 tp: 2 - fp: 0 - fn: 2 - tn: 2 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -shoot.02 tp: 10 - fp: 3 - fn: 0 - tn: 10 - precision: 0.7692 - recall: 1.0000 - accuracy: 0.7692 - f1-score: 0.8695 -shoot.03 tp: 0 - fp: 3 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -shoot.06 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -shoot_down.05 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -shoot_off.04 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -shop.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -shore_up.01 tp: 0 - fp: 2 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -shoulder.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -shout.01 tp: 15 - fp: 0 - fn: 0 - tn: 15 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -shove.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -show.01 tp: 81 - fp: 3 - fn: 3 - tn: 81 - precision: 0.9643 - recall: 0.9643 - accuracy: 0.9310 - f1-score: 0.9643 -show.04 tp: 43 - fp: 10 - fn: 2 - tn: 43 - precision: 0.8113 - recall: 0.9556 - accuracy: 0.7818 - f1-score: 0.8776 -show_up.02 tp: 4 - fp: 0 - fn: 0 - tn: 4 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -shrink.01 tp: 5 - fp: 1 - fn: 0 - tn: 5 - precision: 0.8333 - recall: 1.0000 - accuracy: 0.8333 - f1-score: 0.9091 -shuffle.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -shun.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -shut.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -shut_down.05 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -shut_up.06 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -side.01 tp: 0 - fp: 0 - fn: 4 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -sightsee.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -sign.01 tp: 1 - fp: 2 - fn: 5 - tn: 1 - precision: 0.3333 - recall: 0.1667 - accuracy: 0.1250 - f1-score: 0.2222 -sign.02 tp: 11 - fp: 8 - fn: 2 - tn: 11 - precision: 0.5789 - recall: 0.8462 - accuracy: 0.5238 - f1-score: 0.6875 -sign_up.03 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -signal.07 tp: 11 - fp: 4 - fn: 1 - tn: 11 - precision: 0.7333 - recall: 0.9167 - accuracy: 0.6875 - f1-score: 0.8148 -signify.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -silence.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -simmer.01 tp: 0 - fp: 0 - fn: 6 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -sin.01 tp: 5 - fp: 3 - fn: 0 - tn: 5 - precision: 0.6250 - recall: 1.0000 - accuracy: 0.6250 - f1-score: 0.7692 -sing.01 tp: 7 - fp: 0 - fn: 0 - tn: 7 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -sink.01 tp: 6 - fp: 2 - fn: 0 - tn: 6 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -sit.01 tp: 24 - fp: 0 - fn: 2 - tn: 24 - precision: 1.0000 - recall: 0.9231 - accuracy: 0.9231 - f1-score: 0.9600 -sit_down.02 tp: 15 - fp: 4 - fn: 0 - tn: 15 - precision: 0.7895 - recall: 1.0000 - accuracy: 0.7895 - f1-score: 0.8824 -sit_out.04 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -sit_up.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -situate.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -size_up.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -skew.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -skid.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -skimp.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -skip.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -slack_off.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -slam.02 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -slap.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -slate.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -sleep.01 tp: 7 - fp: 2 - fn: 0 - tn: 7 - precision: 0.7778 - recall: 1.0000 - accuracy: 0.7778 - f1-score: 0.8750 -slide.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -slide.02 tp: 0 - fp: 3 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -slip.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -slip.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -slow_down.03 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -slump.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -smear.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -smell.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -smell.02 tp: 0 - fp: 2 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -smile.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -smoke.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -smoke.02 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -smuggle.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -snap.07 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -snatch.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -snow.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -soak.01 tp: 0 - fp: 1 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -soar.01 tp: 0 - fp: 2 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -socialize.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -soften.01 tp: 1 - fp: 0 - fn: 3 - tn: 1 - precision: 1.0000 - recall: 0.2500 - accuracy: 0.2500 - f1-score: 0.4000 -solicit.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -solidify.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -solve.01 tp: 15 - fp: 0 - fn: 0 - tn: 15 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -sort_out.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -sound.01 tp: 14 - fp: 0 - fn: 0 - tn: 14 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -sound.02 tp: 5 - fp: 5 - fn: 0 - tn: 5 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -sound_off.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -source.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -sow.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -space.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -span.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -spar.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -spark.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -spawn.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -speak.01 tp: 64 - fp: 1 - fn: 0 - tn: 64 - precision: 0.9846 - recall: 1.0000 - accuracy: 0.9846 - f1-score: 0.9922 -speak_out.03 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -speak_up.02 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -specialize.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -specify.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -speculate.01 tp: 17 - fp: 3 - fn: 0 - tn: 17 - precision: 0.8500 - recall: 1.0000 - accuracy: 0.8500 - f1-score: 0.9189 -speed.01 tp: 1 - fp: 1 - fn: 1 - tn: 1 - precision: 0.5000 - recall: 0.5000 - accuracy: 0.3333 - f1-score: 0.5000 -speed_up.02 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -spell.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -spend.01 tp: 13 - fp: 10 - fn: 2 - tn: 13 - precision: 0.5652 - recall: 0.8667 - accuracy: 0.5200 - f1-score: 0.6842 -spend.02 tp: 13 - fp: 1 - fn: 6 - tn: 13 - precision: 0.9286 - recall: 0.6842 - accuracy: 0.6500 - f1-score: 0.7879 -spew.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -spill.01 tp: 1 - fp: 2 - fn: 0 - tn: 1 - precision: 0.3333 - recall: 1.0000 - accuracy: 0.3333 - f1-score: 0.5000 -spill_out.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -spit.01 tp: 1 - fp: 6 - fn: 0 - tn: 1 - precision: 0.1429 - recall: 1.0000 - accuracy: 0.1429 - f1-score: 0.2501 -split.01 tp: 1 - fp: 2 - fn: 0 - tn: 1 - precision: 0.3333 - recall: 1.0000 - accuracy: 0.3333 - f1-score: 0.5000 -sponsor.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -spook.01 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -sport.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -spot.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -spotlight.01 tp: 2 - fp: 0 - fn: 1 - tn: 2 - precision: 1.0000 - recall: 0.6667 - accuracy: 0.6667 - f1-score: 0.8000 -sprawl.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -spray.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -spread.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -spread.02 tp: 4 - fp: 3 - fn: 2 - tn: 4 - precision: 0.5714 - recall: 0.6667 - accuracy: 0.4444 - f1-score: 0.6154 -spread.03 tp: 3 - fp: 3 - fn: 0 - tn: 3 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -sprinkle.01 tp: 0 - fp: 0 - fn: 4 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -spur.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -squeeze.01 tp: 0 - fp: 1 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -squeeze.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -stab.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -stabilize.01 tp: 2 - fp: 3 - fn: 0 - tn: 2 - precision: 0.4000 - recall: 1.0000 - accuracy: 0.4000 - f1-score: 0.5714 -stage.01 tp: 2 - fp: 0 - fn: 1 - tn: 2 - precision: 1.0000 - recall: 0.6667 - accuracy: 0.6667 - f1-score: 0.8000 -stagger.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -stain.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -stand.01 tp: 18 - fp: 6 - fn: 0 - tn: 18 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -stand.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -stand.04 tp: 3 - fp: 1 - fn: 4 - tn: 3 - precision: 0.7500 - recall: 0.4286 - accuracy: 0.3750 - f1-score: 0.5455 -stand.11 tp: 3 - fp: 0 - fn: 1 - tn: 3 - precision: 1.0000 - recall: 0.7500 - accuracy: 0.7500 - f1-score: 0.8571 -stand_by.05 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -stand_up.07 tp: 9 - fp: 1 - fn: 0 - tn: 9 - precision: 0.9000 - recall: 1.0000 - accuracy: 0.9000 - f1-score: 0.9474 -stare.01 tp: 2 - fp: 3 - fn: 0 - tn: 2 - precision: 0.4000 - recall: 1.0000 - accuracy: 0.4000 - f1-score: 0.5714 -start.01 tp: 58 - fp: 11 - fn: 1 - tn: 58 - precision: 0.8406 - recall: 0.9831 - accuracy: 0.8286 - f1-score: 0.9063 -start_off.02 tp: 0 - fp: 1 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -start_up.04 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -starve.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -state.01 tp: 38 - fp: 6 - fn: 0 - tn: 38 - precision: 0.8636 - recall: 1.0000 - accuracy: 0.8636 - f1-score: 0.9268 -station.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -stay.01 tp: 42 - fp: 3 - fn: 0 - tn: 42 - precision: 0.9333 - recall: 1.0000 - accuracy: 0.9333 - f1-score: 0.9655 -steal.01 tp: 11 - fp: 2 - fn: 1 - tn: 11 - precision: 0.8462 - recall: 0.9167 - accuracy: 0.7857 - f1-score: 0.8800 -stem.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -step.01 tp: 7 - fp: 5 - fn: 2 - tn: 7 - precision: 0.5833 - recall: 0.7778 - accuracy: 0.5000 - f1-score: 0.6667 -step_down.04 tp: 2 - fp: 1 - fn: 3 - tn: 2 - precision: 0.6667 - recall: 0.4000 - accuracy: 0.3333 - f1-score: 0.5000 -step_up.03 tp: 1 - fp: 0 - fn: 2 - tn: 1 - precision: 1.0000 - recall: 0.3333 - accuracy: 0.3333 - f1-score: 0.5000 -stick.01 tp: 3 - fp: 4 - fn: 0 - tn: 3 - precision: 0.4286 - recall: 1.0000 - accuracy: 0.4286 - f1-score: 0.6000 -stick_up.04 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -stimulate.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -sting.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -stipulate.01 tp: 5 - fp: 1 - fn: 0 - tn: 5 - precision: 0.8333 - recall: 1.0000 - accuracy: 0.8333 - f1-score: 0.9091 -stir.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -stir_up.04 tp: 1 - fp: 2 - fn: 0 - tn: 1 - precision: 0.3333 - recall: 1.0000 - accuracy: 0.3333 - f1-score: 0.5000 -stop.01 tp: 39 - fp: 4 - fn: 0 - tn: 39 - precision: 0.9070 - recall: 1.0000 - accuracy: 0.9070 - f1-score: 0.9512 -stop.03 tp: 3 - fp: 0 - fn: 2 - tn: 3 - precision: 1.0000 - recall: 0.6000 - accuracy: 0.6000 - f1-score: 0.7500 -store.01 tp: 3 - fp: 0 - fn: 1 - tn: 3 - precision: 1.0000 - recall: 0.7500 - accuracy: 0.7500 - f1-score: 0.8571 -storm.02 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -straighten_out.02 tp: 0 - fp: 4 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -strangle.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -strategize.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -streamline.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -strengthen.01 tp: 14 - fp: 1 - fn: 0 - tn: 14 - precision: 0.9333 - recall: 1.0000 - accuracy: 0.9333 - f1-score: 0.9655 -stress.01 tp: 5 - fp: 0 - fn: 0 - tn: 5 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -stretch.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -strew.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -strike.01 tp: 5 - fp: 3 - fn: 0 - tn: 5 - precision: 0.6250 - recall: 1.0000 - accuracy: 0.6250 - f1-score: 0.7692 -strike.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -strike.03 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -strike.04 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -strike.05 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -string.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -strip.01 tp: 6 - fp: 1 - fn: 0 - tn: 6 - precision: 0.8571 - recall: 1.0000 - accuracy: 0.8571 - f1-score: 0.9231 -strip_away.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -strive.01 tp: 6 - fp: 1 - fn: 0 - tn: 6 - precision: 0.8571 - recall: 1.0000 - accuracy: 0.8571 - f1-score: 0.9231 -stroll.01 tp: 2 - fp: 0 - fn: 1 - tn: 2 - precision: 1.0000 - recall: 0.6667 - accuracy: 0.6667 - f1-score: 0.8000 -struggle.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -struggle.02 tp: 3 - fp: 0 - fn: 2 - tn: 3 - precision: 1.0000 - recall: 0.6000 - accuracy: 0.6000 - f1-score: 0.7500 -study.01 tp: 21 - fp: 10 - fn: 0 - tn: 21 - precision: 0.6774 - recall: 1.0000 - accuracy: 0.6774 - f1-score: 0.8077 -stumble.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -stunt.02 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -stymie.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -subject.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -submit.01 tp: 4 - fp: 0 - fn: 0 - tn: 4 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -subscribe.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -subside.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -subside.02 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -substantiate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -substitute.01 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -succeed.01 tp: 23 - fp: 5 - fn: 1 - tn: 23 - precision: 0.8214 - recall: 0.9583 - accuracy: 0.7931 - f1-score: 0.8846 -succeed.02 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -succeed.03 tp: 0 - fp: 1 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -suck.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -sue.02 tp: 5 - fp: 1 - fn: 0 - tn: 5 - precision: 0.8333 - recall: 1.0000 - accuracy: 0.8333 - f1-score: 0.9091 -suffer.01 tp: 17 - fp: 1 - fn: 0 - tn: 17 - precision: 0.9444 - recall: 1.0000 - accuracy: 0.9444 - f1-score: 0.9714 -suffocate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -suggest.01 tp: 28 - fp: 0 - fn: 3 - tn: 28 - precision: 1.0000 - recall: 0.9032 - accuracy: 0.9032 - f1-score: 0.9491 -sum_up.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -summarize.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -summit.01 tp: 10 - fp: 2 - fn: 0 - tn: 10 - precision: 0.8333 - recall: 1.0000 - accuracy: 0.8333 - f1-score: 0.9091 -supervise.01 tp: 7 - fp: 0 - fn: 0 - tn: 7 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -supply.01 tp: 4 - fp: 4 - fn: 4 - tn: 4 - precision: 0.5000 - recall: 0.5000 - accuracy: 0.3333 - f1-score: 0.5000 -support.01 tp: 61 - fp: 5 - fn: 0 - tn: 61 - precision: 0.9242 - recall: 1.0000 - accuracy: 0.9242 - f1-score: 0.9606 -suppose.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -suppose.02 tp: 7 - fp: 0 - fn: 0 - tn: 7 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -suppress.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -surge.01 tp: 4 - fp: 1 - fn: 0 - tn: 4 - precision: 0.8000 - recall: 1.0000 - accuracy: 0.8000 - f1-score: 0.8889 -surpass.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -surprise.01 tp: 3 - fp: 4 - fn: 3 - tn: 3 - precision: 0.4286 - recall: 0.5000 - accuracy: 0.3000 - f1-score: 0.4616 -surrender.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -surround.01 tp: 4 - fp: 1 - fn: 0 - tn: 4 - precision: 0.8000 - recall: 1.0000 - accuracy: 0.8000 - f1-score: 0.8889 -survey.01 tp: 7 - fp: 4 - fn: 0 - tn: 7 - precision: 0.6364 - recall: 1.0000 - accuracy: 0.6364 - f1-score: 0.7778 -survive.01 tp: 12 - fp: 1 - fn: 0 - tn: 12 - precision: 0.9231 - recall: 1.0000 - accuracy: 0.9231 - f1-score: 0.9600 -survive.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -suspect.01 tp: 5 - fp: 0 - fn: 3 - tn: 5 - precision: 1.0000 - recall: 0.6250 - accuracy: 0.6250 - f1-score: 0.7692 -suspend.01 tp: 5 - fp: 0 - fn: 2 - tn: 5 - precision: 1.0000 - recall: 0.7143 - accuracy: 0.7143 - f1-score: 0.8333 -suspension.03 tp: 0 - fp: 2 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -sustain.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -swallow.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -swamp.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -swap.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -swear.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -sweat.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -sweep.01 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -sweep.02 tp: 0 - fp: 2 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -swell.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -swing.02 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -swing.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -swirl.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -switch.01 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -switch_over.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -swoop_up.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -sympathize.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -syncopate.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -syndicate.01 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -taboo.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -tackle.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -tag.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -taint.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -take.01 tp: 145 - fp: 45 - fn: 15 - tn: 145 - precision: 0.7632 - recall: 0.9062 - accuracy: 0.7073 - f1-score: 0.8286 -take.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -take.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -take.04 tp: 0 - fp: 0 - fn: 4 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -take.10 tp: 18 - fp: 2 - fn: 2 - tn: 18 - precision: 0.9000 - recall: 0.9000 - accuracy: 0.8182 - f1-score: 0.9000 -take.14 tp: 12 - fp: 0 - fn: 0 - tn: 12 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -take.17 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -take.LV tp: 11 - fp: 14 - fn: 20 - tn: 11 - precision: 0.4400 - recall: 0.3548 - accuracy: 0.2444 - f1-score: 0.3928 -take_away.05 tp: 0 - fp: 1 - fn: 6 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -take_down.22 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -take_off.07 tp: 0 - fp: 6 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -take_off.18 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -take_off.19 tp: 0 - fp: 0 - fn: 4 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -take_on.09 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -take_on.21 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -take_out.11 tp: 3 - fp: 1 - fn: 2 - tn: 3 - precision: 0.7500 - recall: 0.6000 - accuracy: 0.5000 - f1-score: 0.6667 -take_over.12 tp: 7 - fp: 3 - fn: 8 - tn: 7 - precision: 0.7000 - recall: 0.4667 - accuracy: 0.3889 - f1-score: 0.5600 -take_up.13 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -take_up.30 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -take_up.31 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -talk.01 tp: 156 - fp: 4 - fn: 3 - tn: 156 - precision: 0.9750 - recall: 0.9811 - accuracy: 0.9571 - f1-score: 0.9780 -tally.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -tame.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -tamper.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -tangle.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -tank.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -target.01 tp: 5 - fp: 0 - fn: 0 - tn: 5 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -task.01 tp: 8 - fp: 0 - fn: 0 - tn: 8 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -taste.01 tp: 3 - fp: 0 - fn: 1 - tn: 3 - precision: 1.0000 - recall: 0.7500 - accuracy: 0.7500 - f1-score: 0.8571 -tax.01 tp: 4 - fp: 2 - fn: 0 - tn: 4 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -teach.01 tp: 10 - fp: 1 - fn: 0 - tn: 10 - precision: 0.9091 - recall: 1.0000 - accuracy: 0.9091 - f1-score: 0.9524 -tear.01 tp: 4 - fp: 3 - fn: 1 - tn: 4 - precision: 0.5714 - recall: 0.8000 - accuracy: 0.5000 - f1-score: 0.6666 -tear_down.05 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -telecommunicate.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -televise.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -tell.01 tp: 176 - fp: 5 - fn: 0 - tn: 176 - precision: 0.9724 - recall: 1.0000 - accuracy: 0.9724 - f1-score: 0.9860 -tell.02 tp: 1 - fp: 0 - fn: 3 - tn: 1 - precision: 1.0000 - recall: 0.2500 - accuracy: 0.2500 - f1-score: 0.4000 -tempt.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -tend.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -tend.02 tp: 6 - fp: 1 - fn: 0 - tn: 6 - precision: 0.8571 - recall: 1.0000 - accuracy: 0.8571 - f1-score: 0.9231 -term.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -terminate.01 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -terrify.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -terror.02 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -terrorize.01 tp: 11 - fp: 1 - fn: 0 - tn: 11 - precision: 0.9167 - recall: 1.0000 - accuracy: 0.9167 - f1-score: 0.9565 -test.01 tp: 42 - fp: 10 - fn: 0 - tn: 42 - precision: 0.8077 - recall: 1.0000 - accuracy: 0.8077 - f1-score: 0.8936 -testify.01 tp: 22 - fp: 0 - fn: 0 - tn: 22 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -thank.01 tp: 30 - fp: 3 - fn: 0 - tn: 30 - precision: 0.9091 - recall: 1.0000 - accuracy: 0.9091 - f1-score: 0.9524 -thicken.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -think.01 tp: 320 - fp: 1 - fn: 0 - tn: 320 - precision: 0.9969 - recall: 1.0000 - accuracy: 0.9969 - f1-score: 0.9984 -threaten.01 tp: 11 - fp: 3 - fn: 0 - tn: 11 - precision: 0.7857 - recall: 1.0000 - accuracy: 0.7857 - f1-score: 0.8800 -thrill.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -thrive.01 tp: 1 - fp: 1 - fn: 1 - tn: 1 - precision: 0.5000 - recall: 0.5000 - accuracy: 0.3333 - f1-score: 0.5000 -throttle.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -throw.01 tp: 19 - fp: 2 - fn: 0 - tn: 19 - precision: 0.9048 - recall: 1.0000 - accuracy: 0.9048 - f1-score: 0.9500 -throw.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -throw_away.07 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -thrust.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -thwart.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -tick_off.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -tide.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -tidy_up.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -tie.01 tp: 4 - fp: 1 - fn: 0 - tn: 4 - precision: 0.8000 - recall: 1.0000 - accuracy: 0.8000 - f1-score: 0.8889 -tie_in.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -tie_up.04 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -tighten.01 tp: 4 - fp: 3 - fn: 0 - tn: 4 - precision: 0.5714 - recall: 1.0000 - accuracy: 0.5714 - f1-score: 0.7272 -till.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -time.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -time.02 tp: 2 - fp: 0 - fn: 1 - tn: 2 - precision: 1.0000 - recall: 0.6667 - accuracy: 0.6667 - f1-score: 0.8000 -tinker.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -tip.05 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -title.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -toast.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -tolerate.01 tp: 6 - fp: 0 - fn: 0 - tn: 6 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -tomb.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -tone_down.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -top.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -top.02 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -topple.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -torture.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -total.01 tp: 4 - fp: 0 - fn: 1 - tn: 4 - precision: 1.0000 - recall: 0.8000 - accuracy: 0.8000 - f1-score: 0.8889 -touch.01 tp: 6 - fp: 3 - fn: 0 - tn: 6 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -tour.01 tp: 3 - fp: 0 - fn: 1 - tn: 3 - precision: 1.0000 - recall: 0.7500 - accuracy: 0.7500 - f1-score: 0.8571 -tow.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -trace.02 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -track.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -track_down.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -trade.01 tp: 79 - fp: 20 - fn: 3 - tn: 79 - precision: 0.7980 - recall: 0.9634 - accuracy: 0.7745 - f1-score: 0.8729 -trail.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -train.01 tp: 5 - fp: 5 - fn: 0 - tn: 5 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -transact.01 tp: 15 - fp: 1 - fn: 0 - tn: 15 - precision: 0.9375 - recall: 1.0000 - accuracy: 0.9375 - f1-score: 0.9677 -transfer.01 tp: 6 - fp: 0 - fn: 0 - tn: 6 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -transform.01 tp: 4 - fp: 3 - fn: 0 - tn: 4 - precision: 0.5714 - recall: 1.0000 - accuracy: 0.5714 - f1-score: 0.7272 -transit.01 tp: 0 - fp: 1 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -translate.01 tp: 13 - fp: 0 - fn: 0 - tn: 13 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -transmit.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -transplant.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -transport.01 tp: 10 - fp: 5 - fn: 0 - tn: 10 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -trap.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -traumatize.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -travel.01 tp: 13 - fp: 2 - fn: 0 - tn: 13 - precision: 0.8667 - recall: 1.0000 - accuracy: 0.8667 - f1-score: 0.9286 -treasure.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -treat.01 tp: 9 - fp: 2 - fn: 1 - tn: 9 - precision: 0.8182 - recall: 0.9000 - accuracy: 0.7500 - f1-score: 0.8572 -treat.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -treat.03 tp: 2 - fp: 1 - fn: 1 - tn: 2 - precision: 0.6667 - recall: 0.6667 - accuracy: 0.5000 - f1-score: 0.6667 -trial.06 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -trick.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -trickle.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -trigger.01 tp: 5 - fp: 0 - fn: 0 - tn: 5 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -trip.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -trip.03 tp: 9 - fp: 5 - fn: 0 - tn: 9 - precision: 0.6429 - recall: 1.0000 - accuracy: 0.6429 - f1-score: 0.7826 -triple.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -triumph.01 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -trouble.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -trounce.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -trust.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -trust.02 tp: 8 - fp: 3 - fn: 0 - tn: 8 - precision: 0.7273 - recall: 1.0000 - accuracy: 0.7273 - f1-score: 0.8421 -try.01 tp: 100 - fp: 4 - fn: 0 - tn: 100 - precision: 0.9615 - recall: 1.0000 - accuracy: 0.9615 - f1-score: 0.9804 -try.02 tp: 9 - fp: 10 - fn: 2 - tn: 9 - precision: 0.4737 - recall: 0.8182 - accuracy: 0.4286 - f1-score: 0.6000 -try.04 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -tuck_in.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -tumble.01 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -tune.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -tune_in.02 tp: 1 - fp: 0 - fn: 1 - tn: 1 - precision: 1.0000 - recall: 0.5000 - accuracy: 0.5000 - f1-score: 0.6667 -turmoil.01 tp: 5 - fp: 0 - fn: 0 - tn: 5 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -turn.01 tp: 25 - fp: 19 - fn: 4 - tn: 25 - precision: 0.5682 - recall: 0.8621 - accuracy: 0.5208 - f1-score: 0.6850 -turn.02 tp: 5 - fp: 5 - fn: 11 - tn: 5 - precision: 0.5000 - recall: 0.3125 - accuracy: 0.2381 - f1-score: 0.3846 -turn.14 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -turn_down.05 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -turn_in.06 tp: 0 - fp: 0 - fn: 6 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -turn_out.10 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -turn_out.11 tp: 8 - fp: 1 - fn: 0 - tn: 8 - precision: 0.8889 - recall: 1.0000 - accuracy: 0.8889 - f1-score: 0.9412 -turn_out.17 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -turn_over.12 tp: 0 - fp: 0 - fn: 4 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -twist.01 tp: 0 - fp: 1 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -uncover.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -undercut.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -undergo.28 tp: 5 - fp: 0 - fn: 0 - tn: 5 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -underlie.01 tp: 0 - fp: 4 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -undermine.01 tp: 4 - fp: 0 - fn: 0 - tn: 4 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -underpin.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -understand.01 tp: 30 - fp: 1 - fn: 0 - tn: 30 - precision: 0.9677 - recall: 1.0000 - accuracy: 0.9677 - f1-score: 0.9836 -undertake.01 tp: 1 - fp: 1 - fn: 1 - tn: 1 - precision: 0.5000 - recall: 0.5000 - accuracy: 0.3333 - f1-score: 0.5000 -underwrite.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -unfold.02 tp: 2 - fp: 2 - fn: 0 - tn: 2 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -unify.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -union.02 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -unleash.01 tp: 0 - fp: 1 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -unload.02 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -unseal.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -untie.01 tp: 3 - fp: 4 - fn: 0 - tn: 3 - precision: 0.4286 - recall: 1.0000 - accuracy: 0.4286 - f1-score: 0.6000 -unveil.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -update.01 tp: 6 - fp: 2 - fn: 0 - tn: 6 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -upgrade.02 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -uphold.01 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -upset.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -urge.01 tp: 8 - fp: 0 - fn: 0 - tn: 8 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -use.01 tp: 142 - fp: 10 - fn: 1 - tn: 142 - precision: 0.9342 - recall: 0.9930 - accuracy: 0.9281 - f1-score: 0.9627 -use.03 tp: 9 - fp: 1 - fn: 0 - tn: 9 - precision: 0.9000 - recall: 1.0000 - accuracy: 0.9000 - f1-score: 0.9474 -use_up.04 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -utilize.01 tp: 18 - fp: 2 - fn: 0 - tn: 18 - precision: 0.9000 - recall: 1.0000 - accuracy: 0.9000 - f1-score: 0.9474 -utter.01 tp: 0 - fp: 1 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -vacate.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -vacation.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -value.01 tp: 0 - fp: 2 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -value.02 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -vandalize.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -vanish.01 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -vary.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -venture.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -verify.01 tp: 3 - fp: 0 - fn: 2 - tn: 3 - precision: 1.0000 - recall: 0.6000 - accuracy: 0.6000 - f1-score: 0.7500 -veto.01 tp: 1 - fp: 2 - fn: 0 - tn: 1 - precision: 0.3333 - recall: 1.0000 - accuracy: 0.3333 - f1-score: 0.5000 -vex.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -victimize.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -victory.01 tp: 16 - fp: 1 - fn: 0 - tn: 16 - precision: 0.9412 - recall: 1.0000 - accuracy: 0.9412 - f1-score: 0.9697 -vie.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -view.01 tp: 1 - fp: 0 - fn: 4 - tn: 1 - precision: 1.0000 - recall: 0.2000 - accuracy: 0.2000 - f1-score: 0.3333 -view.02 tp: 28 - fp: 4 - fn: 0 - tn: 28 - precision: 0.8750 - recall: 1.0000 - accuracy: 0.8750 - f1-score: 0.9333 -violate.01 tp: 12 - fp: 3 - fn: 0 - tn: 12 - precision: 0.8000 - recall: 1.0000 - accuracy: 0.8000 - f1-score: 0.8889 -violent.01 tp: 14 - fp: 3 - fn: 0 - tn: 14 - precision: 0.8235 - recall: 1.0000 - accuracy: 0.8235 - f1-score: 0.9032 -visit.01 tp: 25 - fp: 1 - fn: 1 - tn: 25 - precision: 0.9615 - recall: 0.9615 - accuracy: 0.9259 - f1-score: 0.9615 -voice.01 tp: 26 - fp: 2 - fn: 0 - tn: 26 - precision: 0.9286 - recall: 1.0000 - accuracy: 0.9286 - f1-score: 0.9630 -volunteer.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -vote.01 tp: 23 - fp: 7 - fn: 0 - tn: 23 - precision: 0.7667 - recall: 1.0000 - accuracy: 0.7667 - f1-score: 0.8679 -vow.01 tp: 3 - fp: 0 - fn: 0 - tn: 3 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -wage.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -wait.01 tp: 27 - fp: 4 - fn: 0 - tn: 27 - precision: 0.8710 - recall: 1.0000 - accuracy: 0.8710 - f1-score: 0.9311 -wait_out.03 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -waive.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -wake.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -wake_up.02 tp: 2 - fp: 2 - fn: 0 - tn: 2 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -walk.01 tp: 31 - fp: 2 - fn: 0 - tn: 31 - precision: 0.9394 - recall: 1.0000 - accuracy: 0.9394 - f1-score: 0.9688 -wallow.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -wander.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -want.01 tp: 206 - fp: 0 - fn: 1 - tn: 206 - precision: 1.0000 - recall: 0.9952 - accuracy: 0.9952 - f1-score: 0.9976 -war.01 tp: 36 - fp: 10 - fn: 1 - tn: 36 - precision: 0.7826 - recall: 0.9730 - accuracy: 0.7660 - f1-score: 0.8675 -warm.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -warm_up.02 tp: 0 - fp: 1 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -warn.01 tp: 17 - fp: 6 - fn: 0 - tn: 17 - precision: 0.7391 - recall: 1.0000 - accuracy: 0.7391 - f1-score: 0.8500 -wash.01 tp: 8 - fp: 4 - fn: 2 - tn: 8 - precision: 0.6667 - recall: 0.8000 - accuracy: 0.5714 - f1-score: 0.7273 -wash.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -waste.01 tp: 2 - fp: 1 - fn: 2 - tn: 2 - precision: 0.6667 - recall: 0.5000 - accuracy: 0.4000 - f1-score: 0.5714 -watch.01 tp: 33 - fp: 3 - fn: 0 - tn: 33 - precision: 0.9167 - recall: 1.0000 - accuracy: 0.9167 - f1-score: 0.9565 -watch_out.02 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -wave.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -wave.04 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -weaken.01 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -wean.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -wear.01 tp: 14 - fp: 0 - fn: 0 - tn: 14 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -wear_out.03 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -weave.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -wedge.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -weep.01 tp: 0 - fp: 0 - fn: 3 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -weigh.02 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -weigh_in.03 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -welcome.01 tp: 20 - fp: 4 - fn: 1 - tn: 20 - precision: 0.8333 - recall: 0.9524 - accuracy: 0.8000 - f1-score: 0.8889 -wheel.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -whip.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -whip_out.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -widen.01 tp: 2 - fp: 2 - fn: 0 - tn: 2 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -wield.01 tp: 2 - fp: 1 - fn: 0 - tn: 2 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -will.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -win.01 tp: 23 - fp: 3 - fn: 0 - tn: 23 - precision: 0.8846 - recall: 1.0000 - accuracy: 0.8846 - f1-score: 0.9388 -win_over.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -wince.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -wind_down.04 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -wind_up.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -wipe_out.02 tp: 0 - fp: 2 - fn: 0 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -wire.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -wish.01 tp: 15 - fp: 3 - fn: 0 - tn: 15 - precision: 0.8333 - recall: 1.0000 - accuracy: 0.8333 - f1-score: 0.9091 -withdraw.01 tp: 8 - fp: 4 - fn: 0 - tn: 8 - precision: 0.6667 - recall: 1.0000 - accuracy: 0.6667 - f1-score: 0.8000 -withdrawal.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -withhold.01 tp: 4 - fp: 0 - fn: 1 - tn: 4 - precision: 1.0000 - recall: 0.8000 - accuracy: 0.8000 - f1-score: 0.8889 -withstand.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -witness.01 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -wonder.01 tp: 10 - fp: 0 - fn: 0 - tn: 10 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -woo.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -work.01 tp: 104 - fp: 24 - fn: 9 - tn: 104 - precision: 0.8125 - recall: 0.9204 - accuracy: 0.7591 - f1-score: 0.8631 -work.06 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -work.07 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -work.09 tp: 6 - fp: 1 - fn: 9 - tn: 6 - precision: 0.8571 - recall: 0.4000 - accuracy: 0.3750 - f1-score: 0.5454 -work.13 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -work_out.02 tp: 3 - fp: 1 - fn: 0 - tn: 3 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -work_out.03 tp: 1 - fp: 0 - fn: 0 - tn: 1 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -worry.01 tp: 2 - fp: 5 - fn: 3 - tn: 2 - precision: 0.2857 - recall: 0.4000 - accuracy: 0.2000 - f1-score: 0.3333 -worry.02 tp: 5 - fp: 4 - fn: 1 - tn: 5 - precision: 0.5556 - recall: 0.8333 - accuracy: 0.5000 - f1-score: 0.6667 -worsen.01 tp: 2 - fp: 0 - fn: 0 - tn: 2 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -worship.01 tp: 11 - fp: 3 - fn: 0 - tn: 11 - precision: 0.7857 - recall: 1.0000 - accuracy: 0.7857 - f1-score: 0.8800 -wound.01 tp: 6 - fp: 0 - fn: 0 - tn: 6 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - f1-score: 1.0000 -wrap.01 tp: 2 - fp: 2 - fn: 1 - tn: 2 - precision: 0.5000 - recall: 0.6667 - accuracy: 0.4000 - f1-score: 0.5714 -wrap_up.02 tp: 2 - fp: 3 - fn: 0 - tn: 2 - precision: 0.4000 - recall: 1.0000 - accuracy: 0.4000 - f1-score: 0.5714 -wreak.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -wreck.01 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -wrestle.01 tp: 0 - fp: 0 - fn: 2 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -write.01 tp: 62 - fp: 9 - fn: 0 - tn: 62 - precision: 0.8732 - recall: 1.0000 - accuracy: 0.8732 - f1-score: 0.9323 -write_down.03 tp: 1 - fp: 1 - fn: 0 - tn: 1 - precision: 0.5000 - recall: 1.0000 - accuracy: 0.5000 - f1-score: 0.6667 -write_up.07 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -yearn.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -yield.01 tp: 3 - fp: 1 - fn: 0 - tn: 3 - precision: 0.7500 - recall: 1.0000 - accuracy: 0.7500 - f1-score: 0.8571 -yield.02 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -zap.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -zip.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -zoom.01 tp: 0 - fp: 0 - fn: 1 - tn: 0 - precision: 0.0000 - recall: 0.0000 - accuracy: 0.0000 - f1-score: 0.0000 -2019-08-19 22:35:39,659 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:32:47,868 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:32:47,868 Corpus: "Corpus: 75187 train + 9603 dev + 9479 test sentences" +2023-04-05 22:32:47,868 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:32:47,868 Parameters: +2023-04-05 22:32:47,868 - learning_rate: "0.100000" +2023-04-05 22:32:47,868 - mini_batch_size: "32" +2023-04-05 22:32:47,868 - patience: "3" +2023-04-05 22:32:47,868 - anneal_factor: "0.5" +2023-04-05 22:32:47,868 - max_epochs: "150" +2023-04-05 22:32:47,868 - shuffle: "True" +2023-04-05 22:32:47,868 - train_with_dev: "True" +2023-04-05 22:32:47,868 - batch_growth_annealing: "False" +2023-04-05 22:32:47,868 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:32:47,868 Model training base path: "resources/taggers/release-frame-fast-0" +2023-04-05 22:32:47,868 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:32:47,868 Device: cuda:2 +2023-04-05 22:32:47,868 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:32:47,868 Embeddings storage mode: cpu +2023-04-05 22:32:47,868 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:32:58,985 epoch 1 - iter 265/2650 - loss 1.12438219 - time (sec): 11.12 - samples/sec: 5803.04 - lr: 0.100000 +2023-04-05 22:33:16,574 epoch 1 - iter 530/2650 - loss 0.98417942 - time (sec): 28.71 - samples/sec: 7721.42 - lr: 0.100000 +2023-04-05 22:33:39,419 epoch 1 - iter 795/2650 - loss 0.89767603 - time (sec): 51.55 - samples/sec: 7715.35 - lr: 0.100000 +2023-04-05 22:33:57,325 epoch 1 - iter 1060/2650 - loss 0.85403968 - time (sec): 69.46 - samples/sec: 8001.12 - lr: 0.100000 +2023-04-05 22:34:09,998 epoch 1 - iter 1325/2650 - loss 0.77235053 - time (sec): 82.13 - samples/sec: 8226.57 - lr: 0.100000 +2023-04-05 22:34:28,577 epoch 1 - iter 1590/2650 - loss 0.70982659 - time (sec): 100.71 - samples/sec: 8098.94 - lr: 0.100000 +2023-04-05 22:34:51,758 epoch 1 - iter 1855/2650 - loss 0.68554008 - time (sec): 123.89 - samples/sec: 8317.39 - lr: 0.100000 +2023-04-05 22:35:10,618 epoch 1 - iter 2120/2650 - loss 0.66231260 - time (sec): 142.75 - samples/sec: 8431.99 - lr: 0.100000 +2023-04-05 22:35:28,348 epoch 1 - iter 2385/2650 - loss 0.63883293 - time (sec): 160.48 - samples/sec: 8206.46 - lr: 0.100000 +2023-04-05 22:35:47,113 epoch 1 - iter 2650/2650 - loss 0.61853870 - time (sec): 179.24 - samples/sec: 8222.40 - lr: 0.100000 +2023-04-05 22:35:47,114 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:35:47,114 EPOCH 1 done: loss 0.6185 - lr 0.100000 +2023-04-05 22:35:47,114 BAD EPOCHS (no improvement): 0 +2023-04-05 22:35:47,117 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:35:55,782 epoch 2 - iter 265/2650 - loss 0.40745221 - time (sec): 8.66 - samples/sec: 17226.53 - lr: 0.100000 +2023-04-05 22:36:04,398 epoch 2 - iter 530/2650 - loss 0.39668787 - time (sec): 17.28 - samples/sec: 17204.32 - lr: 0.100000 +2023-04-05 22:36:12,960 epoch 2 - iter 795/2650 - loss 0.39145792 - time (sec): 25.84 - samples/sec: 17186.15 - lr: 0.100000 +2023-04-05 22:36:21,527 epoch 2 - iter 1060/2650 - loss 0.38471664 - time (sec): 34.41 - samples/sec: 17178.27 - lr: 0.100000 +2023-04-05 22:36:30,115 epoch 2 - iter 1325/2650 - loss 0.37856073 - time (sec): 43.00 - samples/sec: 17171.20 - lr: 0.100000 +2023-04-05 22:36:38,735 epoch 2 - iter 1590/2650 - loss 0.37263791 - time (sec): 51.62 - samples/sec: 17161.95 - lr: 0.100000 +2023-04-05 22:36:47,436 epoch 2 - iter 1855/2650 - loss 0.36797653 - time (sec): 60.32 - samples/sec: 17152.73 - lr: 0.100000 +2023-04-05 22:36:56,007 epoch 2 - iter 2120/2650 - loss 0.36277914 - time (sec): 68.89 - samples/sec: 17147.99 - lr: 0.100000 +2023-04-05 22:37:04,546 epoch 2 - iter 2385/2650 - loss 0.35822346 - time (sec): 77.43 - samples/sec: 17143.18 - lr: 0.100000 +2023-04-05 22:37:13,123 epoch 2 - iter 2650/2650 - loss 0.35425150 - time (sec): 86.01 - samples/sec: 17136.43 - lr: 0.100000 +2023-04-05 22:37:13,123 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:37:13,123 EPOCH 2 done: loss 0.3543 - lr 0.100000 +2023-04-05 22:37:13,123 BAD EPOCHS (no improvement): 0 +2023-04-05 22:37:13,126 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:37:21,735 epoch 3 - iter 265/2650 - loss 0.29647037 - time (sec): 8.61 - samples/sec: 17174.44 - lr: 0.100000 +2023-04-05 22:37:30,304 epoch 3 - iter 530/2650 - loss 0.29626979 - time (sec): 17.18 - samples/sec: 17193.07 - lr: 0.100000 +2023-04-05 22:37:38,914 epoch 3 - iter 795/2650 - loss 0.29380498 - time (sec): 25.79 - samples/sec: 17173.28 - lr: 0.100000 +2023-04-05 22:37:47,564 epoch 3 - iter 1060/2650 - loss 0.29359593 - time (sec): 34.44 - samples/sec: 17149.34 - lr: 0.100000 +2023-04-05 22:37:56,171 epoch 3 - iter 1325/2650 - loss 0.29267314 - time (sec): 43.04 - samples/sec: 17155.66 - lr: 0.100000 +2023-04-05 22:38:04,722 epoch 3 - iter 1590/2650 - loss 0.29257926 - time (sec): 51.60 - samples/sec: 17140.40 - lr: 0.100000 +2023-04-05 22:38:13,362 epoch 3 - iter 1855/2650 - loss 0.29084045 - time (sec): 60.24 - samples/sec: 17137.29 - lr: 0.100000 +2023-04-05 22:38:22,058 epoch 3 - iter 2120/2650 - loss 0.28875902 - time (sec): 68.93 - samples/sec: 17119.05 - lr: 0.100000 +2023-04-05 22:38:30,573 epoch 3 - iter 2385/2650 - loss 0.28732910 - time (sec): 77.45 - samples/sec: 17126.27 - lr: 0.100000 +2023-04-05 22:38:39,168 epoch 3 - iter 2650/2650 - loss 0.28471893 - time (sec): 86.04 - samples/sec: 17129.25 - lr: 0.100000 +2023-04-05 22:38:39,168 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:38:39,168 EPOCH 3 done: loss 0.2847 - lr 0.100000 +2023-04-05 22:38:39,168 BAD EPOCHS (no improvement): 0 +2023-04-05 22:38:39,172 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:38:47,768 epoch 4 - iter 265/2650 - loss 0.26333959 - time (sec): 8.60 - samples/sec: 17218.02 - lr: 0.100000 +2023-04-05 22:38:56,420 epoch 4 - iter 530/2650 - loss 0.26217528 - time (sec): 17.25 - samples/sec: 17128.23 - lr: 0.100000 +2023-04-05 22:39:05,033 epoch 4 - iter 795/2650 - loss 0.25926388 - time (sec): 25.86 - samples/sec: 17146.40 - lr: 0.100000 +2023-04-05 22:39:13,617 epoch 4 - iter 1060/2650 - loss 0.25587629 - time (sec): 34.45 - samples/sec: 17151.47 - lr: 0.100000 +2023-04-05 22:39:22,257 epoch 4 - iter 1325/2650 - loss 0.25564479 - time (sec): 43.09 - samples/sec: 17141.33 - lr: 0.100000 +2023-04-05 22:39:30,911 epoch 4 - iter 1590/2650 - loss 0.25509381 - time (sec): 51.74 - samples/sec: 17139.89 - lr: 0.100000 +2023-04-05 22:39:39,408 epoch 4 - iter 1855/2650 - loss 0.25378053 - time (sec): 60.24 - samples/sec: 17144.19 - lr: 0.100000 +2023-04-05 22:39:48,008 epoch 4 - iter 2120/2650 - loss 0.25339510 - time (sec): 68.84 - samples/sec: 17139.00 - lr: 0.100000 +2023-04-05 22:39:56,770 epoch 4 - iter 2385/2650 - loss 0.25231214 - time (sec): 77.60 - samples/sec: 17124.26 - lr: 0.100000 +2023-04-05 22:40:05,242 epoch 4 - iter 2650/2650 - loss 0.25114362 - time (sec): 86.07 - samples/sec: 17123.53 - lr: 0.100000 +2023-04-05 22:40:05,242 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:40:05,242 EPOCH 4 done: loss 0.2511 - lr 0.100000 +2023-04-05 22:40:05,242 BAD EPOCHS (no improvement): 0 +2023-04-05 22:40:05,246 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:40:13,716 epoch 5 - iter 265/2650 - loss 0.23912119 - time (sec): 8.47 - samples/sec: 17220.08 - lr: 0.100000 +2023-04-05 22:40:22,236 epoch 5 - iter 530/2650 - loss 0.23612943 - time (sec): 16.99 - samples/sec: 17242.09 - lr: 0.100000 +2023-04-05 22:40:30,874 epoch 5 - iter 795/2650 - loss 0.23514276 - time (sec): 25.63 - samples/sec: 17195.33 - lr: 0.100000 +2023-04-05 22:40:39,429 epoch 5 - iter 1060/2650 - loss 0.23387189 - time (sec): 34.18 - samples/sec: 17185.70 - lr: 0.100000 +2023-04-05 22:40:51,844 epoch 5 - iter 1325/2650 - loss 0.23393027 - time (sec): 46.60 - samples/sec: 15780.86 - lr: 0.100000 +2023-04-05 22:41:00,390 epoch 5 - iter 1590/2650 - loss 0.23387672 - time (sec): 55.14 - samples/sec: 16016.20 - lr: 0.100000 +2023-04-05 22:41:09,037 epoch 5 - iter 1855/2650 - loss 0.23324367 - time (sec): 63.79 - samples/sec: 16178.11 - lr: 0.100000 +2023-04-05 22:41:17,650 epoch 5 - iter 2120/2650 - loss 0.23255760 - time (sec): 72.40 - samples/sec: 16285.11 - lr: 0.100000 +2023-04-05 22:41:26,254 epoch 5 - iter 2385/2650 - loss 0.23166331 - time (sec): 81.01 - samples/sec: 16372.08 - lr: 0.100000 +2023-04-05 22:41:34,955 epoch 5 - iter 2650/2650 - loss 0.23117349 - time (sec): 89.71 - samples/sec: 16429.04 - lr: 0.100000 +2023-04-05 22:41:34,955 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:41:34,955 EPOCH 5 done: loss 0.2312 - lr 0.100000 +2023-04-05 22:41:34,955 BAD EPOCHS (no improvement): 0 +2023-04-05 22:41:34,960 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:41:43,403 epoch 6 - iter 265/2650 - loss 0.21970814 - time (sec): 8.44 - samples/sec: 17189.39 - lr: 0.100000 +2023-04-05 22:41:51,868 epoch 6 - iter 530/2650 - loss 0.21904332 - time (sec): 16.91 - samples/sec: 17182.41 - lr: 0.100000 +2023-04-05 22:42:00,500 epoch 6 - iter 795/2650 - loss 0.21961238 - time (sec): 25.54 - samples/sec: 17161.26 - lr: 0.100000 +2023-04-05 22:42:09,120 epoch 6 - iter 1060/2650 - loss 0.21982148 - time (sec): 34.16 - samples/sec: 17155.98 - lr: 0.100000 +2023-04-05 22:42:17,767 epoch 6 - iter 1325/2650 - loss 0.21881650 - time (sec): 42.81 - samples/sec: 17172.03 - lr: 0.100000 +2023-04-05 22:42:26,305 epoch 6 - iter 1590/2650 - loss 0.21791045 - time (sec): 51.34 - samples/sec: 17192.73 - lr: 0.100000 +2023-04-05 22:42:34,891 epoch 6 - iter 1855/2650 - loss 0.21705030 - time (sec): 59.93 - samples/sec: 17200.68 - lr: 0.100000 +2023-04-05 22:42:43,474 epoch 6 - iter 2120/2650 - loss 0.21669456 - time (sec): 68.51 - samples/sec: 17188.43 - lr: 0.100000 +2023-04-05 22:42:52,063 epoch 6 - iter 2385/2650 - loss 0.21673848 - time (sec): 77.10 - samples/sec: 17195.54 - lr: 0.100000 +2023-04-05 22:43:00,746 epoch 6 - iter 2650/2650 - loss 0.21602253 - time (sec): 85.79 - samples/sec: 17180.13 - lr: 0.100000 +2023-04-05 22:43:00,747 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:43:00,747 EPOCH 6 done: loss 0.2160 - lr 0.100000 +2023-04-05 22:43:00,747 BAD EPOCHS (no improvement): 0 +2023-04-05 22:43:00,750 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:43:09,444 epoch 7 - iter 265/2650 - loss 0.20674917 - time (sec): 8.69 - samples/sec: 17178.83 - lr: 0.100000 +2023-04-05 22:43:17,953 epoch 7 - iter 530/2650 - loss 0.20706333 - time (sec): 17.20 - samples/sec: 17189.80 - lr: 0.100000 +2023-04-05 22:43:26,493 epoch 7 - iter 795/2650 - loss 0.20761500 - time (sec): 25.74 - samples/sec: 17238.48 - lr: 0.100000 +2023-04-05 22:43:35,005 epoch 7 - iter 1060/2650 - loss 0.20672667 - time (sec): 34.26 - samples/sec: 17220.51 - lr: 0.100000 +2023-04-05 22:43:43,405 epoch 7 - iter 1325/2650 - loss 0.20602373 - time (sec): 42.65 - samples/sec: 17209.62 - lr: 0.100000 +2023-04-05 22:43:51,926 epoch 7 - iter 1590/2650 - loss 0.20616252 - time (sec): 51.18 - samples/sec: 17211.32 - lr: 0.100000 +2023-04-05 22:44:00,534 epoch 7 - iter 1855/2650 - loss 0.20568643 - time (sec): 59.78 - samples/sec: 17219.75 - lr: 0.100000 +2023-04-05 22:44:09,182 epoch 7 - iter 2120/2650 - loss 0.20551869 - time (sec): 68.43 - samples/sec: 17212.09 - lr: 0.100000 +2023-04-05 22:44:17,834 epoch 7 - iter 2385/2650 - loss 0.20529618 - time (sec): 77.08 - samples/sec: 17202.50 - lr: 0.100000 +2023-04-05 22:44:26,401 epoch 7 - iter 2650/2650 - loss 0.20519561 - time (sec): 85.65 - samples/sec: 17207.29 - lr: 0.100000 +2023-04-05 22:44:26,402 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:44:26,402 EPOCH 7 done: loss 0.2052 - lr 0.100000 +2023-04-05 22:44:26,402 BAD EPOCHS (no improvement): 0 +2023-04-05 22:44:26,405 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:44:35,012 epoch 8 - iter 265/2650 - loss 0.19332619 - time (sec): 8.61 - samples/sec: 17156.84 - lr: 0.100000 +2023-04-05 22:44:43,508 epoch 8 - iter 530/2650 - loss 0.19560437 - time (sec): 17.10 - samples/sec: 17164.54 - lr: 0.100000 +2023-04-05 22:44:52,019 epoch 8 - iter 795/2650 - loss 0.19730817 - time (sec): 25.61 - samples/sec: 17169.19 - lr: 0.100000 +2023-04-05 22:45:00,443 epoch 8 - iter 1060/2650 - loss 0.19729206 - time (sec): 34.04 - samples/sec: 17185.62 - lr: 0.100000 +2023-04-05 22:45:09,121 epoch 8 - iter 1325/2650 - loss 0.19719935 - time (sec): 42.72 - samples/sec: 17212.59 - lr: 0.100000 +2023-04-05 22:45:17,654 epoch 8 - iter 1590/2650 - loss 0.19700874 - time (sec): 51.25 - samples/sec: 17206.29 - lr: 0.100000 +2023-04-05 22:45:26,306 epoch 8 - iter 1855/2650 - loss 0.19639540 - time (sec): 59.90 - samples/sec: 17197.77 - lr: 0.100000 +2023-04-05 22:45:34,823 epoch 8 - iter 2120/2650 - loss 0.19606844 - time (sec): 68.42 - samples/sec: 17199.99 - lr: 0.100000 +2023-04-05 22:45:43,371 epoch 8 - iter 2385/2650 - loss 0.19570414 - time (sec): 76.97 - samples/sec: 17198.89 - lr: 0.100000 +2023-04-05 22:45:52,111 epoch 8 - iter 2650/2650 - loss 0.19606535 - time (sec): 85.71 - samples/sec: 17196.28 - lr: 0.100000 +2023-04-05 22:45:52,112 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:45:52,112 EPOCH 8 done: loss 0.1961 - lr 0.100000 +2023-04-05 22:45:52,112 BAD EPOCHS (no improvement): 0 +2023-04-05 22:45:52,116 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:46:00,637 epoch 9 - iter 265/2650 - loss 0.19100394 - time (sec): 8.52 - samples/sec: 17142.74 - lr: 0.100000 +2023-04-05 22:46:09,229 epoch 9 - iter 530/2650 - loss 0.19068282 - time (sec): 17.11 - samples/sec: 17182.06 - lr: 0.100000 +2023-04-05 22:46:17,771 epoch 9 - iter 795/2650 - loss 0.19030121 - time (sec): 25.66 - samples/sec: 17143.25 - lr: 0.100000 +2023-04-05 22:46:26,413 epoch 9 - iter 1060/2650 - loss 0.19120919 - time (sec): 34.30 - samples/sec: 17126.19 - lr: 0.100000 +2023-04-05 22:46:35,120 epoch 9 - iter 1325/2650 - loss 0.19010394 - time (sec): 43.00 - samples/sec: 17116.41 - lr: 0.100000 +2023-04-05 22:46:43,787 epoch 9 - iter 1590/2650 - loss 0.19029048 - time (sec): 51.67 - samples/sec: 17128.27 - lr: 0.100000 +2023-04-05 22:46:52,417 epoch 9 - iter 1855/2650 - loss 0.19029875 - time (sec): 60.30 - samples/sec: 17126.52 - lr: 0.100000 +2023-04-05 22:47:01,010 epoch 9 - iter 2120/2650 - loss 0.18988302 - time (sec): 68.89 - samples/sec: 17118.76 - lr: 0.100000 +2023-04-05 22:47:09,593 epoch 9 - iter 2385/2650 - loss 0.18930895 - time (sec): 77.48 - samples/sec: 17129.20 - lr: 0.100000 +2023-04-05 22:47:18,166 epoch 9 - iter 2650/2650 - loss 0.18937376 - time (sec): 86.05 - samples/sec: 17127.48 - lr: 0.100000 +2023-04-05 22:47:18,166 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:47:18,166 EPOCH 9 done: loss 0.1894 - lr 0.100000 +2023-04-05 22:47:18,166 BAD EPOCHS (no improvement): 0 +2023-04-05 22:47:18,170 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:47:26,767 epoch 10 - iter 265/2650 - loss 0.18493531 - time (sec): 8.60 - samples/sec: 17149.80 - lr: 0.100000 +2023-04-05 22:47:35,360 epoch 10 - iter 530/2650 - loss 0.18261513 - time (sec): 17.19 - samples/sec: 17079.00 - lr: 0.100000 +2023-04-05 22:47:43,914 epoch 10 - iter 795/2650 - loss 0.18333437 - time (sec): 25.74 - samples/sec: 17124.10 - lr: 0.100000 +2023-04-05 22:47:52,479 epoch 10 - iter 1060/2650 - loss 0.18312335 - time (sec): 34.31 - samples/sec: 17140.46 - lr: 0.100000 +2023-04-05 22:48:01,170 epoch 10 - iter 1325/2650 - loss 0.18404645 - time (sec): 43.00 - samples/sec: 17119.51 - lr: 0.100000 +2023-04-05 22:48:09,700 epoch 10 - iter 1590/2650 - loss 0.18384927 - time (sec): 51.53 - samples/sec: 17116.22 - lr: 0.100000 +2023-04-05 22:48:18,263 epoch 10 - iter 1855/2650 - loss 0.18391141 - time (sec): 60.09 - samples/sec: 17119.00 - lr: 0.100000 +2023-04-05 22:48:26,876 epoch 10 - iter 2120/2650 - loss 0.18336861 - time (sec): 68.71 - samples/sec: 17126.18 - lr: 0.100000 +2023-04-05 22:48:35,598 epoch 10 - iter 2385/2650 - loss 0.18362234 - time (sec): 77.43 - samples/sec: 17117.19 - lr: 0.100000 +2023-04-05 22:48:44,279 epoch 10 - iter 2650/2650 - loss 0.18404671 - time (sec): 86.11 - samples/sec: 17115.80 - lr: 0.100000 +2023-04-05 22:48:44,280 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:48:44,280 EPOCH 10 done: loss 0.1840 - lr 0.100000 +2023-04-05 22:48:44,280 BAD EPOCHS (no improvement): 0 +2023-04-05 22:48:44,284 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:48:52,826 epoch 11 - iter 265/2650 - loss 0.17521443 - time (sec): 8.54 - samples/sec: 17204.33 - lr: 0.100000 +2023-04-05 22:49:01,461 epoch 11 - iter 530/2650 - loss 0.17790395 - time (sec): 17.18 - samples/sec: 17164.39 - lr: 0.100000 +2023-04-05 22:49:10,050 epoch 11 - iter 795/2650 - loss 0.17826542 - time (sec): 25.77 - samples/sec: 17154.46 - lr: 0.100000 +2023-04-05 22:49:18,654 epoch 11 - iter 1060/2650 - loss 0.17865080 - time (sec): 34.37 - samples/sec: 17157.74 - lr: 0.100000 +2023-04-05 22:49:27,212 epoch 11 - iter 1325/2650 - loss 0.17876708 - time (sec): 42.93 - samples/sec: 17158.17 - lr: 0.100000 +2023-04-05 22:49:35,705 epoch 11 - iter 1590/2650 - loss 0.17879406 - time (sec): 51.42 - samples/sec: 17158.87 - lr: 0.100000 +2023-04-05 22:49:48,297 epoch 11 - iter 1855/2650 - loss 0.17913300 - time (sec): 64.01 - samples/sec: 16099.96 - lr: 0.100000 +2023-04-05 22:49:56,763 epoch 11 - iter 2120/2650 - loss 0.17884163 - time (sec): 72.48 - samples/sec: 16242.37 - lr: 0.100000 +2023-04-05 22:50:05,367 epoch 11 - iter 2385/2650 - loss 0.17845614 - time (sec): 81.08 - samples/sec: 16342.10 - lr: 0.100000 +2023-04-05 22:50:14,065 epoch 11 - iter 2650/2650 - loss 0.17826203 - time (sec): 89.78 - samples/sec: 16415.83 - lr: 0.100000 +2023-04-05 22:50:14,065 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:50:14,065 EPOCH 11 done: loss 0.1783 - lr 0.100000 +2023-04-05 22:50:14,065 BAD EPOCHS (no improvement): 0 +2023-04-05 22:50:14,069 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:50:22,724 epoch 12 - iter 265/2650 - loss 0.16988696 - time (sec): 8.66 - samples/sec: 17128.96 - lr: 0.100000 +2023-04-05 22:50:31,302 epoch 12 - iter 530/2650 - loss 0.17123754 - time (sec): 17.23 - samples/sec: 17158.24 - lr: 0.100000 +2023-04-05 22:50:39,865 epoch 12 - iter 795/2650 - loss 0.17155524 - time (sec): 25.80 - samples/sec: 17138.46 - lr: 0.100000 +2023-04-05 22:50:48,534 epoch 12 - iter 1060/2650 - loss 0.17183605 - time (sec): 34.46 - samples/sec: 17129.99 - lr: 0.100000 +2023-04-05 22:50:57,125 epoch 12 - iter 1325/2650 - loss 0.17238160 - time (sec): 43.06 - samples/sec: 17125.85 - lr: 0.100000 +2023-04-05 22:51:05,784 epoch 12 - iter 1590/2650 - loss 0.17238463 - time (sec): 51.72 - samples/sec: 17130.40 - lr: 0.100000 +2023-04-05 22:51:14,355 epoch 12 - iter 1855/2650 - loss 0.17255376 - time (sec): 60.29 - samples/sec: 17135.43 - lr: 0.100000 +2023-04-05 22:51:22,942 epoch 12 - iter 2120/2650 - loss 0.17262790 - time (sec): 68.87 - samples/sec: 17137.78 - lr: 0.100000 +2023-04-05 22:51:31,431 epoch 12 - iter 2385/2650 - loss 0.17248471 - time (sec): 77.36 - samples/sec: 17144.56 - lr: 0.100000 +2023-04-05 22:51:40,022 epoch 12 - iter 2650/2650 - loss 0.17257517 - time (sec): 85.95 - samples/sec: 17146.93 - lr: 0.100000 +2023-04-05 22:51:40,022 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:51:40,022 EPOCH 12 done: loss 0.1726 - lr 0.100000 +2023-04-05 22:51:40,022 BAD EPOCHS (no improvement): 0 +2023-04-05 22:51:40,026 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:51:48,543 epoch 13 - iter 265/2650 - loss 0.17092826 - time (sec): 8.52 - samples/sec: 17178.53 - lr: 0.100000 +2023-04-05 22:51:57,271 epoch 13 - iter 530/2650 - loss 0.16950360 - time (sec): 17.24 - samples/sec: 17127.48 - lr: 0.100000 +2023-04-05 22:52:05,874 epoch 13 - iter 795/2650 - loss 0.17070258 - time (sec): 25.85 - samples/sec: 17128.67 - lr: 0.100000 +2023-04-05 22:52:14,691 epoch 13 - iter 1060/2650 - loss 0.16978445 - time (sec): 34.66 - samples/sec: 17111.42 - lr: 0.100000 +2023-04-05 22:52:23,340 epoch 13 - iter 1325/2650 - loss 0.17003802 - time (sec): 43.31 - samples/sec: 17109.57 - lr: 0.100000 +2023-04-05 22:52:31,930 epoch 13 - iter 1590/2650 - loss 0.16953513 - time (sec): 51.90 - samples/sec: 17093.53 - lr: 0.100000 +2023-04-05 22:52:40,555 epoch 13 - iter 1855/2650 - loss 0.17049912 - time (sec): 60.53 - samples/sec: 17058.91 - lr: 0.100000 +2023-04-05 22:52:49,160 epoch 13 - iter 2120/2650 - loss 0.17074582 - time (sec): 69.13 - samples/sec: 17057.79 - lr: 0.100000 +2023-04-05 22:52:57,858 epoch 13 - iter 2385/2650 - loss 0.17049547 - time (sec): 77.83 - samples/sec: 17043.65 - lr: 0.100000 +2023-04-05 22:53:06,511 epoch 13 - iter 2650/2650 - loss 0.17004090 - time (sec): 86.48 - samples/sec: 17041.48 - lr: 0.100000 +2023-04-05 22:53:06,511 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:53:06,511 EPOCH 13 done: loss 0.1700 - lr 0.100000 +2023-04-05 22:53:06,511 BAD EPOCHS (no improvement): 0 +2023-04-05 22:53:06,514 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:53:15,175 epoch 14 - iter 265/2650 - loss 0.16573172 - time (sec): 8.66 - samples/sec: 17110.71 - lr: 0.100000 +2023-04-05 22:53:23,691 epoch 14 - iter 530/2650 - loss 0.16734269 - time (sec): 17.18 - samples/sec: 17103.51 - lr: 0.100000 +2023-04-05 22:53:32,205 epoch 14 - iter 795/2650 - loss 0.16649833 - time (sec): 25.69 - samples/sec: 17086.30 - lr: 0.100000 +2023-04-05 22:53:40,806 epoch 14 - iter 1060/2650 - loss 0.16684412 - time (sec): 34.29 - samples/sec: 17084.76 - lr: 0.100000 +2023-04-05 22:53:49,352 epoch 14 - iter 1325/2650 - loss 0.16749006 - time (sec): 42.84 - samples/sec: 17089.88 - lr: 0.100000 +2023-04-05 22:53:57,952 epoch 14 - iter 1590/2650 - loss 0.16742827 - time (sec): 51.44 - samples/sec: 17087.38 - lr: 0.100000 +2023-04-05 22:54:06,765 epoch 14 - iter 1855/2650 - loss 0.16762084 - time (sec): 60.25 - samples/sec: 17066.73 - lr: 0.100000 +2023-04-05 22:54:15,476 epoch 14 - iter 2120/2650 - loss 0.16745524 - time (sec): 68.96 - samples/sec: 17069.67 - lr: 0.100000 +2023-04-05 22:54:24,157 epoch 14 - iter 2385/2650 - loss 0.16749265 - time (sec): 77.64 - samples/sec: 17066.39 - lr: 0.100000 +2023-04-05 22:54:32,924 epoch 14 - iter 2650/2650 - loss 0.16745122 - time (sec): 86.41 - samples/sec: 17056.21 - lr: 0.100000 +2023-04-05 22:54:32,924 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:54:32,924 EPOCH 14 done: loss 0.1675 - lr 0.100000 +2023-04-05 22:54:32,924 BAD EPOCHS (no improvement): 0 +2023-04-05 22:54:32,928 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:54:41,473 epoch 15 - iter 265/2650 - loss 0.16058355 - time (sec): 8.54 - samples/sec: 17098.34 - lr: 0.100000 +2023-04-05 22:54:50,154 epoch 15 - iter 530/2650 - loss 0.16232774 - time (sec): 17.23 - samples/sec: 17103.84 - lr: 0.100000 +2023-04-05 22:54:58,816 epoch 15 - iter 795/2650 - loss 0.16334735 - time (sec): 25.89 - samples/sec: 17088.94 - lr: 0.100000 +2023-04-05 22:55:07,501 epoch 15 - iter 1060/2650 - loss 0.16234137 - time (sec): 34.57 - samples/sec: 17063.95 - lr: 0.100000 +2023-04-05 22:55:16,064 epoch 15 - iter 1325/2650 - loss 0.16266131 - time (sec): 43.14 - samples/sec: 17061.23 - lr: 0.100000 +2023-04-05 22:55:24,671 epoch 15 - iter 1590/2650 - loss 0.16249113 - time (sec): 51.74 - samples/sec: 17053.55 - lr: 0.100000 +2023-04-05 22:55:33,343 epoch 15 - iter 1855/2650 - loss 0.16231289 - time (sec): 60.41 - samples/sec: 17054.49 - lr: 0.100000 +2023-04-05 22:55:42,087 epoch 15 - iter 2120/2650 - loss 0.16253769 - time (sec): 69.16 - samples/sec: 17040.34 - lr: 0.100000 +2023-04-05 22:55:50,624 epoch 15 - iter 2385/2650 - loss 0.16260896 - time (sec): 77.70 - samples/sec: 17045.90 - lr: 0.100000 +2023-04-05 22:55:59,388 epoch 15 - iter 2650/2650 - loss 0.16269575 - time (sec): 86.46 - samples/sec: 17046.24 - lr: 0.100000 +2023-04-05 22:55:59,388 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:55:59,388 EPOCH 15 done: loss 0.1627 - lr 0.100000 +2023-04-05 22:55:59,388 BAD EPOCHS (no improvement): 0 +2023-04-05 22:55:59,391 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:56:07,995 epoch 16 - iter 265/2650 - loss 0.15623853 - time (sec): 8.60 - samples/sec: 17226.78 - lr: 0.100000 +2023-04-05 22:56:16,625 epoch 16 - iter 530/2650 - loss 0.15720910 - time (sec): 17.23 - samples/sec: 17132.40 - lr: 0.100000 +2023-04-05 22:56:25,210 epoch 16 - iter 795/2650 - loss 0.15791418 - time (sec): 25.82 - samples/sec: 17149.26 - lr: 0.100000 +2023-04-05 22:56:33,822 epoch 16 - iter 1060/2650 - loss 0.15809383 - time (sec): 34.43 - samples/sec: 17154.45 - lr: 0.100000 +2023-04-05 22:56:42,465 epoch 16 - iter 1325/2650 - loss 0.15943621 - time (sec): 43.07 - samples/sec: 17135.66 - lr: 0.100000 +2023-04-05 22:56:51,109 epoch 16 - iter 1590/2650 - loss 0.15974738 - time (sec): 51.72 - samples/sec: 17116.18 - lr: 0.100000 +2023-04-05 22:56:59,752 epoch 16 - iter 1855/2650 - loss 0.15994564 - time (sec): 60.36 - samples/sec: 17105.84 - lr: 0.100000 +2023-04-05 22:57:08,299 epoch 16 - iter 2120/2650 - loss 0.15965417 - time (sec): 68.91 - samples/sec: 17106.86 - lr: 0.100000 +2023-04-05 22:57:16,915 epoch 16 - iter 2385/2650 - loss 0.15956073 - time (sec): 77.52 - samples/sec: 17101.43 - lr: 0.100000 +2023-04-05 22:57:25,599 epoch 16 - iter 2650/2650 - loss 0.15969866 - time (sec): 86.21 - samples/sec: 17096.01 - lr: 0.100000 +2023-04-05 22:57:25,600 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:57:25,600 EPOCH 16 done: loss 0.1597 - lr 0.100000 +2023-04-05 22:57:25,600 BAD EPOCHS (no improvement): 0 +2023-04-05 22:57:25,603 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:57:34,187 epoch 17 - iter 265/2650 - loss 0.15397390 - time (sec): 8.58 - samples/sec: 17196.97 - lr: 0.100000 +2023-04-05 22:57:42,961 epoch 17 - iter 530/2650 - loss 0.15720828 - time (sec): 17.36 - samples/sec: 17140.47 - lr: 0.100000 +2023-04-05 22:57:51,655 epoch 17 - iter 795/2650 - loss 0.15665706 - time (sec): 26.05 - samples/sec: 17108.65 - lr: 0.100000 +2023-04-05 22:58:00,242 epoch 17 - iter 1060/2650 - loss 0.15726085 - time (sec): 34.64 - samples/sec: 17097.11 - lr: 0.100000 +2023-04-05 22:58:08,822 epoch 17 - iter 1325/2650 - loss 0.15740783 - time (sec): 43.22 - samples/sec: 17108.64 - lr: 0.100000 +2023-04-05 22:58:17,330 epoch 17 - iter 1590/2650 - loss 0.15740888 - time (sec): 51.73 - samples/sec: 17107.05 - lr: 0.100000 +2023-04-05 22:58:25,881 epoch 17 - iter 1855/2650 - loss 0.15745905 - time (sec): 60.28 - samples/sec: 17087.45 - lr: 0.100000 +2023-04-05 22:58:38,278 epoch 17 - iter 2120/2650 - loss 0.15707288 - time (sec): 72.67 - samples/sec: 16191.53 - lr: 0.100000 +2023-04-05 22:58:46,846 epoch 17 - iter 2385/2650 - loss 0.15703496 - time (sec): 81.24 - samples/sec: 16307.43 - lr: 0.100000 +2023-04-05 22:58:55,495 epoch 17 - iter 2650/2650 - loss 0.15709127 - time (sec): 89.89 - samples/sec: 16395.49 - lr: 0.100000 +2023-04-05 22:58:55,495 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:58:55,495 EPOCH 17 done: loss 0.1571 - lr 0.100000 +2023-04-05 22:58:55,495 BAD EPOCHS (no improvement): 0 +2023-04-05 22:58:55,499 ---------------------------------------------------------------------------------------------------- +2023-04-05 22:59:04,011 epoch 18 - iter 265/2650 - loss 0.15364505 - time (sec): 8.51 - samples/sec: 17219.18 - lr: 0.100000 +2023-04-05 22:59:12,553 epoch 18 - iter 530/2650 - loss 0.15534684 - time (sec): 17.05 - samples/sec: 17192.78 - lr: 0.100000 +2023-04-05 22:59:21,096 epoch 18 - iter 795/2650 - loss 0.15558492 - time (sec): 25.60 - samples/sec: 17156.58 - lr: 0.100000 +2023-04-05 22:59:29,696 epoch 18 - iter 1060/2650 - loss 0.15631711 - time (sec): 34.20 - samples/sec: 17142.12 - lr: 0.100000 +2023-04-05 22:59:38,407 epoch 18 - iter 1325/2650 - loss 0.15533277 - time (sec): 42.91 - samples/sec: 17137.01 - lr: 0.100000 +2023-04-05 22:59:47,017 epoch 18 - iter 1590/2650 - loss 0.15506231 - time (sec): 51.52 - samples/sec: 17135.13 - lr: 0.100000 +2023-04-05 22:59:55,641 epoch 18 - iter 1855/2650 - loss 0.15538811 - time (sec): 60.14 - samples/sec: 17132.54 - lr: 0.100000 +2023-04-05 23:00:04,344 epoch 18 - iter 2120/2650 - loss 0.15498697 - time (sec): 68.84 - samples/sec: 17123.81 - lr: 0.100000 +2023-04-05 23:00:13,043 epoch 18 - iter 2385/2650 - loss 0.15494986 - time (sec): 77.54 - samples/sec: 17108.36 - lr: 0.100000 +2023-04-05 23:00:21,778 epoch 18 - iter 2650/2650 - loss 0.15503562 - time (sec): 86.28 - samples/sec: 17082.11 - lr: 0.100000 +2023-04-05 23:00:21,778 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:00:21,778 EPOCH 18 done: loss 0.1550 - lr 0.100000 +2023-04-05 23:00:21,778 BAD EPOCHS (no improvement): 0 +2023-04-05 23:00:21,782 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:00:30,540 epoch 19 - iter 265/2650 - loss 0.15440847 - time (sec): 8.76 - samples/sec: 16884.22 - lr: 0.100000 +2023-04-05 23:00:39,227 epoch 19 - iter 530/2650 - loss 0.15114582 - time (sec): 17.44 - samples/sec: 16971.29 - lr: 0.100000 +2023-04-05 23:00:47,836 epoch 19 - iter 795/2650 - loss 0.15153549 - time (sec): 26.05 - samples/sec: 17044.02 - lr: 0.100000 +2023-04-05 23:00:56,458 epoch 19 - iter 1060/2650 - loss 0.15147609 - time (sec): 34.68 - samples/sec: 17053.45 - lr: 0.100000 +2023-04-05 23:01:05,131 epoch 19 - iter 1325/2650 - loss 0.15256994 - time (sec): 43.35 - samples/sec: 17070.82 - lr: 0.100000 +2023-04-05 23:01:13,551 epoch 19 - iter 1590/2650 - loss 0.15303369 - time (sec): 51.77 - samples/sec: 17080.67 - lr: 0.100000 +2023-04-05 23:01:22,002 epoch 19 - iter 1855/2650 - loss 0.15292118 - time (sec): 60.22 - samples/sec: 17104.92 - lr: 0.100000 +2023-04-05 23:01:30,589 epoch 19 - iter 2120/2650 - loss 0.15281326 - time (sec): 68.81 - samples/sec: 17104.24 - lr: 0.100000 +2023-04-05 23:01:39,339 epoch 19 - iter 2385/2650 - loss 0.15273719 - time (sec): 77.56 - samples/sec: 17079.01 - lr: 0.100000 +2023-04-05 23:01:48,207 epoch 19 - iter 2650/2650 - loss 0.15270262 - time (sec): 86.42 - samples/sec: 17053.32 - lr: 0.100000 +2023-04-05 23:01:48,207 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:01:48,207 EPOCH 19 done: loss 0.1527 - lr 0.100000 +2023-04-05 23:01:48,207 BAD EPOCHS (no improvement): 0 +2023-04-05 23:01:48,210 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:01:56,937 epoch 20 - iter 265/2650 - loss 0.15131037 - time (sec): 8.73 - samples/sec: 16779.50 - lr: 0.100000 +2023-04-05 23:02:05,606 epoch 20 - iter 530/2650 - loss 0.15178153 - time (sec): 17.40 - samples/sec: 16969.56 - lr: 0.100000 +2023-04-05 23:02:14,207 epoch 20 - iter 795/2650 - loss 0.15201148 - time (sec): 26.00 - samples/sec: 16981.52 - lr: 0.100000 +2023-04-05 23:02:22,779 epoch 20 - iter 1060/2650 - loss 0.15117567 - time (sec): 34.57 - samples/sec: 17014.02 - lr: 0.100000 +2023-04-05 23:02:31,349 epoch 20 - iter 1325/2650 - loss 0.15108410 - time (sec): 43.14 - samples/sec: 17039.45 - lr: 0.100000 +2023-04-05 23:02:39,969 epoch 20 - iter 1590/2650 - loss 0.15101399 - time (sec): 51.76 - samples/sec: 17051.07 - lr: 0.100000 +2023-04-05 23:02:48,634 epoch 20 - iter 1855/2650 - loss 0.15140791 - time (sec): 60.42 - samples/sec: 17033.13 - lr: 0.100000 +2023-04-05 23:02:57,260 epoch 20 - iter 2120/2650 - loss 0.15122852 - time (sec): 69.05 - samples/sec: 17038.82 - lr: 0.100000 +2023-04-05 23:03:05,875 epoch 20 - iter 2385/2650 - loss 0.15095873 - time (sec): 77.66 - samples/sec: 17057.20 - lr: 0.100000 +2023-04-05 23:03:14,544 epoch 20 - iter 2650/2650 - loss 0.15109411 - time (sec): 86.33 - samples/sec: 17071.27 - lr: 0.100000 +2023-04-05 23:03:14,544 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:03:14,544 EPOCH 20 done: loss 0.1511 - lr 0.100000 +2023-04-05 23:03:14,544 BAD EPOCHS (no improvement): 0 +2023-04-05 23:03:14,547 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:03:23,270 epoch 21 - iter 265/2650 - loss 0.14715711 - time (sec): 8.72 - samples/sec: 17001.56 - lr: 0.100000 +2023-04-05 23:03:31,791 epoch 21 - iter 530/2650 - loss 0.14666947 - time (sec): 17.24 - samples/sec: 17078.56 - lr: 0.100000 +2023-04-05 23:03:40,457 epoch 21 - iter 795/2650 - loss 0.14699870 - time (sec): 25.91 - samples/sec: 17079.04 - lr: 0.100000 +2023-04-05 23:03:49,001 epoch 21 - iter 1060/2650 - loss 0.14704048 - time (sec): 34.45 - samples/sec: 17064.25 - lr: 0.100000 +2023-04-05 23:03:57,700 epoch 21 - iter 1325/2650 - loss 0.14779176 - time (sec): 43.15 - samples/sec: 17053.41 - lr: 0.100000 +2023-04-05 23:04:06,407 epoch 21 - iter 1590/2650 - loss 0.14844675 - time (sec): 51.86 - samples/sec: 17058.18 - lr: 0.100000 +2023-04-05 23:04:15,013 epoch 21 - iter 1855/2650 - loss 0.14833217 - time (sec): 60.47 - samples/sec: 17053.99 - lr: 0.100000 +2023-04-05 23:04:23,641 epoch 21 - iter 2120/2650 - loss 0.14874716 - time (sec): 69.09 - samples/sec: 17049.21 - lr: 0.100000 +2023-04-05 23:04:32,459 epoch 21 - iter 2385/2650 - loss 0.14887021 - time (sec): 77.91 - samples/sec: 17042.80 - lr: 0.100000 +2023-04-05 23:04:40,996 epoch 21 - iter 2650/2650 - loss 0.14932267 - time (sec): 86.45 - samples/sec: 17048.44 - lr: 0.100000 +2023-04-05 23:04:40,996 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:04:40,996 EPOCH 21 done: loss 0.1493 - lr 0.100000 +2023-04-05 23:04:40,996 BAD EPOCHS (no improvement): 0 +2023-04-05 23:04:41,000 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:04:49,687 epoch 22 - iter 265/2650 - loss 0.14710281 - time (sec): 8.69 - samples/sec: 17111.47 - lr: 0.100000 +2023-04-05 23:04:58,330 epoch 22 - iter 530/2650 - loss 0.14864390 - time (sec): 17.33 - samples/sec: 17054.84 - lr: 0.100000 +2023-04-05 23:05:07,045 epoch 22 - iter 795/2650 - loss 0.14814704 - time (sec): 26.04 - samples/sec: 17060.70 - lr: 0.100000 +2023-04-05 23:05:15,689 epoch 22 - iter 1060/2650 - loss 0.14740376 - time (sec): 34.69 - samples/sec: 17056.78 - lr: 0.100000 +2023-04-05 23:05:24,321 epoch 22 - iter 1325/2650 - loss 0.14724052 - time (sec): 43.32 - samples/sec: 17057.26 - lr: 0.100000 +2023-04-05 23:05:33,056 epoch 22 - iter 1590/2650 - loss 0.14754899 - time (sec): 52.06 - samples/sec: 17048.71 - lr: 0.100000 +2023-04-05 23:05:41,599 epoch 22 - iter 1855/2650 - loss 0.14713340 - time (sec): 60.60 - samples/sec: 17059.43 - lr: 0.100000 +2023-04-05 23:05:50,188 epoch 22 - iter 2120/2650 - loss 0.14724924 - time (sec): 69.19 - samples/sec: 17068.78 - lr: 0.100000 +2023-04-05 23:05:58,764 epoch 22 - iter 2385/2650 - loss 0.14708146 - time (sec): 77.76 - samples/sec: 17082.09 - lr: 0.100000 +2023-04-05 23:06:07,238 epoch 22 - iter 2650/2650 - loss 0.14701825 - time (sec): 86.24 - samples/sec: 17090.15 - lr: 0.100000 +2023-04-05 23:06:07,239 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:06:07,239 EPOCH 22 done: loss 0.1470 - lr 0.100000 +2023-04-05 23:06:07,239 BAD EPOCHS (no improvement): 0 +2023-04-05 23:06:07,242 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:06:15,739 epoch 23 - iter 265/2650 - loss 0.14281885 - time (sec): 8.50 - samples/sec: 17343.11 - lr: 0.100000 +2023-04-05 23:06:24,331 epoch 23 - iter 530/2650 - loss 0.14429708 - time (sec): 17.09 - samples/sec: 17254.15 - lr: 0.100000 +2023-04-05 23:06:32,953 epoch 23 - iter 795/2650 - loss 0.14410369 - time (sec): 25.71 - samples/sec: 17240.16 - lr: 0.100000 +2023-04-05 23:06:41,566 epoch 23 - iter 1060/2650 - loss 0.14402212 - time (sec): 34.32 - samples/sec: 17206.97 - lr: 0.100000 +2023-04-05 23:06:50,145 epoch 23 - iter 1325/2650 - loss 0.14528712 - time (sec): 42.90 - samples/sec: 17217.20 - lr: 0.100000 +2023-04-05 23:06:58,684 epoch 23 - iter 1590/2650 - loss 0.14506155 - time (sec): 51.44 - samples/sec: 17204.77 - lr: 0.100000 +2023-04-05 23:07:07,265 epoch 23 - iter 1855/2650 - loss 0.14498336 - time (sec): 60.02 - samples/sec: 17199.03 - lr: 0.100000 +2023-04-05 23:07:15,872 epoch 23 - iter 2120/2650 - loss 0.14523612 - time (sec): 68.63 - samples/sec: 17190.84 - lr: 0.100000 +2023-04-05 23:07:24,431 epoch 23 - iter 2385/2650 - loss 0.14546808 - time (sec): 77.19 - samples/sec: 17187.13 - lr: 0.100000 +2023-04-05 23:07:37,218 epoch 23 - iter 2650/2650 - loss 0.14571720 - time (sec): 89.98 - samples/sec: 16380.12 - lr: 0.100000 +2023-04-05 23:07:37,218 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:07:37,218 EPOCH 23 done: loss 0.1457 - lr 0.100000 +2023-04-05 23:07:37,218 BAD EPOCHS (no improvement): 0 +2023-04-05 23:07:37,222 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:07:45,896 epoch 24 - iter 265/2650 - loss 0.14191831 - time (sec): 8.67 - samples/sec: 17209.27 - lr: 0.100000 +2023-04-05 23:07:54,480 epoch 24 - iter 530/2650 - loss 0.14104291 - time (sec): 17.26 - samples/sec: 17206.55 - lr: 0.100000 +2023-04-05 23:08:03,034 epoch 24 - iter 795/2650 - loss 0.14315898 - time (sec): 25.81 - samples/sec: 17171.35 - lr: 0.100000 +2023-04-05 23:08:11,540 epoch 24 - iter 1060/2650 - loss 0.14278537 - time (sec): 34.32 - samples/sec: 17150.14 - lr: 0.100000 +2023-04-05 23:08:20,190 epoch 24 - iter 1325/2650 - loss 0.14285974 - time (sec): 42.97 - samples/sec: 17128.29 - lr: 0.100000 +2023-04-05 23:08:28,863 epoch 24 - iter 1590/2650 - loss 0.14353121 - time (sec): 51.64 - samples/sec: 17128.68 - lr: 0.100000 +2023-04-05 23:08:37,452 epoch 24 - iter 1855/2650 - loss 0.14396657 - time (sec): 60.23 - samples/sec: 17122.31 - lr: 0.100000 +2023-04-05 23:08:46,038 epoch 24 - iter 2120/2650 - loss 0.14363317 - time (sec): 68.82 - samples/sec: 17116.37 - lr: 0.100000 +2023-04-05 23:08:54,740 epoch 24 - iter 2385/2650 - loss 0.14396689 - time (sec): 77.52 - samples/sec: 17104.70 - lr: 0.100000 +2023-04-05 23:09:03,372 epoch 24 - iter 2650/2650 - loss 0.14393406 - time (sec): 86.15 - samples/sec: 17107.65 - lr: 0.100000 +2023-04-05 23:09:03,372 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:09:03,372 EPOCH 24 done: loss 0.1439 - lr 0.100000 +2023-04-05 23:09:03,372 BAD EPOCHS (no improvement): 0 +2023-04-05 23:09:03,377 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:09:11,967 epoch 25 - iter 265/2650 - loss 0.14463404 - time (sec): 8.59 - samples/sec: 17162.96 - lr: 0.100000 +2023-04-05 23:09:20,500 epoch 25 - iter 530/2650 - loss 0.14377913 - time (sec): 17.12 - samples/sec: 17128.39 - lr: 0.100000 +2023-04-05 23:09:29,258 epoch 25 - iter 795/2650 - loss 0.14512817 - time (sec): 25.88 - samples/sec: 17117.71 - lr: 0.100000 +2023-04-05 23:09:37,895 epoch 25 - iter 1060/2650 - loss 0.14418514 - time (sec): 34.52 - samples/sec: 17093.35 - lr: 0.100000 +2023-04-05 23:09:46,476 epoch 25 - iter 1325/2650 - loss 0.14347857 - time (sec): 43.10 - samples/sec: 17093.43 - lr: 0.100000 +2023-04-05 23:09:55,143 epoch 25 - iter 1590/2650 - loss 0.14375573 - time (sec): 51.77 - samples/sec: 17078.22 - lr: 0.100000 +2023-04-05 23:10:03,736 epoch 25 - iter 1855/2650 - loss 0.14359287 - time (sec): 60.36 - samples/sec: 17094.68 - lr: 0.100000 +2023-04-05 23:10:12,375 epoch 25 - iter 2120/2650 - loss 0.14413400 - time (sec): 69.00 - samples/sec: 17090.61 - lr: 0.100000 +2023-04-05 23:10:20,948 epoch 25 - iter 2385/2650 - loss 0.14407545 - time (sec): 77.57 - samples/sec: 17086.69 - lr: 0.100000 +2023-04-05 23:10:29,606 epoch 25 - iter 2650/2650 - loss 0.14385276 - time (sec): 86.23 - samples/sec: 17091.88 - lr: 0.100000 +2023-04-05 23:10:29,607 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:10:29,607 EPOCH 25 done: loss 0.1439 - lr 0.100000 +2023-04-05 23:10:29,607 BAD EPOCHS (no improvement): 0 +2023-04-05 23:10:29,610 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:10:38,174 epoch 26 - iter 265/2650 - loss 0.14221208 - time (sec): 8.56 - samples/sec: 17249.75 - lr: 0.100000 +2023-04-05 23:10:46,743 epoch 26 - iter 530/2650 - loss 0.14091215 - time (sec): 17.13 - samples/sec: 17211.10 - lr: 0.100000 +2023-04-05 23:10:55,302 epoch 26 - iter 795/2650 - loss 0.14133131 - time (sec): 25.69 - samples/sec: 17216.00 - lr: 0.100000 +2023-04-05 23:11:03,828 epoch 26 - iter 1060/2650 - loss 0.14089718 - time (sec): 34.22 - samples/sec: 17183.58 - lr: 0.100000 +2023-04-05 23:11:12,345 epoch 26 - iter 1325/2650 - loss 0.14118457 - time (sec): 42.73 - samples/sec: 17186.01 - lr: 0.100000 +2023-04-05 23:11:20,940 epoch 26 - iter 1590/2650 - loss 0.14134600 - time (sec): 51.33 - samples/sec: 17197.85 - lr: 0.100000 +2023-04-05 23:11:29,568 epoch 26 - iter 1855/2650 - loss 0.14116640 - time (sec): 59.96 - samples/sec: 17192.50 - lr: 0.100000 +2023-04-05 23:11:38,116 epoch 26 - iter 2120/2650 - loss 0.14146244 - time (sec): 68.51 - samples/sec: 17191.43 - lr: 0.100000 +2023-04-05 23:11:46,710 epoch 26 - iter 2385/2650 - loss 0.14166409 - time (sec): 77.10 - samples/sec: 17189.74 - lr: 0.100000 +2023-04-05 23:11:55,343 epoch 26 - iter 2650/2650 - loss 0.14190089 - time (sec): 85.73 - samples/sec: 17190.84 - lr: 0.100000 +2023-04-05 23:11:55,343 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:11:55,343 EPOCH 26 done: loss 0.1419 - lr 0.100000 +2023-04-05 23:11:55,343 BAD EPOCHS (no improvement): 0 +2023-04-05 23:11:55,347 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:12:03,977 epoch 27 - iter 265/2650 - loss 0.14151349 - time (sec): 8.63 - samples/sec: 17195.93 - lr: 0.100000 +2023-04-05 23:12:12,569 epoch 27 - iter 530/2650 - loss 0.13998434 - time (sec): 17.22 - samples/sec: 17206.03 - lr: 0.100000 +2023-04-05 23:12:21,127 epoch 27 - iter 795/2650 - loss 0.14025280 - time (sec): 25.78 - samples/sec: 17211.00 - lr: 0.100000 +2023-04-05 23:12:29,719 epoch 27 - iter 1060/2650 - loss 0.14007941 - time (sec): 34.37 - samples/sec: 17207.22 - lr: 0.100000 +2023-04-05 23:12:38,246 epoch 27 - iter 1325/2650 - loss 0.14008536 - time (sec): 42.90 - samples/sec: 17189.02 - lr: 0.100000 +2023-04-05 23:12:46,766 epoch 27 - iter 1590/2650 - loss 0.14023622 - time (sec): 51.42 - samples/sec: 17190.69 - lr: 0.100000 +2023-04-05 23:12:55,268 epoch 27 - iter 1855/2650 - loss 0.14003748 - time (sec): 59.92 - samples/sec: 17187.17 - lr: 0.100000 +2023-04-05 23:13:03,844 epoch 27 - iter 2120/2650 - loss 0.14041306 - time (sec): 68.50 - samples/sec: 17178.06 - lr: 0.100000 +2023-04-05 23:13:12,499 epoch 27 - iter 2385/2650 - loss 0.14085758 - time (sec): 77.15 - samples/sec: 17175.72 - lr: 0.100000 +2023-04-05 23:13:21,124 epoch 27 - iter 2650/2650 - loss 0.14065582 - time (sec): 85.78 - samples/sec: 17182.03 - lr: 0.100000 +2023-04-05 23:13:21,125 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:13:21,125 EPOCH 27 done: loss 0.1407 - lr 0.100000 +2023-04-05 23:13:21,125 BAD EPOCHS (no improvement): 0 +2023-04-05 23:13:21,128 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:13:29,598 epoch 28 - iter 265/2650 - loss 0.14203532 - time (sec): 8.47 - samples/sec: 17286.30 - lr: 0.100000 +2023-04-05 23:13:38,155 epoch 28 - iter 530/2650 - loss 0.13978239 - time (sec): 17.03 - samples/sec: 17210.96 - lr: 0.100000 +2023-04-05 23:13:46,729 epoch 28 - iter 795/2650 - loss 0.13966018 - time (sec): 25.60 - samples/sec: 17183.42 - lr: 0.100000 +2023-04-05 23:13:55,370 epoch 28 - iter 1060/2650 - loss 0.14021980 - time (sec): 34.24 - samples/sec: 17168.83 - lr: 0.100000 +2023-04-05 23:14:04,044 epoch 28 - iter 1325/2650 - loss 0.14040344 - time (sec): 42.92 - samples/sec: 17151.71 - lr: 0.100000 +2023-04-05 23:14:12,669 epoch 28 - iter 1590/2650 - loss 0.14016213 - time (sec): 51.54 - samples/sec: 17146.83 - lr: 0.100000 +2023-04-05 23:14:21,197 epoch 28 - iter 1855/2650 - loss 0.13998218 - time (sec): 60.07 - samples/sec: 17143.94 - lr: 0.100000 +2023-04-05 23:14:29,798 epoch 28 - iter 2120/2650 - loss 0.13992861 - time (sec): 68.67 - samples/sec: 17143.13 - lr: 0.100000 +2023-04-05 23:14:38,438 epoch 28 - iter 2385/2650 - loss 0.13990984 - time (sec): 77.31 - samples/sec: 17140.25 - lr: 0.100000 +2023-04-05 23:14:47,138 epoch 28 - iter 2650/2650 - loss 0.13984803 - time (sec): 86.01 - samples/sec: 17135.47 - lr: 0.100000 +2023-04-05 23:14:47,139 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:14:47,139 EPOCH 28 done: loss 0.1398 - lr 0.100000 +2023-04-05 23:14:47,139 BAD EPOCHS (no improvement): 0 +2023-04-05 23:14:47,141 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:14:55,795 epoch 29 - iter 265/2650 - loss 0.13880163 - time (sec): 8.65 - samples/sec: 17198.22 - lr: 0.100000 +2023-04-05 23:15:04,402 epoch 29 - iter 530/2650 - loss 0.13708297 - time (sec): 17.26 - samples/sec: 17222.23 - lr: 0.100000 +2023-04-05 23:15:12,906 epoch 29 - iter 795/2650 - loss 0.13695795 - time (sec): 25.76 - samples/sec: 17212.66 - lr: 0.100000 +2023-04-05 23:15:21,532 epoch 29 - iter 1060/2650 - loss 0.13689816 - time (sec): 34.39 - samples/sec: 17165.36 - lr: 0.100000 +2023-04-05 23:15:30,006 epoch 29 - iter 1325/2650 - loss 0.13637090 - time (sec): 42.86 - samples/sec: 17172.91 - lr: 0.100000 +2023-04-05 23:15:38,517 epoch 29 - iter 1590/2650 - loss 0.13680771 - time (sec): 51.38 - samples/sec: 17166.17 - lr: 0.100000 +2023-04-05 23:15:47,143 epoch 29 - iter 1855/2650 - loss 0.13763891 - time (sec): 60.00 - samples/sec: 17160.72 - lr: 0.100000 +2023-04-05 23:15:55,778 epoch 29 - iter 2120/2650 - loss 0.13767721 - time (sec): 68.64 - samples/sec: 17156.34 - lr: 0.100000 +2023-04-05 23:16:04,363 epoch 29 - iter 2385/2650 - loss 0.13784146 - time (sec): 77.22 - samples/sec: 17155.45 - lr: 0.100000 +2023-04-05 23:16:13,055 epoch 29 - iter 2650/2650 - loss 0.13779103 - time (sec): 85.91 - samples/sec: 17154.67 - lr: 0.100000 +2023-04-05 23:16:13,056 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:16:13,056 EPOCH 29 done: loss 0.1378 - lr 0.100000 +2023-04-05 23:16:13,056 BAD EPOCHS (no improvement): 0 +2023-04-05 23:16:13,059 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:16:25,581 epoch 30 - iter 265/2650 - loss 0.13627070 - time (sec): 12.52 - samples/sec: 11778.34 - lr: 0.100000 +2023-04-05 23:16:33,980 epoch 30 - iter 530/2650 - loss 0.13526315 - time (sec): 20.92 - samples/sec: 14051.24 - lr: 0.100000 +2023-04-05 23:16:42,420 epoch 30 - iter 795/2650 - loss 0.13467793 - time (sec): 29.36 - samples/sec: 14983.58 - lr: 0.100000 +2023-04-05 23:16:50,966 epoch 30 - iter 1060/2650 - loss 0.13515327 - time (sec): 37.91 - samples/sec: 15491.60 - lr: 0.100000 +2023-04-05 23:16:59,583 epoch 30 - iter 1325/2650 - loss 0.13634133 - time (sec): 46.52 - samples/sec: 15810.75 - lr: 0.100000 +2023-04-05 23:17:08,108 epoch 30 - iter 1590/2650 - loss 0.13660077 - time (sec): 55.05 - samples/sec: 16024.52 - lr: 0.100000 +2023-04-05 23:17:16,807 epoch 30 - iter 1855/2650 - loss 0.13633430 - time (sec): 63.75 - samples/sec: 16191.25 - lr: 0.100000 +2023-04-05 23:17:25,389 epoch 30 - iter 2120/2650 - loss 0.13642703 - time (sec): 72.33 - samples/sec: 16306.52 - lr: 0.100000 +2023-04-05 23:17:34,079 epoch 30 - iter 2385/2650 - loss 0.13639546 - time (sec): 81.02 - samples/sec: 16385.01 - lr: 0.100000 +2023-04-05 23:17:42,599 epoch 30 - iter 2650/2650 - loss 0.13662743 - time (sec): 89.54 - samples/sec: 16459.91 - lr: 0.100000 +2023-04-05 23:17:42,599 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:17:42,599 EPOCH 30 done: loss 0.1366 - lr 0.100000 +2023-04-05 23:17:42,599 BAD EPOCHS (no improvement): 0 +2023-04-05 23:17:42,602 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:17:51,136 epoch 31 - iter 265/2650 - loss 0.13422357 - time (sec): 8.53 - samples/sec: 17258.86 - lr: 0.100000 +2023-04-05 23:17:59,653 epoch 31 - iter 530/2650 - loss 0.13395760 - time (sec): 17.05 - samples/sec: 17195.96 - lr: 0.100000 +2023-04-05 23:18:08,284 epoch 31 - iter 795/2650 - loss 0.13343743 - time (sec): 25.68 - samples/sec: 17178.47 - lr: 0.100000 +2023-04-05 23:18:16,948 epoch 31 - iter 1060/2650 - loss 0.13371689 - time (sec): 34.35 - samples/sec: 17168.10 - lr: 0.100000 +2023-04-05 23:18:25,537 epoch 31 - iter 1325/2650 - loss 0.13440581 - time (sec): 42.94 - samples/sec: 17157.41 - lr: 0.100000 +2023-04-05 23:18:34,175 epoch 31 - iter 1590/2650 - loss 0.13480382 - time (sec): 51.57 - samples/sec: 17131.84 - lr: 0.100000 +2023-04-05 23:18:42,759 epoch 31 - iter 1855/2650 - loss 0.13520003 - time (sec): 60.16 - samples/sec: 17141.85 - lr: 0.100000 +2023-04-05 23:18:51,308 epoch 31 - iter 2120/2650 - loss 0.13510366 - time (sec): 68.71 - samples/sec: 17137.67 - lr: 0.100000 +2023-04-05 23:18:59,882 epoch 31 - iter 2385/2650 - loss 0.13544195 - time (sec): 77.28 - samples/sec: 17140.65 - lr: 0.100000 +2023-04-05 23:19:08,578 epoch 31 - iter 2650/2650 - loss 0.13565194 - time (sec): 85.98 - samples/sec: 17142.42 - lr: 0.100000 +2023-04-05 23:19:08,578 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:19:08,578 EPOCH 31 done: loss 0.1357 - lr 0.100000 +2023-04-05 23:19:08,578 BAD EPOCHS (no improvement): 0 +2023-04-05 23:19:08,581 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:19:17,301 epoch 32 - iter 265/2650 - loss 0.14000733 - time (sec): 8.72 - samples/sec: 17342.33 - lr: 0.100000 +2023-04-05 23:19:25,944 epoch 32 - iter 530/2650 - loss 0.13774784 - time (sec): 17.36 - samples/sec: 17221.41 - lr: 0.100000 +2023-04-05 23:19:34,567 epoch 32 - iter 795/2650 - loss 0.13649650 - time (sec): 25.99 - samples/sec: 17184.95 - lr: 0.100000 +2023-04-05 23:19:43,260 epoch 32 - iter 1060/2650 - loss 0.13636390 - time (sec): 34.68 - samples/sec: 17169.76 - lr: 0.100000 +2023-04-05 23:19:51,787 epoch 32 - iter 1325/2650 - loss 0.13587710 - time (sec): 43.21 - samples/sec: 17162.88 - lr: 0.100000 +2023-04-05 23:20:00,233 epoch 32 - iter 1590/2650 - loss 0.13560384 - time (sec): 51.65 - samples/sec: 17176.92 - lr: 0.100000 +2023-04-05 23:20:08,836 epoch 32 - iter 1855/2650 - loss 0.13559967 - time (sec): 60.25 - samples/sec: 17164.75 - lr: 0.100000 +2023-04-05 23:20:17,507 epoch 32 - iter 2120/2650 - loss 0.13547301 - time (sec): 68.93 - samples/sec: 17149.40 - lr: 0.100000 +2023-04-05 23:20:26,004 epoch 32 - iter 2385/2650 - loss 0.13532463 - time (sec): 77.42 - samples/sec: 17151.63 - lr: 0.100000 +2023-04-05 23:20:34,532 epoch 32 - iter 2650/2650 - loss 0.13518673 - time (sec): 85.95 - samples/sec: 17147.17 - lr: 0.100000 +2023-04-05 23:20:34,532 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:20:34,532 EPOCH 32 done: loss 0.1352 - lr 0.100000 +2023-04-05 23:20:34,533 BAD EPOCHS (no improvement): 0 +2023-04-05 23:20:34,536 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:20:43,143 epoch 33 - iter 265/2650 - loss 0.13123774 - time (sec): 8.61 - samples/sec: 17099.41 - lr: 0.100000 +2023-04-05 23:20:51,730 epoch 33 - iter 530/2650 - loss 0.13006271 - time (sec): 17.19 - samples/sec: 17087.35 - lr: 0.100000 +2023-04-05 23:21:00,364 epoch 33 - iter 795/2650 - loss 0.13046370 - time (sec): 25.83 - samples/sec: 17073.01 - lr: 0.100000 +2023-04-05 23:21:08,941 epoch 33 - iter 1060/2650 - loss 0.13116852 - time (sec): 34.40 - samples/sec: 17084.24 - lr: 0.100000 +2023-04-05 23:21:17,613 epoch 33 - iter 1325/2650 - loss 0.13178355 - time (sec): 43.08 - samples/sec: 17060.47 - lr: 0.100000 +2023-04-05 23:21:26,262 epoch 33 - iter 1590/2650 - loss 0.13200311 - time (sec): 51.73 - samples/sec: 17068.60 - lr: 0.100000 +2023-04-05 23:21:34,860 epoch 33 - iter 1855/2650 - loss 0.13214555 - time (sec): 60.32 - samples/sec: 17075.40 - lr: 0.100000 +2023-04-05 23:21:43,559 epoch 33 - iter 2120/2650 - loss 0.13278726 - time (sec): 69.02 - samples/sec: 17071.53 - lr: 0.100000 +2023-04-05 23:21:52,224 epoch 33 - iter 2385/2650 - loss 0.13341823 - time (sec): 77.69 - samples/sec: 17065.37 - lr: 0.100000 +2023-04-05 23:22:00,894 epoch 33 - iter 2650/2650 - loss 0.13349508 - time (sec): 86.36 - samples/sec: 17066.36 - lr: 0.100000 +2023-04-05 23:22:00,895 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:22:00,895 EPOCH 33 done: loss 0.1335 - lr 0.100000 +2023-04-05 23:22:00,895 BAD EPOCHS (no improvement): 0 +2023-04-05 23:22:00,898 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:22:09,502 epoch 34 - iter 265/2650 - loss 0.13411010 - time (sec): 8.60 - samples/sec: 17064.16 - lr: 0.100000 +2023-04-05 23:22:18,007 epoch 34 - iter 530/2650 - loss 0.13258910 - time (sec): 17.11 - samples/sec: 17070.33 - lr: 0.100000 +2023-04-05 23:22:26,800 epoch 34 - iter 795/2650 - loss 0.13309666 - time (sec): 25.90 - samples/sec: 17047.00 - lr: 0.100000 +2023-04-05 23:22:35,434 epoch 34 - iter 1060/2650 - loss 0.13339215 - time (sec): 34.54 - samples/sec: 17029.69 - lr: 0.100000 +2023-04-05 23:22:44,198 epoch 34 - iter 1325/2650 - loss 0.13318909 - time (sec): 43.30 - samples/sec: 17008.18 - lr: 0.100000 +2023-04-05 23:22:52,878 epoch 34 - iter 1590/2650 - loss 0.13309044 - time (sec): 51.98 - samples/sec: 17000.67 - lr: 0.100000 +2023-04-05 23:23:01,511 epoch 34 - iter 1855/2650 - loss 0.13340994 - time (sec): 60.61 - samples/sec: 16984.97 - lr: 0.100000 +2023-04-05 23:23:10,157 epoch 34 - iter 2120/2650 - loss 0.13318280 - time (sec): 69.26 - samples/sec: 16985.89 - lr: 0.100000 +2023-04-05 23:23:18,881 epoch 34 - iter 2385/2650 - loss 0.13307494 - time (sec): 77.98 - samples/sec: 16982.48 - lr: 0.100000 +2023-04-05 23:23:27,688 epoch 34 - iter 2650/2650 - loss 0.13284336 - time (sec): 86.79 - samples/sec: 16981.58 - lr: 0.100000 +2023-04-05 23:23:27,688 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:23:27,688 EPOCH 34 done: loss 0.1328 - lr 0.100000 +2023-04-05 23:23:27,688 BAD EPOCHS (no improvement): 0 +2023-04-05 23:23:27,692 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:23:36,361 epoch 35 - iter 265/2650 - loss 0.12879546 - time (sec): 8.67 - samples/sec: 17037.48 - lr: 0.100000 +2023-04-05 23:23:45,022 epoch 35 - iter 530/2650 - loss 0.13042507 - time (sec): 17.33 - samples/sec: 17030.46 - lr: 0.100000 +2023-04-05 23:23:53,720 epoch 35 - iter 795/2650 - loss 0.13186114 - time (sec): 26.03 - samples/sec: 17001.33 - lr: 0.100000 +2023-04-05 23:24:02,300 epoch 35 - iter 1060/2650 - loss 0.13151728 - time (sec): 34.61 - samples/sec: 16979.41 - lr: 0.100000 +2023-04-05 23:24:10,880 epoch 35 - iter 1325/2650 - loss 0.13169173 - time (sec): 43.19 - samples/sec: 16986.55 - lr: 0.100000 +2023-04-05 23:24:19,606 epoch 35 - iter 1590/2650 - loss 0.13161417 - time (sec): 51.91 - samples/sec: 16987.45 - lr: 0.100000 +2023-04-05 23:24:28,389 epoch 35 - iter 1855/2650 - loss 0.13208768 - time (sec): 60.70 - samples/sec: 16980.66 - lr: 0.100000 +2023-04-05 23:24:37,037 epoch 35 - iter 2120/2650 - loss 0.13215774 - time (sec): 69.34 - samples/sec: 16980.11 - lr: 0.100000 +2023-04-05 23:24:45,747 epoch 35 - iter 2385/2650 - loss 0.13202166 - time (sec): 78.05 - samples/sec: 17000.66 - lr: 0.100000 +2023-04-05 23:24:54,318 epoch 35 - iter 2650/2650 - loss 0.13239602 - time (sec): 86.63 - samples/sec: 17013.68 - lr: 0.100000 +2023-04-05 23:24:54,318 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:24:54,318 EPOCH 35 done: loss 0.1324 - lr 0.100000 +2023-04-05 23:24:54,318 BAD EPOCHS (no improvement): 0 +2023-04-05 23:24:54,324 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:25:02,883 epoch 36 - iter 265/2650 - loss 0.13358631 - time (sec): 8.56 - samples/sec: 17153.21 - lr: 0.100000 +2023-04-05 23:25:11,578 epoch 36 - iter 530/2650 - loss 0.13236657 - time (sec): 17.25 - samples/sec: 17147.17 - lr: 0.100000 +2023-04-05 23:25:23,978 epoch 36 - iter 795/2650 - loss 0.13117182 - time (sec): 29.65 - samples/sec: 14944.94 - lr: 0.100000 +2023-04-05 23:25:32,497 epoch 36 - iter 1060/2650 - loss 0.13085891 - time (sec): 38.17 - samples/sec: 15466.60 - lr: 0.100000 +2023-04-05 23:25:41,089 epoch 36 - iter 1325/2650 - loss 0.13028983 - time (sec): 46.76 - samples/sec: 15745.99 - lr: 0.100000 +2023-04-05 23:25:49,610 epoch 36 - iter 1590/2650 - loss 0.13026176 - time (sec): 55.28 - samples/sec: 15963.15 - lr: 0.100000 +2023-04-05 23:25:58,105 epoch 36 - iter 1855/2650 - loss 0.13079829 - time (sec): 63.78 - samples/sec: 16121.80 - lr: 0.100000 +2023-04-05 23:26:06,826 epoch 36 - iter 2120/2650 - loss 0.13124059 - time (sec): 72.50 - samples/sec: 16244.17 - lr: 0.100000 +2023-04-05 23:26:15,520 epoch 36 - iter 2385/2650 - loss 0.13113767 - time (sec): 81.20 - samples/sec: 16343.16 - lr: 0.100000 +2023-04-05 23:26:24,079 epoch 36 - iter 2650/2650 - loss 0.13126545 - time (sec): 89.75 - samples/sec: 16420.57 - lr: 0.100000 +2023-04-05 23:26:24,080 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:26:24,080 EPOCH 36 done: loss 0.1313 - lr 0.100000 +2023-04-05 23:26:24,080 BAD EPOCHS (no improvement): 0 +2023-04-05 23:26:24,083 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:26:32,624 epoch 37 - iter 265/2650 - loss 0.12731891 - time (sec): 8.54 - samples/sec: 17183.63 - lr: 0.100000 +2023-04-05 23:26:41,273 epoch 37 - iter 530/2650 - loss 0.12957543 - time (sec): 17.19 - samples/sec: 17148.33 - lr: 0.100000 +2023-04-05 23:26:49,929 epoch 37 - iter 795/2650 - loss 0.13058022 - time (sec): 25.85 - samples/sec: 17169.66 - lr: 0.100000 +2023-04-05 23:26:58,426 epoch 37 - iter 1060/2650 - loss 0.12942980 - time (sec): 34.34 - samples/sec: 17159.14 - lr: 0.100000 +2023-04-05 23:27:06,984 epoch 37 - iter 1325/2650 - loss 0.13002546 - time (sec): 42.90 - samples/sec: 17159.78 - lr: 0.100000 +2023-04-05 23:27:15,599 epoch 37 - iter 1590/2650 - loss 0.13016624 - time (sec): 51.52 - samples/sec: 17149.57 - lr: 0.100000 +2023-04-05 23:27:24,160 epoch 37 - iter 1855/2650 - loss 0.13044600 - time (sec): 60.08 - samples/sec: 17147.93 - lr: 0.100000 +2023-04-05 23:27:32,805 epoch 37 - iter 2120/2650 - loss 0.13053574 - time (sec): 68.72 - samples/sec: 17157.66 - lr: 0.100000 +2023-04-05 23:27:41,465 epoch 37 - iter 2385/2650 - loss 0.13044115 - time (sec): 77.38 - samples/sec: 17147.40 - lr: 0.100000 +2023-04-05 23:27:50,018 epoch 37 - iter 2650/2650 - loss 0.13032329 - time (sec): 85.93 - samples/sec: 17150.43 - lr: 0.100000 +2023-04-05 23:27:50,019 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:27:50,019 EPOCH 37 done: loss 0.1303 - lr 0.100000 +2023-04-05 23:27:50,019 BAD EPOCHS (no improvement): 0 +2023-04-05 23:27:50,023 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:27:58,544 epoch 38 - iter 265/2650 - loss 0.12797419 - time (sec): 8.52 - samples/sec: 17298.03 - lr: 0.100000 +2023-04-05 23:28:07,103 epoch 38 - iter 530/2650 - loss 0.12817620 - time (sec): 17.08 - samples/sec: 17214.67 - lr: 0.100000 +2023-04-05 23:28:15,674 epoch 38 - iter 795/2650 - loss 0.12872543 - time (sec): 25.65 - samples/sec: 17218.79 - lr: 0.100000 +2023-04-05 23:28:24,308 epoch 38 - iter 1060/2650 - loss 0.12906892 - time (sec): 34.28 - samples/sec: 17184.73 - lr: 0.100000 +2023-04-05 23:28:32,895 epoch 38 - iter 1325/2650 - loss 0.12893877 - time (sec): 42.87 - samples/sec: 17179.12 - lr: 0.100000 +2023-04-05 23:28:41,625 epoch 38 - iter 1590/2650 - loss 0.12911529 - time (sec): 51.60 - samples/sec: 17188.98 - lr: 0.100000 +2023-04-05 23:28:50,098 epoch 38 - iter 1855/2650 - loss 0.12902723 - time (sec): 60.08 - samples/sec: 17186.74 - lr: 0.100000 +2023-04-05 23:28:58,637 epoch 38 - iter 2120/2650 - loss 0.12927770 - time (sec): 68.61 - samples/sec: 17181.26 - lr: 0.100000 +2023-04-05 23:29:07,266 epoch 38 - iter 2385/2650 - loss 0.12927086 - time (sec): 77.24 - samples/sec: 17180.45 - lr: 0.100000 +2023-04-05 23:29:15,845 epoch 38 - iter 2650/2650 - loss 0.12967605 - time (sec): 85.82 - samples/sec: 17173.04 - lr: 0.100000 +2023-04-05 23:29:15,845 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:29:15,845 EPOCH 38 done: loss 0.1297 - lr 0.100000 +2023-04-05 23:29:15,845 BAD EPOCHS (no improvement): 0 +2023-04-05 23:29:15,848 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:29:24,454 epoch 39 - iter 265/2650 - loss 0.12463110 - time (sec): 8.61 - samples/sec: 17209.46 - lr: 0.100000 +2023-04-05 23:29:33,005 epoch 39 - iter 530/2650 - loss 0.12447914 - time (sec): 17.16 - samples/sec: 17193.85 - lr: 0.100000 +2023-04-05 23:29:41,634 epoch 39 - iter 795/2650 - loss 0.12488541 - time (sec): 25.79 - samples/sec: 17183.37 - lr: 0.100000 +2023-04-05 23:29:50,173 epoch 39 - iter 1060/2650 - loss 0.12609624 - time (sec): 34.33 - samples/sec: 17192.99 - lr: 0.100000 +2023-04-05 23:29:58,714 epoch 39 - iter 1325/2650 - loss 0.12669417 - time (sec): 42.87 - samples/sec: 17170.49 - lr: 0.100000 +2023-04-05 23:30:07,319 epoch 39 - iter 1590/2650 - loss 0.12683410 - time (sec): 51.47 - samples/sec: 17151.45 - lr: 0.100000 +2023-04-05 23:30:16,075 epoch 39 - iter 1855/2650 - loss 0.12750607 - time (sec): 60.23 - samples/sec: 17139.64 - lr: 0.100000 +2023-04-05 23:30:24,722 epoch 39 - iter 2120/2650 - loss 0.12811985 - time (sec): 68.87 - samples/sec: 17122.58 - lr: 0.100000 +2023-04-05 23:30:33,420 epoch 39 - iter 2385/2650 - loss 0.12809481 - time (sec): 77.57 - samples/sec: 17105.55 - lr: 0.100000 +2023-04-05 23:30:42,021 epoch 39 - iter 2650/2650 - loss 0.12823002 - time (sec): 86.17 - samples/sec: 17103.09 - lr: 0.100000 +2023-04-05 23:30:42,021 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:30:42,021 EPOCH 39 done: loss 0.1282 - lr 0.100000 +2023-04-05 23:30:42,021 BAD EPOCHS (no improvement): 0 +2023-04-05 23:30:42,025 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:30:50,675 epoch 40 - iter 265/2650 - loss 0.12310990 - time (sec): 8.65 - samples/sec: 17146.63 - lr: 0.100000 +2023-04-05 23:30:59,218 epoch 40 - iter 530/2650 - loss 0.12599879 - time (sec): 17.19 - samples/sec: 17124.33 - lr: 0.100000 +2023-04-05 23:31:07,912 epoch 40 - iter 795/2650 - loss 0.12686821 - time (sec): 25.89 - samples/sec: 17120.04 - lr: 0.100000 +2023-04-05 23:31:16,657 epoch 40 - iter 1060/2650 - loss 0.12694141 - time (sec): 34.63 - samples/sec: 17116.55 - lr: 0.100000 +2023-04-05 23:31:25,280 epoch 40 - iter 1325/2650 - loss 0.12714826 - time (sec): 43.25 - samples/sec: 17115.30 - lr: 0.100000 +2023-04-05 23:31:33,930 epoch 40 - iter 1590/2650 - loss 0.12750977 - time (sec): 51.91 - samples/sec: 17102.79 - lr: 0.100000 +2023-04-05 23:31:42,514 epoch 40 - iter 1855/2650 - loss 0.12755655 - time (sec): 60.49 - samples/sec: 17096.78 - lr: 0.100000 +2023-04-05 23:31:50,927 epoch 40 - iter 2120/2650 - loss 0.12792372 - time (sec): 68.90 - samples/sec: 17096.43 - lr: 0.100000 +2023-04-05 23:31:59,546 epoch 40 - iter 2385/2650 - loss 0.12815823 - time (sec): 77.52 - samples/sec: 17104.18 - lr: 0.100000 +2023-04-05 23:32:08,214 epoch 40 - iter 2650/2650 - loss 0.12846079 - time (sec): 86.19 - samples/sec: 17099.84 - lr: 0.100000 +2023-04-05 23:32:08,215 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:32:08,215 EPOCH 40 done: loss 0.1285 - lr 0.100000 +2023-04-05 23:32:08,215 BAD EPOCHS (no improvement): 1 +2023-04-05 23:32:08,218 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:32:16,793 epoch 41 - iter 265/2650 - loss 0.12633783 - time (sec): 8.57 - samples/sec: 17150.59 - lr: 0.100000 +2023-04-05 23:32:25,334 epoch 41 - iter 530/2650 - loss 0.12555300 - time (sec): 17.12 - samples/sec: 17161.38 - lr: 0.100000 +2023-04-05 23:32:33,956 epoch 41 - iter 795/2650 - loss 0.12651010 - time (sec): 25.74 - samples/sec: 17112.36 - lr: 0.100000 +2023-04-05 23:32:42,590 epoch 41 - iter 1060/2650 - loss 0.12570245 - time (sec): 34.37 - samples/sec: 17099.39 - lr: 0.100000 +2023-04-05 23:32:51,116 epoch 41 - iter 1325/2650 - loss 0.12584110 - time (sec): 42.90 - samples/sec: 17116.53 - lr: 0.100000 +2023-04-05 23:32:59,721 epoch 41 - iter 1590/2650 - loss 0.12620164 - time (sec): 51.50 - samples/sec: 17119.44 - lr: 0.100000 +2023-04-05 23:33:08,397 epoch 41 - iter 1855/2650 - loss 0.12621226 - time (sec): 60.18 - samples/sec: 17126.13 - lr: 0.100000 +2023-04-05 23:33:17,085 epoch 41 - iter 2120/2650 - loss 0.12629690 - time (sec): 68.87 - samples/sec: 17118.08 - lr: 0.100000 +2023-04-05 23:33:25,740 epoch 41 - iter 2385/2650 - loss 0.12633996 - time (sec): 77.52 - samples/sec: 17119.71 - lr: 0.100000 +2023-04-05 23:33:34,276 epoch 41 - iter 2650/2650 - loss 0.12681522 - time (sec): 86.06 - samples/sec: 17125.95 - lr: 0.100000 +2023-04-05 23:33:34,277 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:33:34,277 EPOCH 41 done: loss 0.1268 - lr 0.100000 +2023-04-05 23:33:34,277 BAD EPOCHS (no improvement): 0 +2023-04-05 23:33:34,280 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:33:42,880 epoch 42 - iter 265/2650 - loss 0.12379982 - time (sec): 8.60 - samples/sec: 17217.03 - lr: 0.100000 +2023-04-05 23:33:51,573 epoch 42 - iter 530/2650 - loss 0.12424190 - time (sec): 17.29 - samples/sec: 17149.52 - lr: 0.100000 +2023-04-05 23:34:00,220 epoch 42 - iter 795/2650 - loss 0.12536950 - time (sec): 25.94 - samples/sec: 17173.50 - lr: 0.100000 +2023-04-05 23:34:12,794 epoch 42 - iter 1060/2650 - loss 0.12564063 - time (sec): 38.51 - samples/sec: 15462.60 - lr: 0.100000 +2023-04-05 23:34:21,215 epoch 42 - iter 1325/2650 - loss 0.12594896 - time (sec): 46.93 - samples/sec: 15759.61 - lr: 0.100000 +2023-04-05 23:34:29,712 epoch 42 - iter 1590/2650 - loss 0.12602057 - time (sec): 55.43 - samples/sec: 15992.43 - lr: 0.100000 +2023-04-05 23:34:38,164 epoch 42 - iter 1855/2650 - loss 0.12627163 - time (sec): 63.88 - samples/sec: 16146.02 - lr: 0.100000 +2023-04-05 23:34:46,758 epoch 42 - iter 2120/2650 - loss 0.12675635 - time (sec): 72.48 - samples/sec: 16259.14 - lr: 0.100000 +2023-04-05 23:34:55,422 epoch 42 - iter 2385/2650 - loss 0.12710678 - time (sec): 81.14 - samples/sec: 16348.67 - lr: 0.100000 +2023-04-05 23:35:04,000 epoch 42 - iter 2650/2650 - loss 0.12734183 - time (sec): 89.72 - samples/sec: 16427.00 - lr: 0.100000 +2023-04-05 23:35:04,000 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:35:04,000 EPOCH 42 done: loss 0.1273 - lr 0.100000 +2023-04-05 23:35:04,000 BAD EPOCHS (no improvement): 1 +2023-04-05 23:35:04,008 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:35:12,662 epoch 43 - iter 265/2650 - loss 0.12678257 - time (sec): 8.65 - samples/sec: 17229.81 - lr: 0.100000 +2023-04-05 23:35:21,278 epoch 43 - iter 530/2650 - loss 0.12595316 - time (sec): 17.27 - samples/sec: 17173.89 - lr: 0.100000 +2023-04-05 23:35:29,916 epoch 43 - iter 795/2650 - loss 0.12656045 - time (sec): 25.91 - samples/sec: 17147.63 - lr: 0.100000 +2023-04-05 23:35:38,521 epoch 43 - iter 1060/2650 - loss 0.12672579 - time (sec): 34.51 - samples/sec: 17129.09 - lr: 0.100000 +2023-04-05 23:35:47,106 epoch 43 - iter 1325/2650 - loss 0.12627445 - time (sec): 43.10 - samples/sec: 17103.18 - lr: 0.100000 +2023-04-05 23:35:55,876 epoch 43 - iter 1590/2650 - loss 0.12642366 - time (sec): 51.87 - samples/sec: 17081.64 - lr: 0.100000 +2023-04-05 23:36:04,439 epoch 43 - iter 1855/2650 - loss 0.12658618 - time (sec): 60.43 - samples/sec: 17069.22 - lr: 0.100000 +2023-04-05 23:36:13,041 epoch 43 - iter 2120/2650 - loss 0.12671116 - time (sec): 69.03 - samples/sec: 17072.26 - lr: 0.100000 +2023-04-05 23:36:21,706 epoch 43 - iter 2385/2650 - loss 0.12683079 - time (sec): 77.70 - samples/sec: 17068.35 - lr: 0.100000 +2023-04-05 23:36:30,428 epoch 43 - iter 2650/2650 - loss 0.12692280 - time (sec): 86.42 - samples/sec: 17054.17 - lr: 0.100000 +2023-04-05 23:36:30,428 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:36:30,428 EPOCH 43 done: loss 0.1269 - lr 0.100000 +2023-04-05 23:36:30,428 BAD EPOCHS (no improvement): 2 +2023-04-05 23:36:30,432 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:36:39,129 epoch 44 - iter 265/2650 - loss 0.12470174 - time (sec): 8.70 - samples/sec: 17114.65 - lr: 0.100000 +2023-04-05 23:36:47,732 epoch 44 - iter 530/2650 - loss 0.12578563 - time (sec): 17.30 - samples/sec: 17078.60 - lr: 0.100000 +2023-04-05 23:36:56,319 epoch 44 - iter 795/2650 - loss 0.12489105 - time (sec): 25.89 - samples/sec: 17075.07 - lr: 0.100000 +2023-04-05 23:37:05,036 epoch 44 - iter 1060/2650 - loss 0.12547509 - time (sec): 34.60 - samples/sec: 17048.59 - lr: 0.100000 +2023-04-05 23:37:13,710 epoch 44 - iter 1325/2650 - loss 0.12579979 - time (sec): 43.28 - samples/sec: 17045.50 - lr: 0.100000 +2023-04-05 23:37:22,271 epoch 44 - iter 1590/2650 - loss 0.12600760 - time (sec): 51.84 - samples/sec: 17050.29 - lr: 0.100000 +2023-04-05 23:37:30,988 epoch 44 - iter 1855/2650 - loss 0.12551866 - time (sec): 60.56 - samples/sec: 17043.54 - lr: 0.100000 +2023-04-05 23:37:39,623 epoch 44 - iter 2120/2650 - loss 0.12568701 - time (sec): 69.19 - samples/sec: 17049.33 - lr: 0.100000 +2023-04-05 23:37:48,218 epoch 44 - iter 2385/2650 - loss 0.12575257 - time (sec): 77.79 - samples/sec: 17048.30 - lr: 0.100000 +2023-04-05 23:37:56,896 epoch 44 - iter 2650/2650 - loss 0.12565882 - time (sec): 86.46 - samples/sec: 17045.47 - lr: 0.100000 +2023-04-05 23:37:56,897 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:37:56,897 EPOCH 44 done: loss 0.1257 - lr 0.100000 +2023-04-05 23:37:56,897 BAD EPOCHS (no improvement): 0 +2023-04-05 23:37:56,900 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:38:05,580 epoch 45 - iter 265/2650 - loss 0.12020865 - time (sec): 8.68 - samples/sec: 17032.43 - lr: 0.100000 +2023-04-05 23:38:14,255 epoch 45 - iter 530/2650 - loss 0.12458382 - time (sec): 17.35 - samples/sec: 17026.59 - lr: 0.100000 +2023-04-05 23:38:22,963 epoch 45 - iter 795/2650 - loss 0.12445409 - time (sec): 26.06 - samples/sec: 17026.96 - lr: 0.100000 +2023-04-05 23:38:31,587 epoch 45 - iter 1060/2650 - loss 0.12474271 - time (sec): 34.69 - samples/sec: 17040.46 - lr: 0.100000 +2023-04-05 23:38:40,239 epoch 45 - iter 1325/2650 - loss 0.12449246 - time (sec): 43.34 - samples/sec: 17041.88 - lr: 0.100000 +2023-04-05 23:38:49,000 epoch 45 - iter 1590/2650 - loss 0.12487218 - time (sec): 52.10 - samples/sec: 17042.74 - lr: 0.100000 +2023-04-05 23:38:57,606 epoch 45 - iter 1855/2650 - loss 0.12446713 - time (sec): 60.71 - samples/sec: 17059.67 - lr: 0.100000 +2023-04-05 23:39:06,072 epoch 45 - iter 2120/2650 - loss 0.12497971 - time (sec): 69.17 - samples/sec: 17066.43 - lr: 0.100000 +2023-04-05 23:39:14,669 epoch 45 - iter 2385/2650 - loss 0.12543694 - time (sec): 77.77 - samples/sec: 17065.47 - lr: 0.100000 +2023-04-05 23:39:23,247 epoch 45 - iter 2650/2650 - loss 0.12519508 - time (sec): 86.35 - samples/sec: 17068.61 - lr: 0.100000 +2023-04-05 23:39:23,248 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:39:23,248 EPOCH 45 done: loss 0.1252 - lr 0.100000 +2023-04-05 23:39:23,248 BAD EPOCHS (no improvement): 0 +2023-04-05 23:39:23,253 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:39:31,796 epoch 46 - iter 265/2650 - loss 0.12395394 - time (sec): 8.54 - samples/sec: 17207.45 - lr: 0.100000 +2023-04-05 23:39:40,445 epoch 46 - iter 530/2650 - loss 0.12388758 - time (sec): 17.19 - samples/sec: 17175.62 - lr: 0.100000 +2023-04-05 23:39:49,073 epoch 46 - iter 795/2650 - loss 0.12377428 - time (sec): 25.82 - samples/sec: 17130.22 - lr: 0.100000 +2023-04-05 23:39:57,745 epoch 46 - iter 1060/2650 - loss 0.12356644 - time (sec): 34.49 - samples/sec: 17132.91 - lr: 0.100000 +2023-04-05 23:40:06,384 epoch 46 - iter 1325/2650 - loss 0.12355039 - time (sec): 43.13 - samples/sec: 17119.74 - lr: 0.100000 +2023-04-05 23:40:15,020 epoch 46 - iter 1590/2650 - loss 0.12303473 - time (sec): 51.77 - samples/sec: 17109.00 - lr: 0.100000 +2023-04-05 23:40:23,594 epoch 46 - iter 1855/2650 - loss 0.12338673 - time (sec): 60.34 - samples/sec: 17083.83 - lr: 0.100000 +2023-04-05 23:40:32,190 epoch 46 - iter 2120/2650 - loss 0.12364929 - time (sec): 68.94 - samples/sec: 17084.83 - lr: 0.100000 +2023-04-05 23:40:40,742 epoch 46 - iter 2385/2650 - loss 0.12391846 - time (sec): 77.49 - samples/sec: 17090.49 - lr: 0.100000 +2023-04-05 23:40:49,546 epoch 46 - iter 2650/2650 - loss 0.12404177 - time (sec): 86.29 - samples/sec: 17079.31 - lr: 0.100000 +2023-04-05 23:40:49,546 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:40:49,546 EPOCH 46 done: loss 0.1240 - lr 0.100000 +2023-04-05 23:40:49,546 BAD EPOCHS (no improvement): 0 +2023-04-05 23:40:49,553 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:40:58,220 epoch 47 - iter 265/2650 - loss 0.12245771 - time (sec): 8.67 - samples/sec: 17138.76 - lr: 0.100000 +2023-04-05 23:41:06,763 epoch 47 - iter 530/2650 - loss 0.12327385 - time (sec): 17.21 - samples/sec: 17123.85 - lr: 0.100000 +2023-04-05 23:41:15,344 epoch 47 - iter 795/2650 - loss 0.12377314 - time (sec): 25.79 - samples/sec: 17124.51 - lr: 0.100000 +2023-04-05 23:41:23,984 epoch 47 - iter 1060/2650 - loss 0.12372381 - time (sec): 34.43 - samples/sec: 17112.11 - lr: 0.100000 +2023-04-05 23:41:32,476 epoch 47 - iter 1325/2650 - loss 0.12356805 - time (sec): 42.92 - samples/sec: 17125.09 - lr: 0.100000 +2023-04-05 23:41:41,027 epoch 47 - iter 1590/2650 - loss 0.12368814 - time (sec): 51.47 - samples/sec: 17142.13 - lr: 0.100000 +2023-04-05 23:41:49,624 epoch 47 - iter 1855/2650 - loss 0.12387523 - time (sec): 60.07 - samples/sec: 17146.12 - lr: 0.100000 +2023-04-05 23:41:58,321 epoch 47 - iter 2120/2650 - loss 0.12407366 - time (sec): 68.77 - samples/sec: 17132.72 - lr: 0.100000 +2023-04-05 23:42:07,024 epoch 47 - iter 2385/2650 - loss 0.12407984 - time (sec): 77.47 - samples/sec: 17129.83 - lr: 0.100000 +2023-04-05 23:42:15,651 epoch 47 - iter 2650/2650 - loss 0.12408841 - time (sec): 86.10 - samples/sec: 17117.93 - lr: 0.100000 +2023-04-05 23:42:15,652 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:42:15,652 EPOCH 47 done: loss 0.1241 - lr 0.100000 +2023-04-05 23:42:15,652 BAD EPOCHS (no improvement): 1 +2023-04-05 23:42:15,655 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:42:24,322 epoch 48 - iter 265/2650 - loss 0.11946841 - time (sec): 8.67 - samples/sec: 17115.28 - lr: 0.100000 +2023-04-05 23:42:32,962 epoch 48 - iter 530/2650 - loss 0.12157324 - time (sec): 17.31 - samples/sec: 17076.90 - lr: 0.100000 +2023-04-05 23:42:41,518 epoch 48 - iter 795/2650 - loss 0.12209703 - time (sec): 25.86 - samples/sec: 17109.87 - lr: 0.100000 +2023-04-05 23:42:50,038 epoch 48 - iter 1060/2650 - loss 0.12215143 - time (sec): 34.38 - samples/sec: 17098.53 - lr: 0.100000 +2023-04-05 23:42:58,737 epoch 48 - iter 1325/2650 - loss 0.12233875 - time (sec): 43.08 - samples/sec: 17078.10 - lr: 0.100000 +2023-04-05 23:43:11,192 epoch 48 - iter 1590/2650 - loss 0.12255737 - time (sec): 55.54 - samples/sec: 15886.32 - lr: 0.100000 +2023-04-05 23:43:19,760 epoch 48 - iter 1855/2650 - loss 0.12250281 - time (sec): 64.10 - samples/sec: 16069.20 - lr: 0.100000 +2023-04-05 23:43:28,279 epoch 48 - iter 2120/2650 - loss 0.12256286 - time (sec): 72.62 - samples/sec: 16208.41 - lr: 0.100000 +2023-04-05 23:43:36,978 epoch 48 - iter 2385/2650 - loss 0.12285696 - time (sec): 81.32 - samples/sec: 16305.14 - lr: 0.100000 +2023-04-05 23:43:45,622 epoch 48 - iter 2650/2650 - loss 0.12314502 - time (sec): 89.97 - samples/sec: 16381.87 - lr: 0.100000 +2023-04-05 23:43:45,622 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:43:45,622 EPOCH 48 done: loss 0.1231 - lr 0.100000 +2023-04-05 23:43:45,622 BAD EPOCHS (no improvement): 0 +2023-04-05 23:43:45,626 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:43:54,359 epoch 49 - iter 265/2650 - loss 0.12006638 - time (sec): 8.73 - samples/sec: 17080.61 - lr: 0.100000 +2023-04-05 23:44:03,035 epoch 49 - iter 530/2650 - loss 0.12089147 - time (sec): 17.41 - samples/sec: 17100.42 - lr: 0.100000 +2023-04-05 23:44:11,601 epoch 49 - iter 795/2650 - loss 0.12206598 - time (sec): 25.98 - samples/sec: 17091.73 - lr: 0.100000 +2023-04-05 23:44:20,143 epoch 49 - iter 1060/2650 - loss 0.12187178 - time (sec): 34.52 - samples/sec: 17114.36 - lr: 0.100000 +2023-04-05 23:44:28,782 epoch 49 - iter 1325/2650 - loss 0.12219997 - time (sec): 43.16 - samples/sec: 17119.17 - lr: 0.100000 +2023-04-05 23:44:37,438 epoch 49 - iter 1590/2650 - loss 0.12294518 - time (sec): 51.81 - samples/sec: 17120.93 - lr: 0.100000 +2023-04-05 23:44:46,000 epoch 49 - iter 1855/2650 - loss 0.12244330 - time (sec): 60.37 - samples/sec: 17122.32 - lr: 0.100000 +2023-04-05 23:44:54,555 epoch 49 - iter 2120/2650 - loss 0.12308299 - time (sec): 68.93 - samples/sec: 17129.47 - lr: 0.100000 +2023-04-05 23:45:03,099 epoch 49 - iter 2385/2650 - loss 0.12341418 - time (sec): 77.47 - samples/sec: 17134.58 - lr: 0.100000 +2023-04-05 23:45:11,643 epoch 49 - iter 2650/2650 - loss 0.12333276 - time (sec): 86.02 - samples/sec: 17134.05 - lr: 0.100000 +2023-04-05 23:45:11,643 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:45:11,643 EPOCH 49 done: loss 0.1233 - lr 0.100000 +2023-04-05 23:45:11,643 BAD EPOCHS (no improvement): 1 +2023-04-05 23:45:11,650 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:45:20,161 epoch 50 - iter 265/2650 - loss 0.12095047 - time (sec): 8.51 - samples/sec: 17225.45 - lr: 0.100000 +2023-04-05 23:45:28,767 epoch 50 - iter 530/2650 - loss 0.12199114 - time (sec): 17.12 - samples/sec: 17206.60 - lr: 0.100000 +2023-04-05 23:45:37,505 epoch 50 - iter 795/2650 - loss 0.12189903 - time (sec): 25.85 - samples/sec: 17167.01 - lr: 0.100000 +2023-04-05 23:45:46,129 epoch 50 - iter 1060/2650 - loss 0.12228023 - time (sec): 34.48 - samples/sec: 17125.70 - lr: 0.100000 +2023-04-05 23:45:54,794 epoch 50 - iter 1325/2650 - loss 0.12293105 - time (sec): 43.14 - samples/sec: 17107.58 - lr: 0.100000 +2023-04-05 23:46:03,414 epoch 50 - iter 1590/2650 - loss 0.12299952 - time (sec): 51.76 - samples/sec: 17094.40 - lr: 0.100000 +2023-04-05 23:46:12,115 epoch 50 - iter 1855/2650 - loss 0.12307304 - time (sec): 60.46 - samples/sec: 17091.58 - lr: 0.100000 +2023-04-05 23:46:20,749 epoch 50 - iter 2120/2650 - loss 0.12284933 - time (sec): 69.10 - samples/sec: 17081.31 - lr: 0.100000 +2023-04-05 23:46:29,414 epoch 50 - iter 2385/2650 - loss 0.12261970 - time (sec): 77.76 - samples/sec: 17078.53 - lr: 0.100000 +2023-04-05 23:46:37,991 epoch 50 - iter 2650/2650 - loss 0.12299836 - time (sec): 86.34 - samples/sec: 17069.89 - lr: 0.100000 +2023-04-05 23:46:37,991 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:46:37,991 EPOCH 50 done: loss 0.1230 - lr 0.100000 +2023-04-05 23:46:37,991 BAD EPOCHS (no improvement): 0 +2023-04-05 23:46:37,995 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:46:46,632 epoch 51 - iter 265/2650 - loss 0.11765643 - time (sec): 8.64 - samples/sec: 17062.56 - lr: 0.100000 +2023-04-05 23:46:55,334 epoch 51 - iter 530/2650 - loss 0.12044631 - time (sec): 17.34 - samples/sec: 17021.66 - lr: 0.100000 +2023-04-05 23:47:03,929 epoch 51 - iter 795/2650 - loss 0.12027262 - time (sec): 25.93 - samples/sec: 17011.59 - lr: 0.100000 +2023-04-05 23:47:12,626 epoch 51 - iter 1060/2650 - loss 0.12128627 - time (sec): 34.63 - samples/sec: 17031.66 - lr: 0.100000 +2023-04-05 23:47:21,330 epoch 51 - iter 1325/2650 - loss 0.12117666 - time (sec): 43.34 - samples/sec: 17029.21 - lr: 0.100000 +2023-04-05 23:47:29,961 epoch 51 - iter 1590/2650 - loss 0.12092423 - time (sec): 51.97 - samples/sec: 17025.11 - lr: 0.100000 +2023-04-05 23:47:38,579 epoch 51 - iter 1855/2650 - loss 0.12145846 - time (sec): 60.58 - samples/sec: 17036.37 - lr: 0.100000 +2023-04-05 23:47:47,212 epoch 51 - iter 2120/2650 - loss 0.12105817 - time (sec): 69.22 - samples/sec: 17040.72 - lr: 0.100000 +2023-04-05 23:47:55,866 epoch 51 - iter 2385/2650 - loss 0.12107345 - time (sec): 77.87 - samples/sec: 17038.64 - lr: 0.100000 +2023-04-05 23:48:04,526 epoch 51 - iter 2650/2650 - loss 0.12123995 - time (sec): 86.53 - samples/sec: 17032.31 - lr: 0.100000 +2023-04-05 23:48:04,526 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:48:04,526 EPOCH 51 done: loss 0.1212 - lr 0.100000 +2023-04-05 23:48:04,527 BAD EPOCHS (no improvement): 0 +2023-04-05 23:48:04,530 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:48:13,126 epoch 52 - iter 265/2650 - loss 0.12008009 - time (sec): 8.60 - samples/sec: 17226.10 - lr: 0.100000 +2023-04-05 23:48:21,844 epoch 52 - iter 530/2650 - loss 0.11939549 - time (sec): 17.31 - samples/sec: 17148.78 - lr: 0.100000 +2023-04-05 23:48:30,389 epoch 52 - iter 795/2650 - loss 0.11956334 - time (sec): 25.86 - samples/sec: 17108.62 - lr: 0.100000 +2023-04-05 23:48:38,968 epoch 52 - iter 1060/2650 - loss 0.12051251 - time (sec): 34.44 - samples/sec: 17091.71 - lr: 0.100000 +2023-04-05 23:48:47,660 epoch 52 - iter 1325/2650 - loss 0.12044718 - time (sec): 43.13 - samples/sec: 17074.69 - lr: 0.100000 +2023-04-05 23:48:56,418 epoch 52 - iter 1590/2650 - loss 0.12053611 - time (sec): 51.89 - samples/sec: 17058.17 - lr: 0.100000 +2023-04-05 23:49:05,233 epoch 52 - iter 1855/2650 - loss 0.12125706 - time (sec): 60.70 - samples/sec: 17045.53 - lr: 0.100000 +2023-04-05 23:49:13,921 epoch 52 - iter 2120/2650 - loss 0.12120445 - time (sec): 69.39 - samples/sec: 17037.10 - lr: 0.100000 +2023-04-05 23:49:22,538 epoch 52 - iter 2385/2650 - loss 0.12148177 - time (sec): 78.01 - samples/sec: 17041.40 - lr: 0.100000 +2023-04-05 23:49:31,038 epoch 52 - iter 2650/2650 - loss 0.12165050 - time (sec): 86.51 - samples/sec: 17037.03 - lr: 0.100000 +2023-04-05 23:49:31,038 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:49:31,038 EPOCH 52 done: loss 0.1217 - lr 0.100000 +2023-04-05 23:49:31,038 BAD EPOCHS (no improvement): 1 +2023-04-05 23:49:31,042 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:49:39,751 epoch 53 - iter 265/2650 - loss 0.12374936 - time (sec): 8.71 - samples/sec: 17147.77 - lr: 0.100000 +2023-04-05 23:49:48,323 epoch 53 - iter 530/2650 - loss 0.12173827 - time (sec): 17.28 - samples/sec: 17144.93 - lr: 0.100000 +2023-04-05 23:49:56,899 epoch 53 - iter 795/2650 - loss 0.12104478 - time (sec): 25.86 - samples/sec: 17146.96 - lr: 0.100000 +2023-04-05 23:50:05,491 epoch 53 - iter 1060/2650 - loss 0.12133749 - time (sec): 34.45 - samples/sec: 17123.41 - lr: 0.100000 +2023-04-05 23:50:14,076 epoch 53 - iter 1325/2650 - loss 0.12177002 - time (sec): 43.03 - samples/sec: 17103.23 - lr: 0.100000 +2023-04-05 23:50:22,743 epoch 53 - iter 1590/2650 - loss 0.12183399 - time (sec): 51.70 - samples/sec: 17087.58 - lr: 0.100000 +2023-04-05 23:50:31,429 epoch 53 - iter 1855/2650 - loss 0.12190756 - time (sec): 60.39 - samples/sec: 17077.76 - lr: 0.100000 +2023-04-05 23:50:40,072 epoch 53 - iter 2120/2650 - loss 0.12224888 - time (sec): 69.03 - samples/sec: 17072.64 - lr: 0.100000 +2023-04-05 23:50:48,764 epoch 53 - iter 2385/2650 - loss 0.12193284 - time (sec): 77.72 - samples/sec: 17075.58 - lr: 0.100000 +2023-04-05 23:50:57,385 epoch 53 - iter 2650/2650 - loss 0.12190621 - time (sec): 86.34 - samples/sec: 17069.40 - lr: 0.100000 +2023-04-05 23:50:57,385 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:50:57,385 EPOCH 53 done: loss 0.1219 - lr 0.100000 +2023-04-05 23:50:57,385 BAD EPOCHS (no improvement): 2 +2023-04-05 23:50:57,389 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:51:06,081 epoch 54 - iter 265/2650 - loss 0.12039467 - time (sec): 8.69 - samples/sec: 17018.01 - lr: 0.100000 +2023-04-05 23:51:14,679 epoch 54 - iter 530/2650 - loss 0.12073172 - time (sec): 17.29 - samples/sec: 17074.28 - lr: 0.100000 +2023-04-05 23:51:23,144 epoch 54 - iter 795/2650 - loss 0.12099418 - time (sec): 25.75 - samples/sec: 17109.22 - lr: 0.100000 +2023-04-05 23:51:31,868 epoch 54 - iter 1060/2650 - loss 0.12166332 - time (sec): 34.48 - samples/sec: 17116.67 - lr: 0.100000 +2023-04-05 23:51:40,451 epoch 54 - iter 1325/2650 - loss 0.12130167 - time (sec): 43.06 - samples/sec: 17104.80 - lr: 0.100000 +2023-04-05 23:51:49,000 epoch 54 - iter 1590/2650 - loss 0.12114659 - time (sec): 51.61 - samples/sec: 17107.66 - lr: 0.100000 +2023-04-05 23:52:01,470 epoch 54 - iter 1855/2650 - loss 0.12107139 - time (sec): 64.08 - samples/sec: 16063.78 - lr: 0.100000 +2023-04-05 23:52:09,986 epoch 54 - iter 2120/2650 - loss 0.12123056 - time (sec): 72.60 - samples/sec: 16216.95 - lr: 0.100000 +2023-04-05 23:52:18,629 epoch 54 - iter 2385/2650 - loss 0.12139034 - time (sec): 81.24 - samples/sec: 16317.49 - lr: 0.100000 +2023-04-05 23:52:27,312 epoch 54 - iter 2650/2650 - loss 0.12148308 - time (sec): 89.92 - samples/sec: 16389.87 - lr: 0.100000 +2023-04-05 23:52:27,312 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:52:27,312 EPOCH 54 done: loss 0.1215 - lr 0.100000 +2023-04-05 23:52:27,312 BAD EPOCHS (no improvement): 3 +2023-04-05 23:52:27,316 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:52:35,968 epoch 55 - iter 265/2650 - loss 0.12027045 - time (sec): 8.65 - samples/sec: 17146.34 - lr: 0.100000 +2023-04-05 23:52:44,537 epoch 55 - iter 530/2650 - loss 0.12011686 - time (sec): 17.22 - samples/sec: 17101.88 - lr: 0.100000 +2023-04-05 23:52:53,224 epoch 55 - iter 795/2650 - loss 0.11988439 - time (sec): 25.91 - samples/sec: 17066.00 - lr: 0.100000 +2023-04-05 23:53:01,954 epoch 55 - iter 1060/2650 - loss 0.12071113 - time (sec): 34.64 - samples/sec: 17060.64 - lr: 0.100000 +2023-04-05 23:53:10,543 epoch 55 - iter 1325/2650 - loss 0.12039759 - time (sec): 43.23 - samples/sec: 17074.52 - lr: 0.100000 +2023-04-05 23:53:19,161 epoch 55 - iter 1590/2650 - loss 0.12060606 - time (sec): 51.84 - samples/sec: 17048.73 - lr: 0.100000 +2023-04-05 23:53:27,825 epoch 55 - iter 1855/2650 - loss 0.12042112 - time (sec): 60.51 - samples/sec: 17046.19 - lr: 0.100000 +2023-04-05 23:53:36,426 epoch 55 - iter 2120/2650 - loss 0.12079893 - time (sec): 69.11 - samples/sec: 17057.14 - lr: 0.100000 +2023-04-05 23:53:45,113 epoch 55 - iter 2385/2650 - loss 0.12075022 - time (sec): 77.80 - samples/sec: 17059.35 - lr: 0.100000 +2023-04-05 23:53:53,729 epoch 55 - iter 2650/2650 - loss 0.12107830 - time (sec): 86.41 - samples/sec: 17055.59 - lr: 0.100000 +2023-04-05 23:53:53,730 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:53:53,730 EPOCH 55 done: loss 0.1211 - lr 0.100000 +2023-04-05 23:53:53,730 BAD EPOCHS (no improvement): 0 +2023-04-05 23:53:53,764 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:54:02,251 epoch 56 - iter 265/2650 - loss 0.11727095 - time (sec): 8.49 - samples/sec: 17099.36 - lr: 0.100000 +2023-04-05 23:54:10,839 epoch 56 - iter 530/2650 - loss 0.11871245 - time (sec): 17.07 - samples/sec: 17122.28 - lr: 0.100000 +2023-04-05 23:54:19,506 epoch 56 - iter 795/2650 - loss 0.11884111 - time (sec): 25.74 - samples/sec: 17083.37 - lr: 0.100000 +2023-04-05 23:54:28,264 epoch 56 - iter 1060/2650 - loss 0.11924132 - time (sec): 34.50 - samples/sec: 17068.08 - lr: 0.100000 +2023-04-05 23:54:36,929 epoch 56 - iter 1325/2650 - loss 0.11911027 - time (sec): 43.16 - samples/sec: 17072.22 - lr: 0.100000 +2023-04-05 23:54:45,618 epoch 56 - iter 1590/2650 - loss 0.11911472 - time (sec): 51.85 - samples/sec: 17068.16 - lr: 0.100000 +2023-04-05 23:54:54,344 epoch 56 - iter 1855/2650 - loss 0.11895260 - time (sec): 60.58 - samples/sec: 17069.27 - lr: 0.100000 +2023-04-05 23:55:02,985 epoch 56 - iter 2120/2650 - loss 0.11924570 - time (sec): 69.22 - samples/sec: 17063.21 - lr: 0.100000 +2023-04-05 23:55:11,642 epoch 56 - iter 2385/2650 - loss 0.11938985 - time (sec): 77.88 - samples/sec: 17065.01 - lr: 0.100000 +2023-04-05 23:55:20,177 epoch 56 - iter 2650/2650 - loss 0.11973224 - time (sec): 86.41 - samples/sec: 17055.58 - lr: 0.100000 +2023-04-05 23:55:20,178 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:55:20,178 EPOCH 56 done: loss 0.1197 - lr 0.100000 +2023-04-05 23:55:20,178 BAD EPOCHS (no improvement): 0 +2023-04-05 23:55:20,181 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:55:28,944 epoch 57 - iter 265/2650 - loss 0.11551601 - time (sec): 8.76 - samples/sec: 16989.01 - lr: 0.100000 +2023-04-05 23:55:37,541 epoch 57 - iter 530/2650 - loss 0.11804967 - time (sec): 17.36 - samples/sec: 17054.16 - lr: 0.100000 +2023-04-05 23:55:46,155 epoch 57 - iter 795/2650 - loss 0.11764748 - time (sec): 25.97 - samples/sec: 17070.15 - lr: 0.100000 +2023-04-05 23:55:54,796 epoch 57 - iter 1060/2650 - loss 0.11794198 - time (sec): 34.61 - samples/sec: 17069.10 - lr: 0.100000 +2023-04-05 23:56:03,382 epoch 57 - iter 1325/2650 - loss 0.11888838 - time (sec): 43.20 - samples/sec: 17057.48 - lr: 0.100000 +2023-04-05 23:56:11,866 epoch 57 - iter 1590/2650 - loss 0.11952141 - time (sec): 51.68 - samples/sec: 17056.66 - lr: 0.100000 +2023-04-05 23:56:20,540 epoch 57 - iter 1855/2650 - loss 0.11932712 - time (sec): 60.36 - samples/sec: 17051.15 - lr: 0.100000 +2023-04-05 23:56:29,254 epoch 57 - iter 2120/2650 - loss 0.12002900 - time (sec): 69.07 - samples/sec: 17047.53 - lr: 0.100000 +2023-04-05 23:56:37,892 epoch 57 - iter 2385/2650 - loss 0.11985208 - time (sec): 77.71 - samples/sec: 17046.28 - lr: 0.100000 +2023-04-05 23:56:46,642 epoch 57 - iter 2650/2650 - loss 0.11972316 - time (sec): 86.46 - samples/sec: 17046.09 - lr: 0.100000 +2023-04-05 23:56:46,643 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:56:46,643 EPOCH 57 done: loss 0.1197 - lr 0.100000 +2023-04-05 23:56:46,643 BAD EPOCHS (no improvement): 0 +2023-04-05 23:56:46,646 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:56:55,328 epoch 58 - iter 265/2650 - loss 0.11826105 - time (sec): 8.68 - samples/sec: 17028.08 - lr: 0.100000 +2023-04-05 23:57:04,002 epoch 58 - iter 530/2650 - loss 0.11934403 - time (sec): 17.36 - samples/sec: 17091.53 - lr: 0.100000 +2023-04-05 23:57:12,686 epoch 58 - iter 795/2650 - loss 0.11992925 - time (sec): 26.04 - samples/sec: 17057.13 - lr: 0.100000 +2023-04-05 23:57:21,377 epoch 58 - iter 1060/2650 - loss 0.11968436 - time (sec): 34.73 - samples/sec: 17041.85 - lr: 0.100000 +2023-04-05 23:57:30,022 epoch 58 - iter 1325/2650 - loss 0.11999146 - time (sec): 43.38 - samples/sec: 17037.23 - lr: 0.100000 +2023-04-05 23:57:38,633 epoch 58 - iter 1590/2650 - loss 0.11988164 - time (sec): 51.99 - samples/sec: 17014.71 - lr: 0.100000 +2023-04-05 23:57:47,338 epoch 58 - iter 1855/2650 - loss 0.11995967 - time (sec): 60.69 - samples/sec: 17004.30 - lr: 0.100000 +2023-04-05 23:57:56,005 epoch 58 - iter 2120/2650 - loss 0.11993393 - time (sec): 69.36 - samples/sec: 16994.45 - lr: 0.100000 +2023-04-05 23:58:04,651 epoch 58 - iter 2385/2650 - loss 0.11974364 - time (sec): 78.00 - samples/sec: 16989.23 - lr: 0.100000 +2023-04-05 23:58:13,429 epoch 58 - iter 2650/2650 - loss 0.11982734 - time (sec): 86.78 - samples/sec: 16982.87 - lr: 0.100000 +2023-04-05 23:58:13,429 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:58:13,429 EPOCH 58 done: loss 0.1198 - lr 0.100000 +2023-04-05 23:58:13,430 BAD EPOCHS (no improvement): 1 +2023-04-05 23:58:13,433 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:58:22,067 epoch 59 - iter 265/2650 - loss 0.11299022 - time (sec): 8.63 - samples/sec: 17050.67 - lr: 0.100000 +2023-04-05 23:58:30,741 epoch 59 - iter 530/2650 - loss 0.11736922 - time (sec): 17.31 - samples/sec: 17013.65 - lr: 0.100000 +2023-04-05 23:58:39,478 epoch 59 - iter 795/2650 - loss 0.11798749 - time (sec): 26.05 - samples/sec: 17031.42 - lr: 0.100000 +2023-04-05 23:58:48,166 epoch 59 - iter 1060/2650 - loss 0.11762691 - time (sec): 34.73 - samples/sec: 17004.87 - lr: 0.100000 +2023-04-05 23:58:56,859 epoch 59 - iter 1325/2650 - loss 0.11789587 - time (sec): 43.43 - samples/sec: 17007.78 - lr: 0.100000 +2023-04-05 23:59:05,584 epoch 59 - iter 1590/2650 - loss 0.11801770 - time (sec): 52.15 - samples/sec: 16994.06 - lr: 0.100000 +2023-04-05 23:59:14,205 epoch 59 - iter 1855/2650 - loss 0.11832719 - time (sec): 60.77 - samples/sec: 16994.94 - lr: 0.100000 +2023-04-05 23:59:22,774 epoch 59 - iter 2120/2650 - loss 0.11833449 - time (sec): 69.34 - samples/sec: 16987.16 - lr: 0.100000 +2023-04-05 23:59:31,462 epoch 59 - iter 2385/2650 - loss 0.11834459 - time (sec): 78.03 - samples/sec: 16993.61 - lr: 0.100000 +2023-04-05 23:59:40,217 epoch 59 - iter 2650/2650 - loss 0.11862343 - time (sec): 86.78 - samples/sec: 16982.63 - lr: 0.100000 +2023-04-05 23:59:40,217 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:59:40,217 EPOCH 59 done: loss 0.1186 - lr 0.100000 +2023-04-05 23:59:40,217 BAD EPOCHS (no improvement): 0 +2023-04-05 23:59:40,221 ---------------------------------------------------------------------------------------------------- +2023-04-05 23:59:48,907 epoch 60 - iter 265/2650 - loss 0.11724894 - time (sec): 8.68 - samples/sec: 17059.94 - lr: 0.100000 +2023-04-05 23:59:57,723 epoch 60 - iter 530/2650 - loss 0.11727585 - time (sec): 17.50 - samples/sec: 17014.79 - lr: 0.100000 +2023-04-06 00:00:06,246 epoch 60 - iter 795/2650 - loss 0.11764514 - time (sec): 26.02 - samples/sec: 17043.15 - lr: 0.100000 +2023-04-06 00:00:14,793 epoch 60 - iter 1060/2650 - loss 0.11705698 - time (sec): 34.57 - samples/sec: 17104.15 - lr: 0.100000 +2023-04-06 00:00:23,328 epoch 60 - iter 1325/2650 - loss 0.11769581 - time (sec): 43.11 - samples/sec: 17088.69 - lr: 0.100000 +2023-04-06 00:00:31,918 epoch 60 - iter 1590/2650 - loss 0.11816867 - time (sec): 51.70 - samples/sec: 17080.52 - lr: 0.100000 +2023-04-06 00:00:40,590 epoch 60 - iter 1855/2650 - loss 0.11860854 - time (sec): 60.37 - samples/sec: 17085.16 - lr: 0.100000 +2023-04-06 00:00:49,255 epoch 60 - iter 2120/2650 - loss 0.11895616 - time (sec): 69.03 - samples/sec: 17076.96 - lr: 0.100000 +2023-04-06 00:01:01,929 epoch 60 - iter 2385/2650 - loss 0.11904117 - time (sec): 81.71 - samples/sec: 16235.27 - lr: 0.100000 +2023-04-06 00:01:10,414 epoch 60 - iter 2650/2650 - loss 0.11877470 - time (sec): 90.19 - samples/sec: 16340.79 - lr: 0.100000 +2023-04-06 00:01:10,415 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:01:10,415 EPOCH 60 done: loss 0.1188 - lr 0.100000 +2023-04-06 00:01:10,415 BAD EPOCHS (no improvement): 1 +2023-04-06 00:01:10,419 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:01:18,856 epoch 61 - iter 265/2650 - loss 0.12111316 - time (sec): 8.44 - samples/sec: 17324.67 - lr: 0.100000 +2023-04-06 00:01:27,556 epoch 61 - iter 530/2650 - loss 0.11858740 - time (sec): 17.14 - samples/sec: 17167.22 - lr: 0.100000 +2023-04-06 00:01:36,287 epoch 61 - iter 795/2650 - loss 0.11853710 - time (sec): 25.87 - samples/sec: 17126.84 - lr: 0.100000 +2023-04-06 00:01:44,930 epoch 61 - iter 1060/2650 - loss 0.11855251 - time (sec): 34.51 - samples/sec: 17127.49 - lr: 0.100000 +2023-04-06 00:01:53,563 epoch 61 - iter 1325/2650 - loss 0.11865187 - time (sec): 43.14 - samples/sec: 17107.45 - lr: 0.100000 +2023-04-06 00:02:02,244 epoch 61 - iter 1590/2650 - loss 0.11876179 - time (sec): 51.82 - samples/sec: 17101.30 - lr: 0.100000 +2023-04-06 00:02:10,790 epoch 61 - iter 1855/2650 - loss 0.11865533 - time (sec): 60.37 - samples/sec: 17100.70 - lr: 0.100000 +2023-04-06 00:02:19,493 epoch 61 - iter 2120/2650 - loss 0.11846834 - time (sec): 69.07 - samples/sec: 17109.55 - lr: 0.100000 +2023-04-06 00:02:28,091 epoch 61 - iter 2385/2650 - loss 0.11825790 - time (sec): 77.67 - samples/sec: 17111.19 - lr: 0.100000 +2023-04-06 00:02:36,563 epoch 61 - iter 2650/2650 - loss 0.11857460 - time (sec): 86.14 - samples/sec: 17108.88 - lr: 0.100000 +2023-04-06 00:02:36,563 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:02:36,563 EPOCH 61 done: loss 0.1186 - lr 0.100000 +2023-04-06 00:02:36,563 BAD EPOCHS (no improvement): 0 +2023-04-06 00:02:36,568 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:02:45,096 epoch 62 - iter 265/2650 - loss 0.11611662 - time (sec): 8.53 - samples/sec: 17194.77 - lr: 0.100000 +2023-04-06 00:02:53,689 epoch 62 - iter 530/2650 - loss 0.11682338 - time (sec): 17.12 - samples/sec: 17160.32 - lr: 0.100000 +2023-04-06 00:03:02,271 epoch 62 - iter 795/2650 - loss 0.11757820 - time (sec): 25.70 - samples/sec: 17152.74 - lr: 0.100000 +2023-04-06 00:03:10,838 epoch 62 - iter 1060/2650 - loss 0.11706026 - time (sec): 34.27 - samples/sec: 17139.20 - lr: 0.100000 +2023-04-06 00:03:19,353 epoch 62 - iter 1325/2650 - loss 0.11732933 - time (sec): 42.79 - samples/sec: 17153.36 - lr: 0.100000 +2023-04-06 00:03:27,930 epoch 62 - iter 1590/2650 - loss 0.11728535 - time (sec): 51.36 - samples/sec: 17148.24 - lr: 0.100000 +2023-04-06 00:03:36,583 epoch 62 - iter 1855/2650 - loss 0.11730293 - time (sec): 60.02 - samples/sec: 17136.91 - lr: 0.100000 +2023-04-06 00:03:45,237 epoch 62 - iter 2120/2650 - loss 0.11773117 - time (sec): 68.67 - samples/sec: 17138.64 - lr: 0.100000 +2023-04-06 00:03:53,937 epoch 62 - iter 2385/2650 - loss 0.11776208 - time (sec): 77.37 - samples/sec: 17135.74 - lr: 0.100000 +2023-04-06 00:04:02,605 epoch 62 - iter 2650/2650 - loss 0.11788056 - time (sec): 86.04 - samples/sec: 17130.07 - lr: 0.100000 +2023-04-06 00:04:02,605 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:04:02,605 EPOCH 62 done: loss 0.1179 - lr 0.100000 +2023-04-06 00:04:02,605 BAD EPOCHS (no improvement): 0 +2023-04-06 00:04:02,610 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:04:11,294 epoch 63 - iter 265/2650 - loss 0.11788562 - time (sec): 8.68 - samples/sec: 17119.89 - lr: 0.100000 +2023-04-06 00:04:19,842 epoch 63 - iter 530/2650 - loss 0.11731117 - time (sec): 17.23 - samples/sec: 17128.33 - lr: 0.100000 +2023-04-06 00:04:28,408 epoch 63 - iter 795/2650 - loss 0.11697876 - time (sec): 25.80 - samples/sec: 17136.04 - lr: 0.100000 +2023-04-06 00:04:37,261 epoch 63 - iter 1060/2650 - loss 0.11666203 - time (sec): 34.65 - samples/sec: 17126.71 - lr: 0.100000 +2023-04-06 00:04:45,753 epoch 63 - iter 1325/2650 - loss 0.11651304 - time (sec): 43.14 - samples/sec: 17129.08 - lr: 0.100000 +2023-04-06 00:04:54,355 epoch 63 - iter 1590/2650 - loss 0.11667047 - time (sec): 51.74 - samples/sec: 17128.84 - lr: 0.100000 +2023-04-06 00:05:02,944 epoch 63 - iter 1855/2650 - loss 0.11712419 - time (sec): 60.33 - samples/sec: 17125.94 - lr: 0.100000 +2023-04-06 00:05:11,585 epoch 63 - iter 2120/2650 - loss 0.11722720 - time (sec): 68.97 - samples/sec: 17125.12 - lr: 0.100000 +2023-04-06 00:05:20,059 epoch 63 - iter 2385/2650 - loss 0.11715389 - time (sec): 77.45 - samples/sec: 17114.77 - lr: 0.100000 +2023-04-06 00:05:28,742 epoch 63 - iter 2650/2650 - loss 0.11753228 - time (sec): 86.13 - samples/sec: 17111.24 - lr: 0.100000 +2023-04-06 00:05:28,742 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:05:28,742 EPOCH 63 done: loss 0.1175 - lr 0.100000 +2023-04-06 00:05:28,742 BAD EPOCHS (no improvement): 0 +2023-04-06 00:05:28,747 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:05:37,277 epoch 64 - iter 265/2650 - loss 0.11534291 - time (sec): 8.53 - samples/sec: 17178.05 - lr: 0.100000 +2023-04-06 00:05:45,823 epoch 64 - iter 530/2650 - loss 0.11670661 - time (sec): 17.08 - samples/sec: 17174.14 - lr: 0.100000 +2023-04-06 00:05:54,404 epoch 64 - iter 795/2650 - loss 0.11804298 - time (sec): 25.66 - samples/sec: 17147.60 - lr: 0.100000 +2023-04-06 00:06:02,995 epoch 64 - iter 1060/2650 - loss 0.11841427 - time (sec): 34.25 - samples/sec: 17148.85 - lr: 0.100000 +2023-04-06 00:06:11,572 epoch 64 - iter 1325/2650 - loss 0.11816126 - time (sec): 42.83 - samples/sec: 17141.99 - lr: 0.100000 +2023-04-06 00:06:20,093 epoch 64 - iter 1590/2650 - loss 0.11820554 - time (sec): 51.35 - samples/sec: 17139.17 - lr: 0.100000 +2023-04-06 00:06:28,833 epoch 64 - iter 1855/2650 - loss 0.11832016 - time (sec): 60.09 - samples/sec: 17132.71 - lr: 0.100000 +2023-04-06 00:06:37,440 epoch 64 - iter 2120/2650 - loss 0.11827405 - time (sec): 68.69 - samples/sec: 17153.09 - lr: 0.100000 +2023-04-06 00:06:46,084 epoch 64 - iter 2385/2650 - loss 0.11828611 - time (sec): 77.34 - samples/sec: 17136.60 - lr: 0.100000 +2023-04-06 00:06:54,820 epoch 64 - iter 2650/2650 - loss 0.11839605 - time (sec): 86.07 - samples/sec: 17123.08 - lr: 0.100000 +2023-04-06 00:06:54,820 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:06:54,820 EPOCH 64 done: loss 0.1184 - lr 0.100000 +2023-04-06 00:06:54,820 BAD EPOCHS (no improvement): 1 +2023-04-06 00:06:54,823 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:07:03,489 epoch 65 - iter 265/2650 - loss 0.11788130 - time (sec): 8.67 - samples/sec: 17106.30 - lr: 0.100000 +2023-04-06 00:07:12,063 epoch 65 - iter 530/2650 - loss 0.11791320 - time (sec): 17.24 - samples/sec: 17086.72 - lr: 0.100000 +2023-04-06 00:07:20,623 epoch 65 - iter 795/2650 - loss 0.11732942 - time (sec): 25.80 - samples/sec: 17079.75 - lr: 0.100000 +2023-04-06 00:07:29,275 epoch 65 - iter 1060/2650 - loss 0.11708136 - time (sec): 34.45 - samples/sec: 17057.64 - lr: 0.100000 +2023-04-06 00:07:37,910 epoch 65 - iter 1325/2650 - loss 0.11707179 - time (sec): 43.09 - samples/sec: 17048.02 - lr: 0.100000 +2023-04-06 00:07:46,600 epoch 65 - iter 1590/2650 - loss 0.11681340 - time (sec): 51.78 - samples/sec: 17047.69 - lr: 0.100000 +2023-04-06 00:07:55,087 epoch 65 - iter 1855/2650 - loss 0.11683270 - time (sec): 60.26 - samples/sec: 17057.83 - lr: 0.100000 +2023-04-06 00:08:03,858 epoch 65 - iter 2120/2650 - loss 0.11684935 - time (sec): 69.03 - samples/sec: 17067.25 - lr: 0.100000 +2023-04-06 00:08:12,364 epoch 65 - iter 2385/2650 - loss 0.11728475 - time (sec): 77.54 - samples/sec: 17087.35 - lr: 0.100000 +2023-04-06 00:08:21,020 epoch 65 - iter 2650/2650 - loss 0.11754489 - time (sec): 86.20 - samples/sec: 17098.26 - lr: 0.100000 +2023-04-06 00:08:21,021 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:08:21,021 EPOCH 65 done: loss 0.1175 - lr 0.100000 +2023-04-06 00:08:21,021 BAD EPOCHS (no improvement): 2 +2023-04-06 00:08:21,025 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:08:29,598 epoch 66 - iter 265/2650 - loss 0.11361426 - time (sec): 8.57 - samples/sec: 17146.31 - lr: 0.100000 +2023-04-06 00:08:38,135 epoch 66 - iter 530/2650 - loss 0.11454101 - time (sec): 17.11 - samples/sec: 17145.55 - lr: 0.100000 +2023-04-06 00:08:46,801 epoch 66 - iter 795/2650 - loss 0.11600962 - time (sec): 25.78 - samples/sec: 17193.55 - lr: 0.100000 +2023-04-06 00:08:55,514 epoch 66 - iter 1060/2650 - loss 0.11614997 - time (sec): 34.49 - samples/sec: 17186.14 - lr: 0.100000 +2023-04-06 00:09:04,129 epoch 66 - iter 1325/2650 - loss 0.11609613 - time (sec): 43.10 - samples/sec: 17171.22 - lr: 0.100000 +2023-04-06 00:09:12,705 epoch 66 - iter 1590/2650 - loss 0.11597068 - time (sec): 51.68 - samples/sec: 17159.65 - lr: 0.100000 +2023-04-06 00:09:21,154 epoch 66 - iter 1855/2650 - loss 0.11575922 - time (sec): 60.13 - samples/sec: 17170.88 - lr: 0.100000 +2023-04-06 00:09:29,687 epoch 66 - iter 2120/2650 - loss 0.11631487 - time (sec): 68.66 - samples/sec: 17175.80 - lr: 0.100000 +2023-04-06 00:09:38,343 epoch 66 - iter 2385/2650 - loss 0.11652446 - time (sec): 77.32 - samples/sec: 17172.02 - lr: 0.100000 +2023-04-06 00:09:46,834 epoch 66 - iter 2650/2650 - loss 0.11684118 - time (sec): 85.81 - samples/sec: 17175.69 - lr: 0.100000 +2023-04-06 00:09:46,834 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:09:46,834 EPOCH 66 done: loss 0.1168 - lr 0.100000 +2023-04-06 00:09:46,834 BAD EPOCHS (no improvement): 0 +2023-04-06 00:09:46,838 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:09:59,172 epoch 67 - iter 265/2650 - loss 0.11691214 - time (sec): 12.33 - samples/sec: 12030.07 - lr: 0.100000 +2023-04-06 00:10:07,743 epoch 67 - iter 530/2650 - loss 0.11637091 - time (sec): 20.90 - samples/sec: 14143.86 - lr: 0.100000 +2023-04-06 00:10:16,424 epoch 67 - iter 795/2650 - loss 0.11640624 - time (sec): 29.59 - samples/sec: 14975.36 - lr: 0.100000 +2023-04-06 00:10:25,139 epoch 67 - iter 1060/2650 - loss 0.11671904 - time (sec): 38.30 - samples/sec: 15449.01 - lr: 0.100000 +2023-04-06 00:10:33,743 epoch 67 - iter 1325/2650 - loss 0.11778489 - time (sec): 46.90 - samples/sec: 15740.78 - lr: 0.100000 +2023-04-06 00:10:42,382 epoch 67 - iter 1590/2650 - loss 0.11767773 - time (sec): 55.54 - samples/sec: 15947.89 - lr: 0.100000 +2023-04-06 00:10:51,069 epoch 67 - iter 1855/2650 - loss 0.11770995 - time (sec): 64.23 - samples/sec: 16087.57 - lr: 0.100000 +2023-04-06 00:10:59,562 epoch 67 - iter 2120/2650 - loss 0.11781949 - time (sec): 72.72 - samples/sec: 16201.64 - lr: 0.100000 +2023-04-06 00:11:08,244 epoch 67 - iter 2385/2650 - loss 0.11755180 - time (sec): 81.41 - samples/sec: 16293.17 - lr: 0.100000 +2023-04-06 00:11:16,919 epoch 67 - iter 2650/2650 - loss 0.11738161 - time (sec): 90.08 - samples/sec: 16361.21 - lr: 0.100000 +2023-04-06 00:11:16,919 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:11:16,919 EPOCH 67 done: loss 0.1174 - lr 0.100000 +2023-04-06 00:11:16,919 BAD EPOCHS (no improvement): 1 +2023-04-06 00:11:16,923 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:11:25,555 epoch 68 - iter 265/2650 - loss 0.11345643 - time (sec): 8.63 - samples/sec: 17109.13 - lr: 0.100000 +2023-04-06 00:11:34,157 epoch 68 - iter 530/2650 - loss 0.11572390 - time (sec): 17.23 - samples/sec: 17111.09 - lr: 0.100000 +2023-04-06 00:11:42,716 epoch 68 - iter 795/2650 - loss 0.11651065 - time (sec): 25.79 - samples/sec: 17093.91 - lr: 0.100000 +2023-04-06 00:11:51,433 epoch 68 - iter 1060/2650 - loss 0.11602540 - time (sec): 34.51 - samples/sec: 17082.44 - lr: 0.100000 +2023-04-06 00:12:00,244 epoch 68 - iter 1325/2650 - loss 0.11693692 - time (sec): 43.32 - samples/sec: 17061.38 - lr: 0.100000 +2023-04-06 00:12:08,856 epoch 68 - iter 1590/2650 - loss 0.11719268 - time (sec): 51.93 - samples/sec: 17039.67 - lr: 0.100000 +2023-04-06 00:12:17,526 epoch 68 - iter 1855/2650 - loss 0.11708860 - time (sec): 60.60 - samples/sec: 17027.31 - lr: 0.100000 +2023-04-06 00:12:26,273 epoch 68 - iter 2120/2650 - loss 0.11696358 - time (sec): 69.35 - samples/sec: 17016.49 - lr: 0.100000 +2023-04-06 00:12:34,960 epoch 68 - iter 2385/2650 - loss 0.11709303 - time (sec): 78.04 - samples/sec: 17009.65 - lr: 0.100000 +2023-04-06 00:12:43,624 epoch 68 - iter 2650/2650 - loss 0.11714555 - time (sec): 86.70 - samples/sec: 16998.95 - lr: 0.100000 +2023-04-06 00:12:43,624 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:12:43,624 EPOCH 68 done: loss 0.1171 - lr 0.100000 +2023-04-06 00:12:43,624 BAD EPOCHS (no improvement): 2 +2023-04-06 00:12:43,628 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:12:52,279 epoch 69 - iter 265/2650 - loss 0.11294854 - time (sec): 8.65 - samples/sec: 16986.87 - lr: 0.100000 +2023-04-06 00:13:00,964 epoch 69 - iter 530/2650 - loss 0.11374187 - time (sec): 17.34 - samples/sec: 16991.03 - lr: 0.100000 +2023-04-06 00:13:09,687 epoch 69 - iter 795/2650 - loss 0.11421994 - time (sec): 26.06 - samples/sec: 16995.72 - lr: 0.100000 +2023-04-06 00:13:18,311 epoch 69 - iter 1060/2650 - loss 0.11460024 - time (sec): 34.68 - samples/sec: 17002.82 - lr: 0.100000 +2023-04-06 00:13:27,024 epoch 69 - iter 1325/2650 - loss 0.11476843 - time (sec): 43.40 - samples/sec: 16995.34 - lr: 0.100000 +2023-04-06 00:13:35,661 epoch 69 - iter 1590/2650 - loss 0.11480677 - time (sec): 52.03 - samples/sec: 17006.99 - lr: 0.100000 +2023-04-06 00:13:44,363 epoch 69 - iter 1855/2650 - loss 0.11513652 - time (sec): 60.74 - samples/sec: 16991.73 - lr: 0.100000 +2023-04-06 00:13:52,981 epoch 69 - iter 2120/2650 - loss 0.11525484 - time (sec): 69.35 - samples/sec: 16984.86 - lr: 0.100000 +2023-04-06 00:14:01,728 epoch 69 - iter 2385/2650 - loss 0.11573383 - time (sec): 78.10 - samples/sec: 16971.61 - lr: 0.100000 +2023-04-06 00:14:10,442 epoch 69 - iter 2650/2650 - loss 0.11576811 - time (sec): 86.81 - samples/sec: 16976.79 - lr: 0.100000 +2023-04-06 00:14:10,442 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:14:10,442 EPOCH 69 done: loss 0.1158 - lr 0.100000 +2023-04-06 00:14:10,442 BAD EPOCHS (no improvement): 0 +2023-04-06 00:14:10,445 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:14:18,911 epoch 70 - iter 265/2650 - loss 0.11560573 - time (sec): 8.47 - samples/sec: 17063.25 - lr: 0.100000 +2023-04-06 00:14:27,629 epoch 70 - iter 530/2650 - loss 0.11462572 - time (sec): 17.18 - samples/sec: 17022.54 - lr: 0.100000 +2023-04-06 00:14:36,310 epoch 70 - iter 795/2650 - loss 0.11558727 - time (sec): 25.86 - samples/sec: 17007.27 - lr: 0.100000 +2023-04-06 00:14:45,072 epoch 70 - iter 1060/2650 - loss 0.11461491 - time (sec): 34.63 - samples/sec: 17000.25 - lr: 0.100000 +2023-04-06 00:14:53,817 epoch 70 - iter 1325/2650 - loss 0.11501492 - time (sec): 43.37 - samples/sec: 17011.04 - lr: 0.100000 +2023-04-06 00:15:02,486 epoch 70 - iter 1590/2650 - loss 0.11507096 - time (sec): 52.04 - samples/sec: 16994.54 - lr: 0.100000 +2023-04-06 00:15:11,237 epoch 70 - iter 1855/2650 - loss 0.11513079 - time (sec): 60.79 - samples/sec: 16985.13 - lr: 0.100000 +2023-04-06 00:15:19,955 epoch 70 - iter 2120/2650 - loss 0.11552193 - time (sec): 69.51 - samples/sec: 16991.53 - lr: 0.100000 +2023-04-06 00:15:28,602 epoch 70 - iter 2385/2650 - loss 0.11571432 - time (sec): 78.16 - samples/sec: 16980.58 - lr: 0.100000 +2023-04-06 00:15:37,276 epoch 70 - iter 2650/2650 - loss 0.11554255 - time (sec): 86.83 - samples/sec: 16973.53 - lr: 0.100000 +2023-04-06 00:15:37,276 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:15:37,276 EPOCH 70 done: loss 0.1155 - lr 0.100000 +2023-04-06 00:15:37,276 BAD EPOCHS (no improvement): 0 +2023-04-06 00:15:37,282 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:15:46,022 epoch 71 - iter 265/2650 - loss 0.11485081 - time (sec): 8.74 - samples/sec: 17069.07 - lr: 0.100000 +2023-04-06 00:15:54,684 epoch 71 - iter 530/2650 - loss 0.11319160 - time (sec): 17.40 - samples/sec: 17062.29 - lr: 0.100000 +2023-04-06 00:16:03,299 epoch 71 - iter 795/2650 - loss 0.11441123 - time (sec): 26.02 - samples/sec: 17053.00 - lr: 0.100000 +2023-04-06 00:16:11,852 epoch 71 - iter 1060/2650 - loss 0.11503873 - time (sec): 34.57 - samples/sec: 17076.50 - lr: 0.100000 +2023-04-06 00:16:20,488 epoch 71 - iter 1325/2650 - loss 0.11583140 - time (sec): 43.21 - samples/sec: 17093.48 - lr: 0.100000 +2023-04-06 00:16:29,092 epoch 71 - iter 1590/2650 - loss 0.11615487 - time (sec): 51.81 - samples/sec: 17098.46 - lr: 0.100000 +2023-04-06 00:16:37,505 epoch 71 - iter 1855/2650 - loss 0.11641842 - time (sec): 60.22 - samples/sec: 17103.43 - lr: 0.100000 +2023-04-06 00:16:46,156 epoch 71 - iter 2120/2650 - loss 0.11659664 - time (sec): 68.87 - samples/sec: 17104.50 - lr: 0.100000 +2023-04-06 00:16:54,776 epoch 71 - iter 2385/2650 - loss 0.11649695 - time (sec): 77.49 - samples/sec: 17120.65 - lr: 0.100000 +2023-04-06 00:17:03,334 epoch 71 - iter 2650/2650 - loss 0.11647531 - time (sec): 86.05 - samples/sec: 17127.17 - lr: 0.100000 +2023-04-06 00:17:03,335 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:17:03,335 EPOCH 71 done: loss 0.1165 - lr 0.100000 +2023-04-06 00:17:03,335 BAD EPOCHS (no improvement): 1 +2023-04-06 00:17:03,339 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:17:11,900 epoch 72 - iter 265/2650 - loss 0.11611881 - time (sec): 8.56 - samples/sec: 17267.65 - lr: 0.100000 +2023-04-06 00:17:20,389 epoch 72 - iter 530/2650 - loss 0.11420336 - time (sec): 17.05 - samples/sec: 17201.94 - lr: 0.100000 +2023-04-06 00:17:28,782 epoch 72 - iter 795/2650 - loss 0.11535111 - time (sec): 25.44 - samples/sec: 17209.36 - lr: 0.100000 +2023-04-06 00:17:37,363 epoch 72 - iter 1060/2650 - loss 0.11545764 - time (sec): 34.02 - samples/sec: 17189.17 - lr: 0.100000 +2023-04-06 00:17:46,072 epoch 72 - iter 1325/2650 - loss 0.11524553 - time (sec): 42.73 - samples/sec: 17176.20 - lr: 0.100000 +2023-04-06 00:17:54,542 epoch 72 - iter 1590/2650 - loss 0.11533693 - time (sec): 51.20 - samples/sec: 17176.39 - lr: 0.100000 +2023-04-06 00:18:03,293 epoch 72 - iter 1855/2650 - loss 0.11537898 - time (sec): 59.95 - samples/sec: 17191.45 - lr: 0.100000 +2023-04-06 00:18:11,929 epoch 72 - iter 2120/2650 - loss 0.11544192 - time (sec): 68.59 - samples/sec: 17183.04 - lr: 0.100000 +2023-04-06 00:18:20,556 epoch 72 - iter 2385/2650 - loss 0.11566401 - time (sec): 77.22 - samples/sec: 17179.41 - lr: 0.100000 +2023-04-06 00:18:29,127 epoch 72 - iter 2650/2650 - loss 0.11567564 - time (sec): 85.79 - samples/sec: 17179.75 - lr: 0.100000 +2023-04-06 00:18:29,128 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:18:29,128 EPOCH 72 done: loss 0.1157 - lr 0.100000 +2023-04-06 00:18:29,128 BAD EPOCHS (no improvement): 2 +2023-04-06 00:18:29,131 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:18:37,700 epoch 73 - iter 265/2650 - loss 0.11134682 - time (sec): 8.57 - samples/sec: 17266.75 - lr: 0.100000 +2023-04-06 00:18:50,061 epoch 73 - iter 530/2650 - loss 0.11338913 - time (sec): 20.93 - samples/sec: 14055.73 - lr: 0.100000 +2023-04-06 00:18:58,723 epoch 73 - iter 795/2650 - loss 0.11476077 - time (sec): 29.59 - samples/sec: 15002.41 - lr: 0.100000 +2023-04-06 00:19:07,248 epoch 73 - iter 1060/2650 - loss 0.11535786 - time (sec): 38.12 - samples/sec: 15520.40 - lr: 0.100000 +2023-04-06 00:19:15,787 epoch 73 - iter 1325/2650 - loss 0.11509635 - time (sec): 46.66 - samples/sec: 15837.49 - lr: 0.100000 +2023-04-06 00:19:24,453 epoch 73 - iter 1590/2650 - loss 0.11496190 - time (sec): 55.32 - samples/sec: 16044.38 - lr: 0.100000 +2023-04-06 00:19:33,031 epoch 73 - iter 1855/2650 - loss 0.11475820 - time (sec): 63.90 - samples/sec: 16200.89 - lr: 0.100000 +2023-04-06 00:19:41,519 epoch 73 - iter 2120/2650 - loss 0.11491362 - time (sec): 72.39 - samples/sec: 16314.43 - lr: 0.100000 +2023-04-06 00:19:50,073 epoch 73 - iter 2385/2650 - loss 0.11487306 - time (sec): 80.94 - samples/sec: 16404.63 - lr: 0.100000 +2023-04-06 00:19:58,645 epoch 73 - iter 2650/2650 - loss 0.11494111 - time (sec): 89.51 - samples/sec: 16464.83 - lr: 0.100000 +2023-04-06 00:19:58,645 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:19:58,645 EPOCH 73 done: loss 0.1149 - lr 0.100000 +2023-04-06 00:19:58,645 BAD EPOCHS (no improvement): 0 +2023-04-06 00:19:58,649 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:20:07,188 epoch 74 - iter 265/2650 - loss 0.11472797 - time (sec): 8.54 - samples/sec: 17150.16 - lr: 0.100000 +2023-04-06 00:20:15,698 epoch 74 - iter 530/2650 - loss 0.11490964 - time (sec): 17.05 - samples/sec: 17173.32 - lr: 0.100000 +2023-04-06 00:20:24,255 epoch 74 - iter 795/2650 - loss 0.11440428 - time (sec): 25.61 - samples/sec: 17166.12 - lr: 0.100000 +2023-04-06 00:20:32,829 epoch 74 - iter 1060/2650 - loss 0.11389283 - time (sec): 34.18 - samples/sec: 17165.24 - lr: 0.100000 +2023-04-06 00:20:41,448 epoch 74 - iter 1325/2650 - loss 0.11399848 - time (sec): 42.80 - samples/sec: 17159.55 - lr: 0.100000 +2023-04-06 00:20:50,202 epoch 74 - iter 1590/2650 - loss 0.11408515 - time (sec): 51.55 - samples/sec: 17152.58 - lr: 0.100000 +2023-04-06 00:20:58,766 epoch 74 - iter 1855/2650 - loss 0.11417260 - time (sec): 60.12 - samples/sec: 17170.55 - lr: 0.100000 +2023-04-06 00:21:07,426 epoch 74 - iter 2120/2650 - loss 0.11483250 - time (sec): 68.78 - samples/sec: 17180.01 - lr: 0.100000 +2023-04-06 00:21:15,910 epoch 74 - iter 2385/2650 - loss 0.11493763 - time (sec): 77.26 - samples/sec: 17185.72 - lr: 0.100000 +2023-04-06 00:21:24,419 epoch 74 - iter 2650/2650 - loss 0.11502925 - time (sec): 85.77 - samples/sec: 17183.48 - lr: 0.100000 +2023-04-06 00:21:24,419 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:21:24,419 EPOCH 74 done: loss 0.1150 - lr 0.100000 +2023-04-06 00:21:24,419 BAD EPOCHS (no improvement): 1 +2023-04-06 00:21:24,424 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:21:32,922 epoch 75 - iter 265/2650 - loss 0.11485692 - time (sec): 8.50 - samples/sec: 17199.71 - lr: 0.100000 +2023-04-06 00:21:41,581 epoch 75 - iter 530/2650 - loss 0.11406079 - time (sec): 17.16 - samples/sec: 17186.85 - lr: 0.100000 +2023-04-06 00:21:50,150 epoch 75 - iter 795/2650 - loss 0.11351562 - time (sec): 25.73 - samples/sec: 17215.03 - lr: 0.100000 +2023-04-06 00:21:58,682 epoch 75 - iter 1060/2650 - loss 0.11402024 - time (sec): 34.26 - samples/sec: 17192.07 - lr: 0.100000 +2023-04-06 00:22:07,339 epoch 75 - iter 1325/2650 - loss 0.11470250 - time (sec): 42.91 - samples/sec: 17185.33 - lr: 0.100000 +2023-04-06 00:22:15,857 epoch 75 - iter 1590/2650 - loss 0.11465307 - time (sec): 51.43 - samples/sec: 17180.19 - lr: 0.100000 +2023-04-06 00:22:24,530 epoch 75 - iter 1855/2650 - loss 0.11457949 - time (sec): 60.11 - samples/sec: 17171.65 - lr: 0.100000 +2023-04-06 00:22:33,047 epoch 75 - iter 2120/2650 - loss 0.11459392 - time (sec): 68.62 - samples/sec: 17157.95 - lr: 0.100000 +2023-04-06 00:22:41,724 epoch 75 - iter 2385/2650 - loss 0.11448979 - time (sec): 77.30 - samples/sec: 17150.31 - lr: 0.100000 +2023-04-06 00:22:50,381 epoch 75 - iter 2650/2650 - loss 0.11411994 - time (sec): 85.96 - samples/sec: 17146.17 - lr: 0.100000 +2023-04-06 00:22:50,381 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:22:50,381 EPOCH 75 done: loss 0.1141 - lr 0.100000 +2023-04-06 00:22:50,381 BAD EPOCHS (no improvement): 0 +2023-04-06 00:22:50,385 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:22:59,024 epoch 76 - iter 265/2650 - loss 0.11311974 - time (sec): 8.64 - samples/sec: 17209.07 - lr: 0.100000 +2023-04-06 00:23:07,580 epoch 76 - iter 530/2650 - loss 0.11341129 - time (sec): 17.19 - samples/sec: 17159.35 - lr: 0.100000 +2023-04-06 00:23:16,072 epoch 76 - iter 795/2650 - loss 0.11416040 - time (sec): 25.69 - samples/sec: 17141.10 - lr: 0.100000 +2023-04-06 00:23:24,669 epoch 76 - iter 1060/2650 - loss 0.11380572 - time (sec): 34.28 - samples/sec: 17148.79 - lr: 0.100000 +2023-04-06 00:23:33,334 epoch 76 - iter 1325/2650 - loss 0.11437719 - time (sec): 42.95 - samples/sec: 17145.84 - lr: 0.100000 +2023-04-06 00:23:42,025 epoch 76 - iter 1590/2650 - loss 0.11467501 - time (sec): 51.64 - samples/sec: 17127.05 - lr: 0.100000 +2023-04-06 00:23:50,706 epoch 76 - iter 1855/2650 - loss 0.11492728 - time (sec): 60.32 - samples/sec: 17123.08 - lr: 0.100000 +2023-04-06 00:23:59,162 epoch 76 - iter 2120/2650 - loss 0.11487941 - time (sec): 68.78 - samples/sec: 17132.08 - lr: 0.100000 +2023-04-06 00:24:07,909 epoch 76 - iter 2385/2650 - loss 0.11520400 - time (sec): 77.52 - samples/sec: 17135.34 - lr: 0.100000 +2023-04-06 00:24:16,432 epoch 76 - iter 2650/2650 - loss 0.11520848 - time (sec): 86.05 - samples/sec: 17128.18 - lr: 0.100000 +2023-04-06 00:24:16,432 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:24:16,432 EPOCH 76 done: loss 0.1152 - lr 0.100000 +2023-04-06 00:24:16,433 BAD EPOCHS (no improvement): 1 +2023-04-06 00:24:16,437 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:24:25,062 epoch 77 - iter 265/2650 - loss 0.10930629 - time (sec): 8.63 - samples/sec: 17149.26 - lr: 0.100000 +2023-04-06 00:24:33,632 epoch 77 - iter 530/2650 - loss 0.11129817 - time (sec): 17.19 - samples/sec: 17155.90 - lr: 0.100000 +2023-04-06 00:24:42,179 epoch 77 - iter 795/2650 - loss 0.11131148 - time (sec): 25.74 - samples/sec: 17137.56 - lr: 0.100000 +2023-04-06 00:24:50,750 epoch 77 - iter 1060/2650 - loss 0.11230250 - time (sec): 34.31 - samples/sec: 17149.41 - lr: 0.100000 +2023-04-06 00:24:59,419 epoch 77 - iter 1325/2650 - loss 0.11354885 - time (sec): 42.98 - samples/sec: 17142.51 - lr: 0.100000 +2023-04-06 00:25:08,212 epoch 77 - iter 1590/2650 - loss 0.11358258 - time (sec): 51.78 - samples/sec: 17142.24 - lr: 0.100000 +2023-04-06 00:25:16,791 epoch 77 - iter 1855/2650 - loss 0.11381407 - time (sec): 60.35 - samples/sec: 17137.08 - lr: 0.100000 +2023-04-06 00:25:25,365 epoch 77 - iter 2120/2650 - loss 0.11408947 - time (sec): 68.93 - samples/sec: 17135.89 - lr: 0.100000 +2023-04-06 00:25:33,966 epoch 77 - iter 2385/2650 - loss 0.11399641 - time (sec): 77.53 - samples/sec: 17135.85 - lr: 0.100000 +2023-04-06 00:25:42,475 epoch 77 - iter 2650/2650 - loss 0.11413476 - time (sec): 86.04 - samples/sec: 17129.99 - lr: 0.100000 +2023-04-06 00:25:42,475 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:25:42,475 EPOCH 77 done: loss 0.1141 - lr 0.100000 +2023-04-06 00:25:42,475 BAD EPOCHS (no improvement): 2 +2023-04-06 00:25:42,482 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:25:50,990 epoch 78 - iter 265/2650 - loss 0.11519847 - time (sec): 8.51 - samples/sec: 17201.12 - lr: 0.100000 +2023-04-06 00:25:59,603 epoch 78 - iter 530/2650 - loss 0.11440586 - time (sec): 17.12 - samples/sec: 17188.31 - lr: 0.100000 +2023-04-06 00:26:08,141 epoch 78 - iter 795/2650 - loss 0.11420283 - time (sec): 25.66 - samples/sec: 17198.94 - lr: 0.100000 +2023-04-06 00:26:16,775 epoch 78 - iter 1060/2650 - loss 0.11470134 - time (sec): 34.29 - samples/sec: 17183.45 - lr: 0.100000 +2023-04-06 00:26:25,393 epoch 78 - iter 1325/2650 - loss 0.11437111 - time (sec): 42.91 - samples/sec: 17164.61 - lr: 0.100000 +2023-04-06 00:26:34,031 epoch 78 - iter 1590/2650 - loss 0.11449260 - time (sec): 51.55 - samples/sec: 17153.05 - lr: 0.100000 +2023-04-06 00:26:42,758 epoch 78 - iter 1855/2650 - loss 0.11427399 - time (sec): 60.28 - samples/sec: 17148.86 - lr: 0.100000 +2023-04-06 00:26:51,274 epoch 78 - iter 2120/2650 - loss 0.11447465 - time (sec): 68.79 - samples/sec: 17154.43 - lr: 0.100000 +2023-04-06 00:26:59,849 epoch 78 - iter 2385/2650 - loss 0.11490193 - time (sec): 77.37 - samples/sec: 17154.93 - lr: 0.100000 +2023-04-06 00:27:08,373 epoch 78 - iter 2650/2650 - loss 0.11457895 - time (sec): 85.89 - samples/sec: 17159.25 - lr: 0.100000 +2023-04-06 00:27:08,373 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:27:08,373 EPOCH 78 done: loss 0.1146 - lr 0.100000 +2023-04-06 00:27:08,373 BAD EPOCHS (no improvement): 3 +2023-04-06 00:27:08,376 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:27:16,827 epoch 79 - iter 265/2650 - loss 0.11340860 - time (sec): 8.45 - samples/sec: 17260.53 - lr: 0.100000 +2023-04-06 00:27:25,474 epoch 79 - iter 530/2650 - loss 0.11430687 - time (sec): 17.10 - samples/sec: 17219.54 - lr: 0.100000 +2023-04-06 00:27:34,132 epoch 79 - iter 795/2650 - loss 0.11446318 - time (sec): 25.76 - samples/sec: 17174.24 - lr: 0.100000 +2023-04-06 00:27:46,502 epoch 79 - iter 1060/2650 - loss 0.11433514 - time (sec): 38.13 - samples/sec: 15489.23 - lr: 0.100000 +2023-04-06 00:27:55,002 epoch 79 - iter 1325/2650 - loss 0.11473948 - time (sec): 46.63 - samples/sec: 15832.79 - lr: 0.100000 +2023-04-06 00:28:03,456 epoch 79 - iter 1590/2650 - loss 0.11443056 - time (sec): 55.08 - samples/sec: 16058.15 - lr: 0.100000 +2023-04-06 00:28:11,999 epoch 79 - iter 1855/2650 - loss 0.11443496 - time (sec): 63.62 - samples/sec: 16202.52 - lr: 0.100000 +2023-04-06 00:28:20,508 epoch 79 - iter 2120/2650 - loss 0.11414518 - time (sec): 72.13 - samples/sec: 16323.91 - lr: 0.100000 +2023-04-06 00:28:29,168 epoch 79 - iter 2385/2650 - loss 0.11413735 - time (sec): 80.79 - samples/sec: 16410.52 - lr: 0.100000 +2023-04-06 00:28:37,837 epoch 79 - iter 2650/2650 - loss 0.11420622 - time (sec): 89.46 - samples/sec: 16474.54 - lr: 0.100000 +2023-04-06 00:28:37,837 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:28:37,837 EPOCH 79 done: loss 0.1142 - lr 0.100000 +2023-04-06 00:28:37,838 Epoch 79: reducing learning rate of group 0 to 5.0000e-02. +2023-04-06 00:28:37,838 BAD EPOCHS (no improvement): 4 +2023-04-06 00:28:37,840 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:28:46,444 epoch 80 - iter 265/2650 - loss 0.11435610 - time (sec): 8.60 - samples/sec: 17075.95 - lr: 0.050000 +2023-04-06 00:28:55,003 epoch 80 - iter 530/2650 - loss 0.11059233 - time (sec): 17.16 - samples/sec: 17146.09 - lr: 0.050000 +2023-04-06 00:29:03,657 epoch 80 - iter 795/2650 - loss 0.10988486 - time (sec): 25.82 - samples/sec: 17128.84 - lr: 0.050000 +2023-04-06 00:29:12,228 epoch 80 - iter 1060/2650 - loss 0.10940275 - time (sec): 34.39 - samples/sec: 17119.20 - lr: 0.050000 +2023-04-06 00:29:20,820 epoch 80 - iter 1325/2650 - loss 0.10921831 - time (sec): 42.98 - samples/sec: 17140.97 - lr: 0.050000 +2023-04-06 00:29:29,464 epoch 80 - iter 1590/2650 - loss 0.10869373 - time (sec): 51.62 - samples/sec: 17138.68 - lr: 0.050000 +2023-04-06 00:29:38,159 epoch 80 - iter 1855/2650 - loss 0.10870918 - time (sec): 60.32 - samples/sec: 17136.09 - lr: 0.050000 +2023-04-06 00:29:46,695 epoch 80 - iter 2120/2650 - loss 0.10833203 - time (sec): 68.85 - samples/sec: 17128.15 - lr: 0.050000 +2023-04-06 00:29:55,332 epoch 80 - iter 2385/2650 - loss 0.10803373 - time (sec): 77.49 - samples/sec: 17119.82 - lr: 0.050000 +2023-04-06 00:30:03,922 epoch 80 - iter 2650/2650 - loss 0.10795399 - time (sec): 86.08 - samples/sec: 17121.29 - lr: 0.050000 +2023-04-06 00:30:03,922 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:30:03,922 EPOCH 80 done: loss 0.1080 - lr 0.050000 +2023-04-06 00:30:03,922 BAD EPOCHS (no improvement): 0 +2023-04-06 00:30:03,927 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:30:12,425 epoch 81 - iter 265/2650 - loss 0.10646556 - time (sec): 8.50 - samples/sec: 17166.54 - lr: 0.050000 +2023-04-06 00:30:21,083 epoch 81 - iter 530/2650 - loss 0.10647776 - time (sec): 17.16 - samples/sec: 17116.28 - lr: 0.050000 +2023-04-06 00:30:29,618 epoch 81 - iter 795/2650 - loss 0.10541902 - time (sec): 25.69 - samples/sec: 17126.82 - lr: 0.050000 +2023-04-06 00:30:38,263 epoch 81 - iter 1060/2650 - loss 0.10552067 - time (sec): 34.34 - samples/sec: 17109.28 - lr: 0.050000 +2023-04-06 00:30:46,971 epoch 81 - iter 1325/2650 - loss 0.10554601 - time (sec): 43.04 - samples/sec: 17092.96 - lr: 0.050000 +2023-04-06 00:30:55,626 epoch 81 - iter 1590/2650 - loss 0.10579968 - time (sec): 51.70 - samples/sec: 17091.66 - lr: 0.050000 +2023-04-06 00:31:04,246 epoch 81 - iter 1855/2650 - loss 0.10546309 - time (sec): 60.32 - samples/sec: 17107.76 - lr: 0.050000 +2023-04-06 00:31:12,919 epoch 81 - iter 2120/2650 - loss 0.10561733 - time (sec): 68.99 - samples/sec: 17106.98 - lr: 0.050000 +2023-04-06 00:31:21,499 epoch 81 - iter 2385/2650 - loss 0.10585413 - time (sec): 77.57 - samples/sec: 17101.98 - lr: 0.050000 +2023-04-06 00:31:30,162 epoch 81 - iter 2650/2650 - loss 0.10602037 - time (sec): 86.24 - samples/sec: 17090.61 - lr: 0.050000 +2023-04-06 00:31:30,163 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:31:30,163 EPOCH 81 done: loss 0.1060 - lr 0.050000 +2023-04-06 00:31:30,163 BAD EPOCHS (no improvement): 0 +2023-04-06 00:31:30,167 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:31:38,714 epoch 82 - iter 265/2650 - loss 0.10402228 - time (sec): 8.55 - samples/sec: 17172.75 - lr: 0.050000 +2023-04-06 00:31:47,449 epoch 82 - iter 530/2650 - loss 0.10569981 - time (sec): 17.28 - samples/sec: 17137.33 - lr: 0.050000 +2023-04-06 00:31:56,055 epoch 82 - iter 795/2650 - loss 0.10499151 - time (sec): 25.89 - samples/sec: 17127.62 - lr: 0.050000 +2023-04-06 00:32:04,650 epoch 82 - iter 1060/2650 - loss 0.10506312 - time (sec): 34.48 - samples/sec: 17127.51 - lr: 0.050000 +2023-04-06 00:32:13,293 epoch 82 - iter 1325/2650 - loss 0.10462961 - time (sec): 43.13 - samples/sec: 17115.01 - lr: 0.050000 +2023-04-06 00:32:21,974 epoch 82 - iter 1590/2650 - loss 0.10435483 - time (sec): 51.81 - samples/sec: 17098.27 - lr: 0.050000 +2023-04-06 00:32:30,736 epoch 82 - iter 1855/2650 - loss 0.10474518 - time (sec): 60.57 - samples/sec: 17081.06 - lr: 0.050000 +2023-04-06 00:32:39,363 epoch 82 - iter 2120/2650 - loss 0.10490892 - time (sec): 69.20 - samples/sec: 17079.02 - lr: 0.050000 +2023-04-06 00:32:47,888 epoch 82 - iter 2385/2650 - loss 0.10480721 - time (sec): 77.72 - samples/sec: 17076.20 - lr: 0.050000 +2023-04-06 00:32:56,462 epoch 82 - iter 2650/2650 - loss 0.10486685 - time (sec): 86.30 - samples/sec: 17078.81 - lr: 0.050000 +2023-04-06 00:32:56,463 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:32:56,463 EPOCH 82 done: loss 0.1049 - lr 0.050000 +2023-04-06 00:32:56,463 BAD EPOCHS (no improvement): 0 +2023-04-06 00:32:56,467 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:33:05,096 epoch 83 - iter 265/2650 - loss 0.10068158 - time (sec): 8.63 - samples/sec: 17127.76 - lr: 0.050000 +2023-04-06 00:33:13,751 epoch 83 - iter 530/2650 - loss 0.10176968 - time (sec): 17.28 - samples/sec: 17143.13 - lr: 0.050000 +2023-04-06 00:33:22,378 epoch 83 - iter 795/2650 - loss 0.10409947 - time (sec): 25.91 - samples/sec: 17100.91 - lr: 0.050000 +2023-04-06 00:33:31,115 epoch 83 - iter 1060/2650 - loss 0.10394188 - time (sec): 34.65 - samples/sec: 17070.15 - lr: 0.050000 +2023-04-06 00:33:39,862 epoch 83 - iter 1325/2650 - loss 0.10346933 - time (sec): 43.40 - samples/sec: 17069.92 - lr: 0.050000 +2023-04-06 00:33:48,503 epoch 83 - iter 1590/2650 - loss 0.10383527 - time (sec): 52.04 - samples/sec: 17082.81 - lr: 0.050000 +2023-04-06 00:33:57,033 epoch 83 - iter 1855/2650 - loss 0.10353455 - time (sec): 60.57 - samples/sec: 17087.60 - lr: 0.050000 +2023-04-06 00:34:05,616 epoch 83 - iter 2120/2650 - loss 0.10330008 - time (sec): 69.15 - samples/sec: 17079.52 - lr: 0.050000 +2023-04-06 00:34:14,172 epoch 83 - iter 2385/2650 - loss 0.10357366 - time (sec): 77.71 - samples/sec: 17086.20 - lr: 0.050000 +2023-04-06 00:34:22,673 epoch 83 - iter 2650/2650 - loss 0.10366360 - time (sec): 86.21 - samples/sec: 17096.53 - lr: 0.050000 +2023-04-06 00:34:22,673 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:34:22,673 EPOCH 83 done: loss 0.1037 - lr 0.050000 +2023-04-06 00:34:22,673 BAD EPOCHS (no improvement): 0 +2023-04-06 00:34:22,677 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:34:31,188 epoch 84 - iter 265/2650 - loss 0.10264541 - time (sec): 8.51 - samples/sec: 17182.86 - lr: 0.050000 +2023-04-06 00:34:39,730 epoch 84 - iter 530/2650 - loss 0.10208387 - time (sec): 17.05 - samples/sec: 17184.87 - lr: 0.050000 +2023-04-06 00:34:48,308 epoch 84 - iter 795/2650 - loss 0.10215842 - time (sec): 25.63 - samples/sec: 17166.07 - lr: 0.050000 +2023-04-06 00:34:56,990 epoch 84 - iter 1060/2650 - loss 0.10267351 - time (sec): 34.31 - samples/sec: 17175.21 - lr: 0.050000 +2023-04-06 00:35:05,524 epoch 84 - iter 1325/2650 - loss 0.10215323 - time (sec): 42.85 - samples/sec: 17165.68 - lr: 0.050000 +2023-04-06 00:35:14,161 epoch 84 - iter 1590/2650 - loss 0.10201239 - time (sec): 51.48 - samples/sec: 17153.85 - lr: 0.050000 +2023-04-06 00:35:22,790 epoch 84 - iter 1855/2650 - loss 0.10194907 - time (sec): 60.11 - samples/sec: 17151.88 - lr: 0.050000 +2023-04-06 00:35:31,384 epoch 84 - iter 2120/2650 - loss 0.10194300 - time (sec): 68.71 - samples/sec: 17151.44 - lr: 0.050000 +2023-04-06 00:35:40,022 epoch 84 - iter 2385/2650 - loss 0.10207165 - time (sec): 77.35 - samples/sec: 17146.99 - lr: 0.050000 +2023-04-06 00:35:48,689 epoch 84 - iter 2650/2650 - loss 0.10208262 - time (sec): 86.01 - samples/sec: 17135.15 - lr: 0.050000 +2023-04-06 00:35:48,689 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:35:48,689 EPOCH 84 done: loss 0.1021 - lr 0.050000 +2023-04-06 00:35:48,689 BAD EPOCHS (no improvement): 0 +2023-04-06 00:35:48,695 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:35:57,290 epoch 85 - iter 265/2650 - loss 0.10135894 - time (sec): 8.59 - samples/sec: 17285.64 - lr: 0.050000 +2023-04-06 00:36:05,871 epoch 85 - iter 530/2650 - loss 0.10174068 - time (sec): 17.17 - samples/sec: 17241.65 - lr: 0.050000 +2023-04-06 00:36:14,526 epoch 85 - iter 795/2650 - loss 0.10220314 - time (sec): 25.83 - samples/sec: 17196.98 - lr: 0.050000 +2023-04-06 00:36:23,184 epoch 85 - iter 1060/2650 - loss 0.10243910 - time (sec): 34.49 - samples/sec: 17163.75 - lr: 0.050000 +2023-04-06 00:36:31,807 epoch 85 - iter 1325/2650 - loss 0.10284114 - time (sec): 43.11 - samples/sec: 17168.17 - lr: 0.050000 +2023-04-06 00:36:44,128 epoch 85 - iter 1590/2650 - loss 0.10236888 - time (sec): 55.43 - samples/sec: 15992.62 - lr: 0.050000 +2023-04-06 00:36:52,715 epoch 85 - iter 1855/2650 - loss 0.10224765 - time (sec): 64.02 - samples/sec: 16147.08 - lr: 0.050000 +2023-04-06 00:37:01,295 epoch 85 - iter 2120/2650 - loss 0.10232995 - time (sec): 72.60 - samples/sec: 16275.68 - lr: 0.050000 +2023-04-06 00:37:09,851 epoch 85 - iter 2385/2650 - loss 0.10276557 - time (sec): 81.16 - samples/sec: 16363.64 - lr: 0.050000 +2023-04-06 00:37:18,442 epoch 85 - iter 2650/2650 - loss 0.10267645 - time (sec): 89.75 - samples/sec: 16422.06 - lr: 0.050000 +2023-04-06 00:37:18,442 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:37:18,442 EPOCH 85 done: loss 0.1027 - lr 0.050000 +2023-04-06 00:37:18,442 BAD EPOCHS (no improvement): 1 +2023-04-06 00:37:18,446 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:37:27,008 epoch 86 - iter 265/2650 - loss 0.10111486 - time (sec): 8.56 - samples/sec: 17160.95 - lr: 0.050000 +2023-04-06 00:37:35,620 epoch 86 - iter 530/2650 - loss 0.10139018 - time (sec): 17.17 - samples/sec: 17164.83 - lr: 0.050000 +2023-04-06 00:37:44,156 epoch 86 - iter 795/2650 - loss 0.10139333 - time (sec): 25.71 - samples/sec: 17151.63 - lr: 0.050000 +2023-04-06 00:37:52,896 epoch 86 - iter 1060/2650 - loss 0.10206355 - time (sec): 34.45 - samples/sec: 17135.55 - lr: 0.050000 +2023-04-06 00:38:01,575 epoch 86 - iter 1325/2650 - loss 0.10261886 - time (sec): 43.13 - samples/sec: 17121.36 - lr: 0.050000 +2023-04-06 00:38:10,101 epoch 86 - iter 1590/2650 - loss 0.10251538 - time (sec): 51.65 - samples/sec: 17116.75 - lr: 0.050000 +2023-04-06 00:38:18,752 epoch 86 - iter 1855/2650 - loss 0.10257793 - time (sec): 60.31 - samples/sec: 17122.97 - lr: 0.050000 +2023-04-06 00:38:27,454 epoch 86 - iter 2120/2650 - loss 0.10251540 - time (sec): 69.01 - samples/sec: 17127.41 - lr: 0.050000 +2023-04-06 00:38:36,020 epoch 86 - iter 2385/2650 - loss 0.10235499 - time (sec): 77.57 - samples/sec: 17132.13 - lr: 0.050000 +2023-04-06 00:38:44,568 epoch 86 - iter 2650/2650 - loss 0.10220844 - time (sec): 86.12 - samples/sec: 17113.22 - lr: 0.050000 +2023-04-06 00:38:44,568 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:38:44,568 EPOCH 86 done: loss 0.1022 - lr 0.050000 +2023-04-06 00:38:44,569 BAD EPOCHS (no improvement): 2 +2023-04-06 00:38:44,572 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:38:53,202 epoch 87 - iter 265/2650 - loss 0.10010616 - time (sec): 8.63 - samples/sec: 17085.39 - lr: 0.050000 +2023-04-06 00:39:01,855 epoch 87 - iter 530/2650 - loss 0.10051948 - time (sec): 17.28 - samples/sec: 17057.67 - lr: 0.050000 +2023-04-06 00:39:10,480 epoch 87 - iter 795/2650 - loss 0.09974002 - time (sec): 25.91 - samples/sec: 17072.91 - lr: 0.050000 +2023-04-06 00:39:19,083 epoch 87 - iter 1060/2650 - loss 0.10107992 - time (sec): 34.51 - samples/sec: 17050.83 - lr: 0.050000 +2023-04-06 00:39:27,824 epoch 87 - iter 1325/2650 - loss 0.10114509 - time (sec): 43.25 - samples/sec: 17045.76 - lr: 0.050000 +2023-04-06 00:39:36,522 epoch 87 - iter 1590/2650 - loss 0.10095407 - time (sec): 51.95 - samples/sec: 17046.03 - lr: 0.050000 +2023-04-06 00:39:45,004 epoch 87 - iter 1855/2650 - loss 0.10095533 - time (sec): 60.43 - samples/sec: 17040.49 - lr: 0.050000 +2023-04-06 00:39:53,625 epoch 87 - iter 2120/2650 - loss 0.10119804 - time (sec): 69.05 - samples/sec: 17048.10 - lr: 0.050000 +2023-04-06 00:40:02,261 epoch 87 - iter 2385/2650 - loss 0.10147471 - time (sec): 77.69 - samples/sec: 17048.53 - lr: 0.050000 +2023-04-06 00:40:10,951 epoch 87 - iter 2650/2650 - loss 0.10176324 - time (sec): 86.38 - samples/sec: 17062.38 - lr: 0.050000 +2023-04-06 00:40:10,951 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:40:10,951 EPOCH 87 done: loss 0.1018 - lr 0.050000 +2023-04-06 00:40:10,951 BAD EPOCHS (no improvement): 0 +2023-04-06 00:40:10,955 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:40:19,480 epoch 88 - iter 265/2650 - loss 0.10158256 - time (sec): 8.53 - samples/sec: 17293.07 - lr: 0.050000 +2023-04-06 00:40:28,149 epoch 88 - iter 530/2650 - loss 0.10237411 - time (sec): 17.19 - samples/sec: 17240.48 - lr: 0.050000 +2023-04-06 00:40:36,713 epoch 88 - iter 795/2650 - loss 0.10187348 - time (sec): 25.76 - samples/sec: 17195.76 - lr: 0.050000 +2023-04-06 00:40:45,290 epoch 88 - iter 1060/2650 - loss 0.10184399 - time (sec): 34.33 - samples/sec: 17175.68 - lr: 0.050000 +2023-04-06 00:40:53,985 epoch 88 - iter 1325/2650 - loss 0.10185992 - time (sec): 43.03 - samples/sec: 17161.89 - lr: 0.050000 +2023-04-06 00:41:02,572 epoch 88 - iter 1590/2650 - loss 0.10139317 - time (sec): 51.62 - samples/sec: 17159.03 - lr: 0.050000 +2023-04-06 00:41:11,140 epoch 88 - iter 1855/2650 - loss 0.10122838 - time (sec): 60.18 - samples/sec: 17150.09 - lr: 0.050000 +2023-04-06 00:41:19,833 epoch 88 - iter 2120/2650 - loss 0.10082890 - time (sec): 68.88 - samples/sec: 17136.80 - lr: 0.050000 +2023-04-06 00:41:28,424 epoch 88 - iter 2385/2650 - loss 0.10109660 - time (sec): 77.47 - samples/sec: 17118.68 - lr: 0.050000 +2023-04-06 00:41:37,144 epoch 88 - iter 2650/2650 - loss 0.10145811 - time (sec): 86.19 - samples/sec: 17099.94 - lr: 0.050000 +2023-04-06 00:41:37,144 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:41:37,144 EPOCH 88 done: loss 0.1015 - lr 0.050000 +2023-04-06 00:41:37,144 BAD EPOCHS (no improvement): 0 +2023-04-06 00:41:37,148 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:41:45,856 epoch 89 - iter 265/2650 - loss 0.09980848 - time (sec): 8.71 - samples/sec: 16958.95 - lr: 0.050000 +2023-04-06 00:41:54,549 epoch 89 - iter 530/2650 - loss 0.10076252 - time (sec): 17.40 - samples/sec: 16996.74 - lr: 0.050000 +2023-04-06 00:42:03,183 epoch 89 - iter 795/2650 - loss 0.09997727 - time (sec): 26.03 - samples/sec: 16995.91 - lr: 0.050000 +2023-04-06 00:42:11,890 epoch 89 - iter 1060/2650 - loss 0.09993774 - time (sec): 34.74 - samples/sec: 16982.22 - lr: 0.050000 +2023-04-06 00:42:20,570 epoch 89 - iter 1325/2650 - loss 0.10009724 - time (sec): 43.42 - samples/sec: 16977.45 - lr: 0.050000 +2023-04-06 00:42:29,301 epoch 89 - iter 1590/2650 - loss 0.10058229 - time (sec): 52.15 - samples/sec: 16978.11 - lr: 0.050000 +2023-04-06 00:42:38,038 epoch 89 - iter 1855/2650 - loss 0.10082311 - time (sec): 60.89 - samples/sec: 16975.11 - lr: 0.050000 +2023-04-06 00:42:46,643 epoch 89 - iter 2120/2650 - loss 0.10090288 - time (sec): 69.50 - samples/sec: 16974.31 - lr: 0.050000 +2023-04-06 00:42:55,377 epoch 89 - iter 2385/2650 - loss 0.10072145 - time (sec): 78.23 - samples/sec: 16972.68 - lr: 0.050000 +2023-04-06 00:43:03,997 epoch 89 - iter 2650/2650 - loss 0.10073493 - time (sec): 86.85 - samples/sec: 16969.85 - lr: 0.050000 +2023-04-06 00:43:03,998 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:43:03,998 EPOCH 89 done: loss 0.1007 - lr 0.050000 +2023-04-06 00:43:03,998 BAD EPOCHS (no improvement): 0 +2023-04-06 00:43:04,002 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:43:12,592 epoch 90 - iter 265/2650 - loss 0.09795755 - time (sec): 8.59 - samples/sec: 17132.94 - lr: 0.050000 +2023-04-06 00:43:21,178 epoch 90 - iter 530/2650 - loss 0.09936434 - time (sec): 17.18 - samples/sec: 17116.17 - lr: 0.050000 +2023-04-06 00:43:29,932 epoch 90 - iter 795/2650 - loss 0.10013905 - time (sec): 25.93 - samples/sec: 17122.59 - lr: 0.050000 +2023-04-06 00:43:38,616 epoch 90 - iter 1060/2650 - loss 0.09976950 - time (sec): 34.61 - samples/sec: 17137.26 - lr: 0.050000 +2023-04-06 00:43:47,227 epoch 90 - iter 1325/2650 - loss 0.10018461 - time (sec): 43.23 - samples/sec: 17121.03 - lr: 0.050000 +2023-04-06 00:43:55,901 epoch 90 - iter 1590/2650 - loss 0.10005125 - time (sec): 51.90 - samples/sec: 17104.11 - lr: 0.050000 +2023-04-06 00:44:04,496 epoch 90 - iter 1855/2650 - loss 0.10026552 - time (sec): 60.49 - samples/sec: 17114.99 - lr: 0.050000 +2023-04-06 00:44:13,006 epoch 90 - iter 2120/2650 - loss 0.10010254 - time (sec): 69.00 - samples/sec: 17122.78 - lr: 0.050000 +2023-04-06 00:44:21,639 epoch 90 - iter 2385/2650 - loss 0.09995442 - time (sec): 77.64 - samples/sec: 17113.61 - lr: 0.050000 +2023-04-06 00:44:30,209 epoch 90 - iter 2650/2650 - loss 0.10003284 - time (sec): 86.21 - samples/sec: 17096.38 - lr: 0.050000 +2023-04-06 00:44:30,209 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:44:30,209 EPOCH 90 done: loss 0.1000 - lr 0.050000 +2023-04-06 00:44:30,209 BAD EPOCHS (no improvement): 0 +2023-04-06 00:44:30,214 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:44:38,669 epoch 91 - iter 265/2650 - loss 0.09891768 - time (sec): 8.45 - samples/sec: 17149.96 - lr: 0.050000 +2023-04-06 00:44:47,377 epoch 91 - iter 530/2650 - loss 0.10040431 - time (sec): 17.16 - samples/sec: 17111.57 - lr: 0.050000 +2023-04-06 00:44:55,978 epoch 91 - iter 795/2650 - loss 0.10033808 - time (sec): 25.76 - samples/sec: 17060.98 - lr: 0.050000 +2023-04-06 00:45:04,579 epoch 91 - iter 1060/2650 - loss 0.09993674 - time (sec): 34.37 - samples/sec: 17039.67 - lr: 0.050000 +2023-04-06 00:45:13,240 epoch 91 - iter 1325/2650 - loss 0.09896890 - time (sec): 43.03 - samples/sec: 17046.18 - lr: 0.050000 +2023-04-06 00:45:21,903 epoch 91 - iter 1590/2650 - loss 0.09944321 - time (sec): 51.69 - samples/sec: 17043.47 - lr: 0.050000 +2023-04-06 00:45:34,667 epoch 91 - iter 1855/2650 - loss 0.09962243 - time (sec): 64.45 - samples/sec: 15982.97 - lr: 0.050000 +2023-04-06 00:45:43,249 epoch 91 - iter 2120/2650 - loss 0.09959899 - time (sec): 73.04 - samples/sec: 16136.39 - lr: 0.050000 +2023-04-06 00:45:51,802 epoch 91 - iter 2385/2650 - loss 0.09952738 - time (sec): 81.59 - samples/sec: 16240.60 - lr: 0.050000 +2023-04-06 00:46:00,535 epoch 91 - iter 2650/2650 - loss 0.09971310 - time (sec): 90.32 - samples/sec: 16317.54 - lr: 0.050000 +2023-04-06 00:46:00,535 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:46:00,536 EPOCH 91 done: loss 0.0997 - lr 0.050000 +2023-04-06 00:46:00,536 BAD EPOCHS (no improvement): 0 +2023-04-06 00:46:00,543 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:46:09,304 epoch 92 - iter 265/2650 - loss 0.09786813 - time (sec): 8.76 - samples/sec: 17029.40 - lr: 0.050000 +2023-04-06 00:46:18,004 epoch 92 - iter 530/2650 - loss 0.09767145 - time (sec): 17.46 - samples/sec: 17024.55 - lr: 0.050000 +2023-04-06 00:46:26,677 epoch 92 - iter 795/2650 - loss 0.09838975 - time (sec): 26.13 - samples/sec: 16994.44 - lr: 0.050000 +2023-04-06 00:46:35,400 epoch 92 - iter 1060/2650 - loss 0.09898594 - time (sec): 34.86 - samples/sec: 16982.85 - lr: 0.050000 +2023-04-06 00:46:44,140 epoch 92 - iter 1325/2650 - loss 0.09923571 - time (sec): 43.60 - samples/sec: 17000.34 - lr: 0.050000 +2023-04-06 00:46:52,794 epoch 92 - iter 1590/2650 - loss 0.09932592 - time (sec): 52.25 - samples/sec: 17002.31 - lr: 0.050000 +2023-04-06 00:47:01,570 epoch 92 - iter 1855/2650 - loss 0.09976611 - time (sec): 61.03 - samples/sec: 16993.13 - lr: 0.050000 +2023-04-06 00:47:10,231 epoch 92 - iter 2120/2650 - loss 0.09973791 - time (sec): 69.69 - samples/sec: 16982.73 - lr: 0.050000 +2023-04-06 00:47:18,775 epoch 92 - iter 2385/2650 - loss 0.10006129 - time (sec): 78.23 - samples/sec: 16979.38 - lr: 0.050000 +2023-04-06 00:47:27,366 epoch 92 - iter 2650/2650 - loss 0.10014370 - time (sec): 86.82 - samples/sec: 16975.12 - lr: 0.050000 +2023-04-06 00:47:27,366 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:47:27,367 EPOCH 92 done: loss 0.1001 - lr 0.050000 +2023-04-06 00:47:27,367 BAD EPOCHS (no improvement): 1 +2023-04-06 00:47:27,370 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:47:36,139 epoch 93 - iter 265/2650 - loss 0.10113562 - time (sec): 8.77 - samples/sec: 16889.66 - lr: 0.050000 +2023-04-06 00:47:44,724 epoch 93 - iter 530/2650 - loss 0.09942689 - time (sec): 17.35 - samples/sec: 16907.64 - lr: 0.050000 +2023-04-06 00:47:53,365 epoch 93 - iter 795/2650 - loss 0.09916973 - time (sec): 25.99 - samples/sec: 16947.14 - lr: 0.050000 +2023-04-06 00:48:02,093 epoch 93 - iter 1060/2650 - loss 0.09893220 - time (sec): 34.72 - samples/sec: 16937.77 - lr: 0.050000 +2023-04-06 00:48:10,817 epoch 93 - iter 1325/2650 - loss 0.09865902 - time (sec): 43.45 - samples/sec: 16947.92 - lr: 0.050000 +2023-04-06 00:48:19,466 epoch 93 - iter 1590/2650 - loss 0.09917233 - time (sec): 52.10 - samples/sec: 16950.06 - lr: 0.050000 +2023-04-06 00:48:28,109 epoch 93 - iter 1855/2650 - loss 0.09918020 - time (sec): 60.74 - samples/sec: 16963.27 - lr: 0.050000 +2023-04-06 00:48:36,843 epoch 93 - iter 2120/2650 - loss 0.09913299 - time (sec): 69.47 - samples/sec: 16977.02 - lr: 0.050000 +2023-04-06 00:48:45,490 epoch 93 - iter 2385/2650 - loss 0.09934475 - time (sec): 78.12 - samples/sec: 16962.52 - lr: 0.050000 +2023-04-06 00:48:54,291 epoch 93 - iter 2650/2650 - loss 0.09950157 - time (sec): 86.92 - samples/sec: 16955.97 - lr: 0.050000 +2023-04-06 00:48:54,291 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:48:54,291 EPOCH 93 done: loss 0.0995 - lr 0.050000 +2023-04-06 00:48:54,292 BAD EPOCHS (no improvement): 0 +2023-04-06 00:48:54,295 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:49:03,091 epoch 94 - iter 265/2650 - loss 0.09966204 - time (sec): 8.80 - samples/sec: 17017.75 - lr: 0.050000 +2023-04-06 00:49:11,738 epoch 94 - iter 530/2650 - loss 0.09889682 - time (sec): 17.44 - samples/sec: 17055.06 - lr: 0.050000 +2023-04-06 00:49:20,348 epoch 94 - iter 795/2650 - loss 0.09886540 - time (sec): 26.05 - samples/sec: 17093.96 - lr: 0.050000 +2023-04-06 00:49:28,881 epoch 94 - iter 1060/2650 - loss 0.09884276 - time (sec): 34.59 - samples/sec: 17116.82 - lr: 0.050000 +2023-04-06 00:49:37,456 epoch 94 - iter 1325/2650 - loss 0.09883549 - time (sec): 43.16 - samples/sec: 17125.67 - lr: 0.050000 +2023-04-06 00:49:45,892 epoch 94 - iter 1590/2650 - loss 0.09876635 - time (sec): 51.60 - samples/sec: 17137.77 - lr: 0.050000 +2023-04-06 00:49:54,492 epoch 94 - iter 1855/2650 - loss 0.09879645 - time (sec): 60.20 - samples/sec: 17130.90 - lr: 0.050000 +2023-04-06 00:50:03,024 epoch 94 - iter 2120/2650 - loss 0.09876447 - time (sec): 68.73 - samples/sec: 17135.80 - lr: 0.050000 +2023-04-06 00:50:11,578 epoch 94 - iter 2385/2650 - loss 0.09892541 - time (sec): 77.28 - samples/sec: 17146.88 - lr: 0.050000 +2023-04-06 00:50:20,203 epoch 94 - iter 2650/2650 - loss 0.09870168 - time (sec): 85.91 - samples/sec: 17155.95 - lr: 0.050000 +2023-04-06 00:50:20,203 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:50:20,203 EPOCH 94 done: loss 0.0987 - lr 0.050000 +2023-04-06 00:50:20,203 BAD EPOCHS (no improvement): 0 +2023-04-06 00:50:20,206 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:50:28,816 epoch 95 - iter 265/2650 - loss 0.09763995 - time (sec): 8.61 - samples/sec: 17237.70 - lr: 0.050000 +2023-04-06 00:50:37,458 epoch 95 - iter 530/2650 - loss 0.09699100 - time (sec): 17.25 - samples/sec: 17195.36 - lr: 0.050000 +2023-04-06 00:50:45,991 epoch 95 - iter 795/2650 - loss 0.09788728 - time (sec): 25.78 - samples/sec: 17214.37 - lr: 0.050000 +2023-04-06 00:50:54,518 epoch 95 - iter 1060/2650 - loss 0.09858839 - time (sec): 34.31 - samples/sec: 17203.72 - lr: 0.050000 +2023-04-06 00:51:03,073 epoch 95 - iter 1325/2650 - loss 0.09883761 - time (sec): 42.87 - samples/sec: 17171.32 - lr: 0.050000 +2023-04-06 00:51:11,634 epoch 95 - iter 1590/2650 - loss 0.09915148 - time (sec): 51.43 - samples/sec: 17180.25 - lr: 0.050000 +2023-04-06 00:51:20,195 epoch 95 - iter 1855/2650 - loss 0.09925464 - time (sec): 59.99 - samples/sec: 17177.93 - lr: 0.050000 +2023-04-06 00:51:28,877 epoch 95 - iter 2120/2650 - loss 0.09914357 - time (sec): 68.67 - samples/sec: 17171.93 - lr: 0.050000 +2023-04-06 00:51:37,487 epoch 95 - iter 2385/2650 - loss 0.09895422 - time (sec): 77.28 - samples/sec: 17165.31 - lr: 0.050000 +2023-04-06 00:51:46,131 epoch 95 - iter 2650/2650 - loss 0.09888381 - time (sec): 85.92 - samples/sec: 17152.53 - lr: 0.050000 +2023-04-06 00:51:46,131 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:51:46,131 EPOCH 95 done: loss 0.0989 - lr 0.050000 +2023-04-06 00:51:46,131 BAD EPOCHS (no improvement): 1 +2023-04-06 00:51:46,134 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:51:54,786 epoch 96 - iter 265/2650 - loss 0.10020841 - time (sec): 8.65 - samples/sec: 17189.02 - lr: 0.050000 +2023-04-06 00:52:03,426 epoch 96 - iter 530/2650 - loss 0.09919245 - time (sec): 17.29 - samples/sec: 17177.13 - lr: 0.050000 +2023-04-06 00:52:12,079 epoch 96 - iter 795/2650 - loss 0.09821964 - time (sec): 25.94 - samples/sec: 17165.26 - lr: 0.050000 +2023-04-06 00:52:20,658 epoch 96 - iter 1060/2650 - loss 0.09846554 - time (sec): 34.52 - samples/sec: 17140.35 - lr: 0.050000 +2023-04-06 00:52:29,151 epoch 96 - iter 1325/2650 - loss 0.09819344 - time (sec): 43.02 - samples/sec: 17123.18 - lr: 0.050000 +2023-04-06 00:52:37,693 epoch 96 - iter 1590/2650 - loss 0.09827865 - time (sec): 51.56 - samples/sec: 17108.57 - lr: 0.050000 +2023-04-06 00:52:46,295 epoch 96 - iter 1855/2650 - loss 0.09823574 - time (sec): 60.16 - samples/sec: 17115.47 - lr: 0.050000 +2023-04-06 00:52:54,956 epoch 96 - iter 2120/2650 - loss 0.09883706 - time (sec): 68.82 - samples/sec: 17111.00 - lr: 0.050000 +2023-04-06 00:53:03,626 epoch 96 - iter 2385/2650 - loss 0.09902300 - time (sec): 77.49 - samples/sec: 17110.03 - lr: 0.050000 +2023-04-06 00:53:12,289 epoch 96 - iter 2650/2650 - loss 0.09904931 - time (sec): 86.15 - samples/sec: 17106.85 - lr: 0.050000 +2023-04-06 00:53:12,289 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:53:12,289 EPOCH 96 done: loss 0.0990 - lr 0.050000 +2023-04-06 00:53:12,289 BAD EPOCHS (no improvement): 2 +2023-04-06 00:53:12,293 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:53:20,901 epoch 97 - iter 265/2650 - loss 0.09764511 - time (sec): 8.61 - samples/sec: 17258.64 - lr: 0.050000 +2023-04-06 00:53:29,587 epoch 97 - iter 530/2650 - loss 0.09830776 - time (sec): 17.29 - samples/sec: 17256.26 - lr: 0.050000 +2023-04-06 00:53:38,313 epoch 97 - iter 795/2650 - loss 0.09801270 - time (sec): 26.02 - samples/sec: 17193.04 - lr: 0.050000 +2023-04-06 00:53:46,926 epoch 97 - iter 1060/2650 - loss 0.09799232 - time (sec): 34.63 - samples/sec: 17143.38 - lr: 0.050000 +2023-04-06 00:53:55,430 epoch 97 - iter 1325/2650 - loss 0.09751100 - time (sec): 43.14 - samples/sec: 17134.61 - lr: 0.050000 +2023-04-06 00:54:04,063 epoch 97 - iter 1590/2650 - loss 0.09801582 - time (sec): 51.77 - samples/sec: 17140.52 - lr: 0.050000 +2023-04-06 00:54:12,656 epoch 97 - iter 1855/2650 - loss 0.09784809 - time (sec): 60.36 - samples/sec: 17120.21 - lr: 0.050000 +2023-04-06 00:54:21,254 epoch 97 - iter 2120/2650 - loss 0.09790191 - time (sec): 68.96 - samples/sec: 17118.25 - lr: 0.050000 +2023-04-06 00:54:33,630 epoch 97 - iter 2385/2650 - loss 0.09811285 - time (sec): 81.34 - samples/sec: 16306.44 - lr: 0.050000 +2023-04-06 00:54:42,191 epoch 97 - iter 2650/2650 - loss 0.09819772 - time (sec): 89.90 - samples/sec: 16394.45 - lr: 0.050000 +2023-04-06 00:54:42,191 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:54:42,191 EPOCH 97 done: loss 0.0982 - lr 0.050000 +2023-04-06 00:54:42,191 BAD EPOCHS (no improvement): 0 +2023-04-06 00:54:42,194 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:54:50,806 epoch 98 - iter 265/2650 - loss 0.09662087 - time (sec): 8.61 - samples/sec: 17161.84 - lr: 0.050000 +2023-04-06 00:54:59,311 epoch 98 - iter 530/2650 - loss 0.09681734 - time (sec): 17.12 - samples/sec: 17197.07 - lr: 0.050000 +2023-04-06 00:55:07,859 epoch 98 - iter 795/2650 - loss 0.09662157 - time (sec): 25.66 - samples/sec: 17142.05 - lr: 0.050000 +2023-04-06 00:55:16,443 epoch 98 - iter 1060/2650 - loss 0.09719037 - time (sec): 34.25 - samples/sec: 17134.54 - lr: 0.050000 +2023-04-06 00:55:25,114 epoch 98 - iter 1325/2650 - loss 0.09773090 - time (sec): 42.92 - samples/sec: 17106.83 - lr: 0.050000 +2023-04-06 00:55:33,769 epoch 98 - iter 1590/2650 - loss 0.09808788 - time (sec): 51.57 - samples/sec: 17112.65 - lr: 0.050000 +2023-04-06 00:55:42,433 epoch 98 - iter 1855/2650 - loss 0.09811000 - time (sec): 60.24 - samples/sec: 17097.62 - lr: 0.050000 +2023-04-06 00:55:51,081 epoch 98 - iter 2120/2650 - loss 0.09833500 - time (sec): 68.89 - samples/sec: 17091.74 - lr: 0.050000 +2023-04-06 00:55:59,714 epoch 98 - iter 2385/2650 - loss 0.09844406 - time (sec): 77.52 - samples/sec: 17100.09 - lr: 0.050000 +2023-04-06 00:56:08,414 epoch 98 - iter 2650/2650 - loss 0.09840684 - time (sec): 86.22 - samples/sec: 17093.83 - lr: 0.050000 +2023-04-06 00:56:08,414 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:56:08,414 EPOCH 98 done: loss 0.0984 - lr 0.050000 +2023-04-06 00:56:08,414 BAD EPOCHS (no improvement): 1 +2023-04-06 00:56:08,421 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:56:17,017 epoch 99 - iter 265/2650 - loss 0.09815220 - time (sec): 8.60 - samples/sec: 17111.44 - lr: 0.050000 +2023-04-06 00:56:25,626 epoch 99 - iter 530/2650 - loss 0.09777480 - time (sec): 17.21 - samples/sec: 17116.05 - lr: 0.050000 +2023-04-06 00:56:34,229 epoch 99 - iter 795/2650 - loss 0.09747426 - time (sec): 25.81 - samples/sec: 17122.83 - lr: 0.050000 +2023-04-06 00:56:42,908 epoch 99 - iter 1060/2650 - loss 0.09777129 - time (sec): 34.49 - samples/sec: 17105.63 - lr: 0.050000 +2023-04-06 00:56:51,525 epoch 99 - iter 1325/2650 - loss 0.09779377 - time (sec): 43.10 - samples/sec: 17103.90 - lr: 0.050000 +2023-04-06 00:57:00,146 epoch 99 - iter 1590/2650 - loss 0.09809004 - time (sec): 51.72 - samples/sec: 17094.73 - lr: 0.050000 +2023-04-06 00:57:08,829 epoch 99 - iter 1855/2650 - loss 0.09836405 - time (sec): 60.41 - samples/sec: 17091.71 - lr: 0.050000 +2023-04-06 00:57:17,347 epoch 99 - iter 2120/2650 - loss 0.09833207 - time (sec): 68.93 - samples/sec: 17096.59 - lr: 0.050000 +2023-04-06 00:57:25,984 epoch 99 - iter 2385/2650 - loss 0.09871646 - time (sec): 77.56 - samples/sec: 17088.40 - lr: 0.050000 +2023-04-06 00:57:34,700 epoch 99 - iter 2650/2650 - loss 0.09854189 - time (sec): 86.28 - samples/sec: 17082.07 - lr: 0.050000 +2023-04-06 00:57:34,701 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:57:34,701 EPOCH 99 done: loss 0.0985 - lr 0.050000 +2023-04-06 00:57:34,701 BAD EPOCHS (no improvement): 2 +2023-04-06 00:57:34,705 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:57:43,265 epoch 100 - iter 265/2650 - loss 0.09736676 - time (sec): 8.56 - samples/sec: 17282.04 - lr: 0.050000 +2023-04-06 00:57:51,844 epoch 100 - iter 530/2650 - loss 0.09756047 - time (sec): 17.14 - samples/sec: 17172.08 - lr: 0.050000 +2023-04-06 00:58:00,420 epoch 100 - iter 795/2650 - loss 0.09727938 - time (sec): 25.71 - samples/sec: 17135.76 - lr: 0.050000 +2023-04-06 00:58:09,070 epoch 100 - iter 1060/2650 - loss 0.09693737 - time (sec): 34.36 - samples/sec: 17083.86 - lr: 0.050000 +2023-04-06 00:58:17,766 epoch 100 - iter 1325/2650 - loss 0.09683128 - time (sec): 43.06 - samples/sec: 17075.14 - lr: 0.050000 +2023-04-06 00:58:26,454 epoch 100 - iter 1590/2650 - loss 0.09691369 - time (sec): 51.75 - samples/sec: 17063.77 - lr: 0.050000 +2023-04-06 00:58:35,101 epoch 100 - iter 1855/2650 - loss 0.09674217 - time (sec): 60.40 - samples/sec: 17062.96 - lr: 0.050000 +2023-04-06 00:58:43,787 epoch 100 - iter 2120/2650 - loss 0.09694809 - time (sec): 69.08 - samples/sec: 17059.08 - lr: 0.050000 +2023-04-06 00:58:52,439 epoch 100 - iter 2385/2650 - loss 0.09714438 - time (sec): 77.73 - samples/sec: 17053.81 - lr: 0.050000 +2023-04-06 00:59:01,131 epoch 100 - iter 2650/2650 - loss 0.09724490 - time (sec): 86.43 - samples/sec: 17053.03 - lr: 0.050000 +2023-04-06 00:59:01,131 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:59:01,131 EPOCH 100 done: loss 0.0972 - lr 0.050000 +2023-04-06 00:59:01,131 BAD EPOCHS (no improvement): 0 +2023-04-06 00:59:01,135 ---------------------------------------------------------------------------------------------------- +2023-04-06 00:59:09,720 epoch 101 - iter 265/2650 - loss 0.09793434 - time (sec): 8.59 - samples/sec: 17011.52 - lr: 0.050000 +2023-04-06 00:59:18,432 epoch 101 - iter 530/2650 - loss 0.09806788 - time (sec): 17.30 - samples/sec: 17025.11 - lr: 0.050000 +2023-04-06 00:59:27,024 epoch 101 - iter 795/2650 - loss 0.09740525 - time (sec): 25.89 - samples/sec: 17031.16 - lr: 0.050000 +2023-04-06 00:59:35,528 epoch 101 - iter 1060/2650 - loss 0.09743071 - time (sec): 34.39 - samples/sec: 17015.68 - lr: 0.050000 +2023-04-06 00:59:44,322 epoch 101 - iter 1325/2650 - loss 0.09772930 - time (sec): 43.19 - samples/sec: 17015.35 - lr: 0.050000 +2023-04-06 00:59:53,061 epoch 101 - iter 1590/2650 - loss 0.09798642 - time (sec): 51.93 - samples/sec: 17022.30 - lr: 0.050000 +2023-04-06 01:00:01,693 epoch 101 - iter 1855/2650 - loss 0.09794168 - time (sec): 60.56 - samples/sec: 17021.52 - lr: 0.050000 +2023-04-06 01:00:10,359 epoch 101 - iter 2120/2650 - loss 0.09822555 - time (sec): 69.22 - samples/sec: 17018.61 - lr: 0.050000 +2023-04-06 01:00:18,908 epoch 101 - iter 2385/2650 - loss 0.09843277 - time (sec): 77.77 - samples/sec: 17028.47 - lr: 0.050000 +2023-04-06 01:00:27,609 epoch 101 - iter 2650/2650 - loss 0.09800777 - time (sec): 86.47 - samples/sec: 17043.50 - lr: 0.050000 +2023-04-06 01:00:27,609 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:00:27,609 EPOCH 101 done: loss 0.0980 - lr 0.050000 +2023-04-06 01:00:27,609 BAD EPOCHS (no improvement): 1 +2023-04-06 01:00:27,613 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:00:36,082 epoch 102 - iter 265/2650 - loss 0.09465424 - time (sec): 8.47 - samples/sec: 17134.31 - lr: 0.050000 +2023-04-06 01:00:44,669 epoch 102 - iter 530/2650 - loss 0.09604103 - time (sec): 17.06 - samples/sec: 17136.22 - lr: 0.050000 +2023-04-06 01:00:53,331 epoch 102 - iter 795/2650 - loss 0.09679259 - time (sec): 25.72 - samples/sec: 17157.38 - lr: 0.050000 +2023-04-06 01:01:01,944 epoch 102 - iter 1060/2650 - loss 0.09673950 - time (sec): 34.33 - samples/sec: 17179.57 - lr: 0.050000 +2023-04-06 01:01:10,511 epoch 102 - iter 1325/2650 - loss 0.09647309 - time (sec): 42.90 - samples/sec: 17187.40 - lr: 0.050000 +2023-04-06 01:01:19,045 epoch 102 - iter 1590/2650 - loss 0.09657373 - time (sec): 51.43 - samples/sec: 17176.17 - lr: 0.050000 +2023-04-06 01:01:27,693 epoch 102 - iter 1855/2650 - loss 0.09705425 - time (sec): 60.08 - samples/sec: 17180.72 - lr: 0.050000 +2023-04-06 01:01:36,230 epoch 102 - iter 2120/2650 - loss 0.09730057 - time (sec): 68.62 - samples/sec: 17184.16 - lr: 0.050000 +2023-04-06 01:01:44,763 epoch 102 - iter 2385/2650 - loss 0.09743325 - time (sec): 77.15 - samples/sec: 17179.54 - lr: 0.050000 +2023-04-06 01:01:53,456 epoch 102 - iter 2650/2650 - loss 0.09730517 - time (sec): 85.84 - samples/sec: 17168.79 - lr: 0.050000 +2023-04-06 01:01:53,457 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:01:53,457 EPOCH 102 done: loss 0.0973 - lr 0.050000 +2023-04-06 01:01:53,457 BAD EPOCHS (no improvement): 2 +2023-04-06 01:01:53,461 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:02:02,057 epoch 103 - iter 265/2650 - loss 0.09590908 - time (sec): 8.60 - samples/sec: 17118.07 - lr: 0.050000 +2023-04-06 01:02:10,620 epoch 103 - iter 530/2650 - loss 0.09636353 - time (sec): 17.16 - samples/sec: 17123.22 - lr: 0.050000 +2023-04-06 01:02:19,196 epoch 103 - iter 795/2650 - loss 0.09620951 - time (sec): 25.73 - samples/sec: 17124.50 - lr: 0.050000 +2023-04-06 01:02:27,862 epoch 103 - iter 1060/2650 - loss 0.09575963 - time (sec): 34.40 - samples/sec: 17128.57 - lr: 0.050000 +2023-04-06 01:02:36,320 epoch 103 - iter 1325/2650 - loss 0.09606134 - time (sec): 42.86 - samples/sec: 17158.88 - lr: 0.050000 +2023-04-06 01:02:44,845 epoch 103 - iter 1590/2650 - loss 0.09619506 - time (sec): 51.38 - samples/sec: 17171.75 - lr: 0.050000 +2023-04-06 01:02:53,398 epoch 103 - iter 1855/2650 - loss 0.09610207 - time (sec): 59.94 - samples/sec: 17162.82 - lr: 0.050000 +2023-04-06 01:03:02,142 epoch 103 - iter 2120/2650 - loss 0.09633837 - time (sec): 68.68 - samples/sec: 17159.39 - lr: 0.050000 +2023-04-06 01:03:10,750 epoch 103 - iter 2385/2650 - loss 0.09690199 - time (sec): 77.29 - samples/sec: 17169.57 - lr: 0.050000 +2023-04-06 01:03:23,158 epoch 103 - iter 2650/2650 - loss 0.09708682 - time (sec): 89.70 - samples/sec: 16431.30 - lr: 0.050000 +2023-04-06 01:03:23,158 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:03:23,158 EPOCH 103 done: loss 0.0971 - lr 0.050000 +2023-04-06 01:03:23,158 BAD EPOCHS (no improvement): 0 +2023-04-06 01:03:23,162 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:03:31,670 epoch 104 - iter 265/2650 - loss 0.09622134 - time (sec): 8.51 - samples/sec: 17291.35 - lr: 0.050000 +2023-04-06 01:03:40,244 epoch 104 - iter 530/2650 - loss 0.09603655 - time (sec): 17.08 - samples/sec: 17321.54 - lr: 0.050000 +2023-04-06 01:03:48,849 epoch 104 - iter 795/2650 - loss 0.09564139 - time (sec): 25.69 - samples/sec: 17295.75 - lr: 0.050000 +2023-04-06 01:03:57,405 epoch 104 - iter 1060/2650 - loss 0.09518626 - time (sec): 34.24 - samples/sec: 17251.54 - lr: 0.050000 +2023-04-06 01:04:06,102 epoch 104 - iter 1325/2650 - loss 0.09566197 - time (sec): 42.94 - samples/sec: 17217.14 - lr: 0.050000 +2023-04-06 01:04:14,630 epoch 104 - iter 1590/2650 - loss 0.09605741 - time (sec): 51.47 - samples/sec: 17232.20 - lr: 0.050000 +2023-04-06 01:04:23,082 epoch 104 - iter 1855/2650 - loss 0.09639280 - time (sec): 59.92 - samples/sec: 17223.70 - lr: 0.050000 +2023-04-06 01:04:31,766 epoch 104 - iter 2120/2650 - loss 0.09613424 - time (sec): 68.60 - samples/sec: 17218.83 - lr: 0.050000 +2023-04-06 01:04:40,380 epoch 104 - iter 2385/2650 - loss 0.09645815 - time (sec): 77.22 - samples/sec: 17209.50 - lr: 0.050000 +2023-04-06 01:04:48,833 epoch 104 - iter 2650/2650 - loss 0.09667254 - time (sec): 85.67 - samples/sec: 17203.35 - lr: 0.050000 +2023-04-06 01:04:48,833 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:04:48,833 EPOCH 104 done: loss 0.0967 - lr 0.050000 +2023-04-06 01:04:48,833 BAD EPOCHS (no improvement): 0 +2023-04-06 01:04:48,840 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:04:57,407 epoch 105 - iter 265/2650 - loss 0.09725205 - time (sec): 8.57 - samples/sec: 17243.03 - lr: 0.050000 +2023-04-06 01:05:05,998 epoch 105 - iter 530/2650 - loss 0.09730220 - time (sec): 17.16 - samples/sec: 17204.62 - lr: 0.050000 +2023-04-06 01:05:14,550 epoch 105 - iter 795/2650 - loss 0.09712482 - time (sec): 25.71 - samples/sec: 17205.51 - lr: 0.050000 +2023-04-06 01:05:23,037 epoch 105 - iter 1060/2650 - loss 0.09710377 - time (sec): 34.20 - samples/sec: 17208.67 - lr: 0.050000 +2023-04-06 01:05:31,656 epoch 105 - iter 1325/2650 - loss 0.09706110 - time (sec): 42.82 - samples/sec: 17198.20 - lr: 0.050000 +2023-04-06 01:05:40,297 epoch 105 - iter 1590/2650 - loss 0.09704819 - time (sec): 51.46 - samples/sec: 17194.83 - lr: 0.050000 +2023-04-06 01:05:48,916 epoch 105 - iter 1855/2650 - loss 0.09672628 - time (sec): 60.08 - samples/sec: 17190.91 - lr: 0.050000 +2023-04-06 01:05:57,548 epoch 105 - iter 2120/2650 - loss 0.09687671 - time (sec): 68.71 - samples/sec: 17187.00 - lr: 0.050000 +2023-04-06 01:06:06,090 epoch 105 - iter 2385/2650 - loss 0.09679776 - time (sec): 77.25 - samples/sec: 17180.74 - lr: 0.050000 +2023-04-06 01:06:14,645 epoch 105 - iter 2650/2650 - loss 0.09670696 - time (sec): 85.80 - samples/sec: 17176.51 - lr: 0.050000 +2023-04-06 01:06:14,645 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:06:14,645 EPOCH 105 done: loss 0.0967 - lr 0.050000 +2023-04-06 01:06:14,645 BAD EPOCHS (no improvement): 1 +2023-04-06 01:06:14,652 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:06:23,183 epoch 106 - iter 265/2650 - loss 0.09281595 - time (sec): 8.53 - samples/sec: 17210.66 - lr: 0.050000 +2023-04-06 01:06:31,786 epoch 106 - iter 530/2650 - loss 0.09408982 - time (sec): 17.13 - samples/sec: 17196.56 - lr: 0.050000 +2023-04-06 01:06:40,339 epoch 106 - iter 795/2650 - loss 0.09413846 - time (sec): 25.69 - samples/sec: 17212.67 - lr: 0.050000 +2023-04-06 01:06:48,953 epoch 106 - iter 1060/2650 - loss 0.09547330 - time (sec): 34.30 - samples/sec: 17196.13 - lr: 0.050000 +2023-04-06 01:06:57,536 epoch 106 - iter 1325/2650 - loss 0.09617198 - time (sec): 42.88 - samples/sec: 17201.54 - lr: 0.050000 +2023-04-06 01:07:06,186 epoch 106 - iter 1590/2650 - loss 0.09646782 - time (sec): 51.53 - samples/sec: 17185.43 - lr: 0.050000 +2023-04-06 01:07:14,781 epoch 106 - iter 1855/2650 - loss 0.09671754 - time (sec): 60.13 - samples/sec: 17168.32 - lr: 0.050000 +2023-04-06 01:07:23,386 epoch 106 - iter 2120/2650 - loss 0.09697874 - time (sec): 68.73 - samples/sec: 17168.64 - lr: 0.050000 +2023-04-06 01:07:31,927 epoch 106 - iter 2385/2650 - loss 0.09687774 - time (sec): 77.27 - samples/sec: 17179.97 - lr: 0.050000 +2023-04-06 01:07:40,458 epoch 106 - iter 2650/2650 - loss 0.09676834 - time (sec): 85.81 - samples/sec: 17176.37 - lr: 0.050000 +2023-04-06 01:07:40,458 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:07:40,458 EPOCH 106 done: loss 0.0968 - lr 0.050000 +2023-04-06 01:07:40,458 BAD EPOCHS (no improvement): 2 +2023-04-06 01:07:40,462 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:07:48,969 epoch 107 - iter 265/2650 - loss 0.09561956 - time (sec): 8.51 - samples/sec: 17267.18 - lr: 0.050000 +2023-04-06 01:07:57,622 epoch 107 - iter 530/2650 - loss 0.09779562 - time (sec): 17.16 - samples/sec: 17256.00 - lr: 0.050000 +2023-04-06 01:08:06,276 epoch 107 - iter 795/2650 - loss 0.09657824 - time (sec): 25.81 - samples/sec: 17236.57 - lr: 0.050000 +2023-04-06 01:08:14,833 epoch 107 - iter 1060/2650 - loss 0.09598205 - time (sec): 34.37 - samples/sec: 17228.01 - lr: 0.050000 +2023-04-06 01:08:23,401 epoch 107 - iter 1325/2650 - loss 0.09546928 - time (sec): 42.94 - samples/sec: 17215.59 - lr: 0.050000 +2023-04-06 01:08:31,912 epoch 107 - iter 1590/2650 - loss 0.09541110 - time (sec): 51.45 - samples/sec: 17207.18 - lr: 0.050000 +2023-04-06 01:08:40,517 epoch 107 - iter 1855/2650 - loss 0.09549953 - time (sec): 60.05 - samples/sec: 17188.77 - lr: 0.050000 +2023-04-06 01:08:49,089 epoch 107 - iter 2120/2650 - loss 0.09559104 - time (sec): 68.63 - samples/sec: 17167.76 - lr: 0.050000 +2023-04-06 01:08:57,845 epoch 107 - iter 2385/2650 - loss 0.09580660 - time (sec): 77.38 - samples/sec: 17151.29 - lr: 0.050000 +2023-04-06 01:09:06,397 epoch 107 - iter 2650/2650 - loss 0.09592909 - time (sec): 85.94 - samples/sec: 17150.42 - lr: 0.050000 +2023-04-06 01:09:06,397 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:09:06,397 EPOCH 107 done: loss 0.0959 - lr 0.050000 +2023-04-06 01:09:06,397 BAD EPOCHS (no improvement): 0 +2023-04-06 01:09:06,401 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:09:15,039 epoch 108 - iter 265/2650 - loss 0.09428011 - time (sec): 8.64 - samples/sec: 17119.23 - lr: 0.050000 +2023-04-06 01:09:23,641 epoch 108 - iter 530/2650 - loss 0.09543292 - time (sec): 17.24 - samples/sec: 17143.95 - lr: 0.050000 +2023-04-06 01:09:32,210 epoch 108 - iter 795/2650 - loss 0.09554782 - time (sec): 25.81 - samples/sec: 17141.57 - lr: 0.050000 +2023-04-06 01:09:40,859 epoch 108 - iter 1060/2650 - loss 0.09614396 - time (sec): 34.46 - samples/sec: 17140.25 - lr: 0.050000 +2023-04-06 01:09:49,431 epoch 108 - iter 1325/2650 - loss 0.09676173 - time (sec): 43.03 - samples/sec: 17132.85 - lr: 0.050000 +2023-04-06 01:09:58,011 epoch 108 - iter 1590/2650 - loss 0.09701813 - time (sec): 51.61 - samples/sec: 17119.73 - lr: 0.050000 +2023-04-06 01:10:06,700 epoch 108 - iter 1855/2650 - loss 0.09650702 - time (sec): 60.30 - samples/sec: 17112.23 - lr: 0.050000 +2023-04-06 01:10:15,358 epoch 108 - iter 2120/2650 - loss 0.09648833 - time (sec): 68.96 - samples/sec: 17108.01 - lr: 0.050000 +2023-04-06 01:10:24,023 epoch 108 - iter 2385/2650 - loss 0.09687673 - time (sec): 77.62 - samples/sec: 17106.81 - lr: 0.050000 +2023-04-06 01:10:32,629 epoch 108 - iter 2650/2650 - loss 0.09662517 - time (sec): 86.23 - samples/sec: 17092.27 - lr: 0.050000 +2023-04-06 01:10:32,629 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:10:32,629 EPOCH 108 done: loss 0.0966 - lr 0.050000 +2023-04-06 01:10:32,629 BAD EPOCHS (no improvement): 1 +2023-04-06 01:10:32,632 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:10:41,311 epoch 109 - iter 265/2650 - loss 0.09400585 - time (sec): 8.68 - samples/sec: 17068.99 - lr: 0.050000 +2023-04-06 01:10:49,869 epoch 109 - iter 530/2650 - loss 0.09583034 - time (sec): 17.24 - samples/sec: 17082.49 - lr: 0.050000 +2023-04-06 01:10:58,512 epoch 109 - iter 795/2650 - loss 0.09620284 - time (sec): 25.88 - samples/sec: 17101.89 - lr: 0.050000 +2023-04-06 01:11:07,113 epoch 109 - iter 1060/2650 - loss 0.09609521 - time (sec): 34.48 - samples/sec: 17077.15 - lr: 0.050000 +2023-04-06 01:11:15,586 epoch 109 - iter 1325/2650 - loss 0.09575419 - time (sec): 42.95 - samples/sec: 17062.41 - lr: 0.050000 +2023-04-06 01:11:24,201 epoch 109 - iter 1590/2650 - loss 0.09607152 - time (sec): 51.57 - samples/sec: 17046.29 - lr: 0.050000 +2023-04-06 01:11:32,895 epoch 109 - iter 1855/2650 - loss 0.09599069 - time (sec): 60.26 - samples/sec: 17047.24 - lr: 0.050000 +2023-04-06 01:11:41,504 epoch 109 - iter 2120/2650 - loss 0.09604272 - time (sec): 68.87 - samples/sec: 17052.46 - lr: 0.050000 +2023-04-06 01:11:50,280 epoch 109 - iter 2385/2650 - loss 0.09587406 - time (sec): 77.65 - samples/sec: 17057.33 - lr: 0.050000 +2023-04-06 01:11:59,064 epoch 109 - iter 2650/2650 - loss 0.09593727 - time (sec): 86.43 - samples/sec: 17051.84 - lr: 0.050000 +2023-04-06 01:11:59,064 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:11:59,064 EPOCH 109 done: loss 0.0959 - lr 0.050000 +2023-04-06 01:11:59,064 BAD EPOCHS (no improvement): 2 +2023-04-06 01:11:59,069 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:12:07,728 epoch 110 - iter 265/2650 - loss 0.09535152 - time (sec): 8.66 - samples/sec: 17096.53 - lr: 0.050000 +2023-04-06 01:12:20,352 epoch 110 - iter 530/2650 - loss 0.09510187 - time (sec): 21.28 - samples/sec: 13982.57 - lr: 0.050000 +2023-04-06 01:12:28,807 epoch 110 - iter 795/2650 - loss 0.09429382 - time (sec): 29.74 - samples/sec: 14942.30 - lr: 0.050000 +2023-04-06 01:12:37,333 epoch 110 - iter 1060/2650 - loss 0.09380122 - time (sec): 38.26 - samples/sec: 15468.30 - lr: 0.050000 +2023-04-06 01:12:45,890 epoch 110 - iter 1325/2650 - loss 0.09457896 - time (sec): 46.82 - samples/sec: 15769.61 - lr: 0.050000 +2023-04-06 01:12:54,442 epoch 110 - iter 1590/2650 - loss 0.09503131 - time (sec): 55.37 - samples/sec: 15978.27 - lr: 0.050000 +2023-04-06 01:13:03,126 epoch 110 - iter 1855/2650 - loss 0.09526863 - time (sec): 64.06 - samples/sec: 16128.63 - lr: 0.050000 +2023-04-06 01:13:11,719 epoch 110 - iter 2120/2650 - loss 0.09558848 - time (sec): 72.65 - samples/sec: 16235.39 - lr: 0.050000 +2023-04-06 01:13:20,331 epoch 110 - iter 2385/2650 - loss 0.09576676 - time (sec): 81.26 - samples/sec: 16329.39 - lr: 0.050000 +2023-04-06 01:13:28,929 epoch 110 - iter 2650/2650 - loss 0.09564113 - time (sec): 89.86 - samples/sec: 16401.18 - lr: 0.050000 +2023-04-06 01:13:28,930 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:13:28,930 EPOCH 110 done: loss 0.0956 - lr 0.050000 +2023-04-06 01:13:28,930 BAD EPOCHS (no improvement): 0 +2023-04-06 01:13:28,933 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:13:37,644 epoch 111 - iter 265/2650 - loss 0.09544921 - time (sec): 8.71 - samples/sec: 17157.49 - lr: 0.050000 +2023-04-06 01:13:46,173 epoch 111 - iter 530/2650 - loss 0.09487987 - time (sec): 17.24 - samples/sec: 17140.53 - lr: 0.050000 +2023-04-06 01:13:54,843 epoch 111 - iter 795/2650 - loss 0.09467033 - time (sec): 25.91 - samples/sec: 17115.25 - lr: 0.050000 +2023-04-06 01:14:03,450 epoch 111 - iter 1060/2650 - loss 0.09474328 - time (sec): 34.52 - samples/sec: 17117.66 - lr: 0.050000 +2023-04-06 01:14:12,011 epoch 111 - iter 1325/2650 - loss 0.09468223 - time (sec): 43.08 - samples/sec: 17122.63 - lr: 0.050000 +2023-04-06 01:14:20,560 epoch 111 - iter 1590/2650 - loss 0.09521801 - time (sec): 51.63 - samples/sec: 17112.68 - lr: 0.050000 +2023-04-06 01:14:29,292 epoch 111 - iter 1855/2650 - loss 0.09537488 - time (sec): 60.36 - samples/sec: 17110.60 - lr: 0.050000 +2023-04-06 01:14:37,839 epoch 111 - iter 2120/2650 - loss 0.09591530 - time (sec): 68.91 - samples/sec: 17113.14 - lr: 0.050000 +2023-04-06 01:14:46,389 epoch 111 - iter 2385/2650 - loss 0.09582507 - time (sec): 77.46 - samples/sec: 17114.98 - lr: 0.050000 +2023-04-06 01:14:55,076 epoch 111 - iter 2650/2650 - loss 0.09575964 - time (sec): 86.14 - samples/sec: 17109.08 - lr: 0.050000 +2023-04-06 01:14:55,076 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:14:55,076 EPOCH 111 done: loss 0.0958 - lr 0.050000 +2023-04-06 01:14:55,076 BAD EPOCHS (no improvement): 1 +2023-04-06 01:14:55,080 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:15:03,591 epoch 112 - iter 265/2650 - loss 0.09355315 - time (sec): 8.51 - samples/sec: 17111.04 - lr: 0.050000 +2023-04-06 01:15:12,088 epoch 112 - iter 530/2650 - loss 0.09482403 - time (sec): 17.01 - samples/sec: 17136.13 - lr: 0.050000 +2023-04-06 01:15:20,712 epoch 112 - iter 795/2650 - loss 0.09586545 - time (sec): 25.63 - samples/sec: 17141.94 - lr: 0.050000 +2023-04-06 01:15:29,415 epoch 112 - iter 1060/2650 - loss 0.09577852 - time (sec): 34.34 - samples/sec: 17098.61 - lr: 0.050000 +2023-04-06 01:15:38,004 epoch 112 - iter 1325/2650 - loss 0.09566392 - time (sec): 42.92 - samples/sec: 17104.10 - lr: 0.050000 +2023-04-06 01:15:46,589 epoch 112 - iter 1590/2650 - loss 0.09589503 - time (sec): 51.51 - samples/sec: 17095.03 - lr: 0.050000 +2023-04-06 01:15:55,307 epoch 112 - iter 1855/2650 - loss 0.09551516 - time (sec): 60.23 - samples/sec: 17090.69 - lr: 0.050000 +2023-04-06 01:16:03,967 epoch 112 - iter 2120/2650 - loss 0.09548121 - time (sec): 68.89 - samples/sec: 17093.05 - lr: 0.050000 +2023-04-06 01:16:12,613 epoch 112 - iter 2385/2650 - loss 0.09579278 - time (sec): 77.53 - samples/sec: 17103.55 - lr: 0.050000 +2023-04-06 01:16:21,220 epoch 112 - iter 2650/2650 - loss 0.09591713 - time (sec): 86.14 - samples/sec: 17109.48 - lr: 0.050000 +2023-04-06 01:16:21,221 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:16:21,221 EPOCH 112 done: loss 0.0959 - lr 0.050000 +2023-04-06 01:16:21,221 BAD EPOCHS (no improvement): 2 +2023-04-06 01:16:21,228 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:16:29,920 epoch 113 - iter 265/2650 - loss 0.09525162 - time (sec): 8.69 - samples/sec: 17162.40 - lr: 0.050000 +2023-04-06 01:16:38,669 epoch 113 - iter 530/2650 - loss 0.09571046 - time (sec): 17.44 - samples/sec: 17101.92 - lr: 0.050000 +2023-04-06 01:16:47,146 epoch 113 - iter 795/2650 - loss 0.09481648 - time (sec): 25.92 - samples/sec: 17109.57 - lr: 0.050000 +2023-04-06 01:16:55,724 epoch 113 - iter 1060/2650 - loss 0.09513414 - time (sec): 34.50 - samples/sec: 17108.96 - lr: 0.050000 +2023-04-06 01:17:04,506 epoch 113 - iter 1325/2650 - loss 0.09526022 - time (sec): 43.28 - samples/sec: 17104.40 - lr: 0.050000 +2023-04-06 01:17:13,057 epoch 113 - iter 1590/2650 - loss 0.09530669 - time (sec): 51.83 - samples/sec: 17102.10 - lr: 0.050000 +2023-04-06 01:17:21,602 epoch 113 - iter 1855/2650 - loss 0.09557693 - time (sec): 60.37 - samples/sec: 17112.06 - lr: 0.050000 +2023-04-06 01:17:30,115 epoch 113 - iter 2120/2650 - loss 0.09524219 - time (sec): 68.89 - samples/sec: 17114.72 - lr: 0.050000 +2023-04-06 01:17:38,727 epoch 113 - iter 2385/2650 - loss 0.09564190 - time (sec): 77.50 - samples/sec: 17118.68 - lr: 0.050000 +2023-04-06 01:17:47,274 epoch 113 - iter 2650/2650 - loss 0.09568467 - time (sec): 86.05 - samples/sec: 17128.46 - lr: 0.050000 +2023-04-06 01:17:47,274 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:17:47,274 EPOCH 113 done: loss 0.0957 - lr 0.050000 +2023-04-06 01:17:47,274 BAD EPOCHS (no improvement): 3 +2023-04-06 01:17:47,278 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:17:55,922 epoch 114 - iter 265/2650 - loss 0.09358829 - time (sec): 8.64 - samples/sec: 17202.85 - lr: 0.050000 +2023-04-06 01:18:04,412 epoch 114 - iter 530/2650 - loss 0.09457514 - time (sec): 17.13 - samples/sec: 17170.62 - lr: 0.050000 +2023-04-06 01:18:13,112 epoch 114 - iter 795/2650 - loss 0.09513610 - time (sec): 25.83 - samples/sec: 17168.00 - lr: 0.050000 +2023-04-06 01:18:21,611 epoch 114 - iter 1060/2650 - loss 0.09516857 - time (sec): 34.33 - samples/sec: 17177.37 - lr: 0.050000 +2023-04-06 01:18:30,163 epoch 114 - iter 1325/2650 - loss 0.09497746 - time (sec): 42.88 - samples/sec: 17173.32 - lr: 0.050000 +2023-04-06 01:18:38,758 epoch 114 - iter 1590/2650 - loss 0.09472575 - time (sec): 51.48 - samples/sec: 17174.12 - lr: 0.050000 +2023-04-06 01:18:47,344 epoch 114 - iter 1855/2650 - loss 0.09468019 - time (sec): 60.07 - samples/sec: 17173.17 - lr: 0.050000 +2023-04-06 01:18:55,917 epoch 114 - iter 2120/2650 - loss 0.09478996 - time (sec): 68.64 - samples/sec: 17175.09 - lr: 0.050000 +2023-04-06 01:19:04,555 epoch 114 - iter 2385/2650 - loss 0.09489856 - time (sec): 77.28 - samples/sec: 17174.23 - lr: 0.050000 +2023-04-06 01:19:13,153 epoch 114 - iter 2650/2650 - loss 0.09518616 - time (sec): 85.87 - samples/sec: 17162.45 - lr: 0.050000 +2023-04-06 01:19:13,153 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:19:13,153 EPOCH 114 done: loss 0.0952 - lr 0.050000 +2023-04-06 01:19:13,153 BAD EPOCHS (no improvement): 0 +2023-04-06 01:19:13,157 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:19:21,709 epoch 115 - iter 265/2650 - loss 0.09642623 - time (sec): 8.55 - samples/sec: 17127.01 - lr: 0.050000 +2023-04-06 01:19:30,246 epoch 115 - iter 530/2650 - loss 0.09581170 - time (sec): 17.09 - samples/sec: 17145.21 - lr: 0.050000 +2023-04-06 01:19:38,807 epoch 115 - iter 795/2650 - loss 0.09536577 - time (sec): 25.65 - samples/sec: 17164.54 - lr: 0.050000 +2023-04-06 01:19:47,366 epoch 115 - iter 1060/2650 - loss 0.09515540 - time (sec): 34.21 - samples/sec: 17142.40 - lr: 0.050000 +2023-04-06 01:19:56,042 epoch 115 - iter 1325/2650 - loss 0.09534056 - time (sec): 42.88 - samples/sec: 17149.18 - lr: 0.050000 +2023-04-06 01:20:04,679 epoch 115 - iter 1590/2650 - loss 0.09517052 - time (sec): 51.52 - samples/sec: 17167.97 - lr: 0.050000 +2023-04-06 01:20:13,294 epoch 115 - iter 1855/2650 - loss 0.09531985 - time (sec): 60.14 - samples/sec: 17166.74 - lr: 0.050000 +2023-04-06 01:20:21,933 epoch 115 - iter 2120/2650 - loss 0.09524854 - time (sec): 68.78 - samples/sec: 17157.29 - lr: 0.050000 +2023-04-06 01:20:30,485 epoch 115 - iter 2385/2650 - loss 0.09503235 - time (sec): 77.33 - samples/sec: 17152.59 - lr: 0.050000 +2023-04-06 01:20:39,079 epoch 115 - iter 2650/2650 - loss 0.09492027 - time (sec): 85.92 - samples/sec: 17153.06 - lr: 0.050000 +2023-04-06 01:20:39,079 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:20:39,079 EPOCH 115 done: loss 0.0949 - lr 0.050000 +2023-04-06 01:20:39,079 BAD EPOCHS (no improvement): 0 +2023-04-06 01:20:39,083 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:20:47,604 epoch 116 - iter 265/2650 - loss 0.09544022 - time (sec): 8.52 - samples/sec: 17242.53 - lr: 0.050000 +2023-04-06 01:20:56,279 epoch 116 - iter 530/2650 - loss 0.09610293 - time (sec): 17.20 - samples/sec: 17228.00 - lr: 0.050000 +2023-04-06 01:21:04,827 epoch 116 - iter 795/2650 - loss 0.09511223 - time (sec): 25.74 - samples/sec: 17196.10 - lr: 0.050000 +2023-04-06 01:21:17,184 epoch 116 - iter 1060/2650 - loss 0.09427893 - time (sec): 38.10 - samples/sec: 15487.40 - lr: 0.050000 +2023-04-06 01:21:25,662 epoch 116 - iter 1325/2650 - loss 0.09462251 - time (sec): 46.58 - samples/sec: 15816.19 - lr: 0.050000 +2023-04-06 01:21:34,232 epoch 116 - iter 1590/2650 - loss 0.09509298 - time (sec): 55.15 - samples/sec: 16024.97 - lr: 0.050000 +2023-04-06 01:21:42,876 epoch 116 - iter 1855/2650 - loss 0.09492736 - time (sec): 63.79 - samples/sec: 16193.38 - lr: 0.050000 +2023-04-06 01:21:51,454 epoch 116 - iter 2120/2650 - loss 0.09518962 - time (sec): 72.37 - samples/sec: 16298.89 - lr: 0.050000 +2023-04-06 01:22:00,109 epoch 116 - iter 2385/2650 - loss 0.09505970 - time (sec): 81.03 - samples/sec: 16381.29 - lr: 0.050000 +2023-04-06 01:22:08,617 epoch 116 - iter 2650/2650 - loss 0.09509778 - time (sec): 89.53 - samples/sec: 16460.94 - lr: 0.050000 +2023-04-06 01:22:08,618 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:22:08,618 EPOCH 116 done: loss 0.0951 - lr 0.050000 +2023-04-06 01:22:08,618 BAD EPOCHS (no improvement): 1 +2023-04-06 01:22:08,621 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:22:17,053 epoch 117 - iter 265/2650 - loss 0.09418155 - time (sec): 8.43 - samples/sec: 17290.56 - lr: 0.050000 +2023-04-06 01:22:25,642 epoch 117 - iter 530/2650 - loss 0.09402521 - time (sec): 17.02 - samples/sec: 17231.30 - lr: 0.050000 +2023-04-06 01:22:34,211 epoch 117 - iter 795/2650 - loss 0.09425968 - time (sec): 25.59 - samples/sec: 17244.38 - lr: 0.050000 +2023-04-06 01:22:42,774 epoch 117 - iter 1060/2650 - loss 0.09394655 - time (sec): 34.15 - samples/sec: 17227.94 - lr: 0.050000 +2023-04-06 01:22:51,328 epoch 117 - iter 1325/2650 - loss 0.09403922 - time (sec): 42.71 - samples/sec: 17247.62 - lr: 0.050000 +2023-04-06 01:22:59,813 epoch 117 - iter 1590/2650 - loss 0.09344815 - time (sec): 51.19 - samples/sec: 17254.86 - lr: 0.050000 +2023-04-06 01:23:08,390 epoch 117 - iter 1855/2650 - loss 0.09408443 - time (sec): 59.77 - samples/sec: 17241.74 - lr: 0.050000 +2023-04-06 01:23:16,988 epoch 117 - iter 2120/2650 - loss 0.09431211 - time (sec): 68.37 - samples/sec: 17241.32 - lr: 0.050000 +2023-04-06 01:23:25,612 epoch 117 - iter 2385/2650 - loss 0.09428586 - time (sec): 76.99 - samples/sec: 17236.90 - lr: 0.050000 +2023-04-06 01:23:34,142 epoch 117 - iter 2650/2650 - loss 0.09404967 - time (sec): 85.52 - samples/sec: 17233.64 - lr: 0.050000 +2023-04-06 01:23:34,142 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:23:34,142 EPOCH 117 done: loss 0.0940 - lr 0.050000 +2023-04-06 01:23:34,142 BAD EPOCHS (no improvement): 0 +2023-04-06 01:23:34,145 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:23:42,781 epoch 118 - iter 265/2650 - loss 0.09226904 - time (sec): 8.64 - samples/sec: 17235.70 - lr: 0.050000 +2023-04-06 01:23:51,227 epoch 118 - iter 530/2650 - loss 0.09365071 - time (sec): 17.08 - samples/sec: 17242.88 - lr: 0.050000 +2023-04-06 01:23:59,811 epoch 118 - iter 795/2650 - loss 0.09436246 - time (sec): 25.67 - samples/sec: 17241.30 - lr: 0.050000 +2023-04-06 01:24:08,375 epoch 118 - iter 1060/2650 - loss 0.09379822 - time (sec): 34.23 - samples/sec: 17217.93 - lr: 0.050000 +2023-04-06 01:24:16,884 epoch 118 - iter 1325/2650 - loss 0.09403284 - time (sec): 42.74 - samples/sec: 17226.80 - lr: 0.050000 +2023-04-06 01:24:25,357 epoch 118 - iter 1590/2650 - loss 0.09389193 - time (sec): 51.21 - samples/sec: 17244.17 - lr: 0.050000 +2023-04-06 01:24:33,958 epoch 118 - iter 1855/2650 - loss 0.09405347 - time (sec): 59.81 - samples/sec: 17248.48 - lr: 0.050000 +2023-04-06 01:24:42,493 epoch 118 - iter 2120/2650 - loss 0.09409042 - time (sec): 68.35 - samples/sec: 17249.97 - lr: 0.050000 +2023-04-06 01:24:51,138 epoch 118 - iter 2385/2650 - loss 0.09433558 - time (sec): 76.99 - samples/sec: 17253.69 - lr: 0.050000 +2023-04-06 01:24:59,590 epoch 118 - iter 2650/2650 - loss 0.09479988 - time (sec): 85.44 - samples/sec: 17248.97 - lr: 0.050000 +2023-04-06 01:24:59,590 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:24:59,590 EPOCH 118 done: loss 0.0948 - lr 0.050000 +2023-04-06 01:24:59,590 BAD EPOCHS (no improvement): 1 +2023-04-06 01:24:59,593 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:25:08,026 epoch 119 - iter 265/2650 - loss 0.09448974 - time (sec): 8.43 - samples/sec: 17268.42 - lr: 0.050000 +2023-04-06 01:25:16,585 epoch 119 - iter 530/2650 - loss 0.09461156 - time (sec): 16.99 - samples/sec: 17236.78 - lr: 0.050000 +2023-04-06 01:25:25,133 epoch 119 - iter 795/2650 - loss 0.09427708 - time (sec): 25.54 - samples/sec: 17250.02 - lr: 0.050000 +2023-04-06 01:25:33,703 epoch 119 - iter 1060/2650 - loss 0.09487625 - time (sec): 34.11 - samples/sec: 17236.15 - lr: 0.050000 +2023-04-06 01:25:42,308 epoch 119 - iter 1325/2650 - loss 0.09516314 - time (sec): 42.71 - samples/sec: 17240.48 - lr: 0.050000 +2023-04-06 01:25:50,920 epoch 119 - iter 1590/2650 - loss 0.09448085 - time (sec): 51.33 - samples/sec: 17224.50 - lr: 0.050000 +2023-04-06 01:25:59,454 epoch 119 - iter 1855/2650 - loss 0.09455308 - time (sec): 59.86 - samples/sec: 17223.21 - lr: 0.050000 +2023-04-06 01:26:07,967 epoch 119 - iter 2120/2650 - loss 0.09470249 - time (sec): 68.37 - samples/sec: 17229.59 - lr: 0.050000 +2023-04-06 01:26:16,625 epoch 119 - iter 2385/2650 - loss 0.09479187 - time (sec): 77.03 - samples/sec: 17223.72 - lr: 0.050000 +2023-04-06 01:26:25,216 epoch 119 - iter 2650/2650 - loss 0.09489803 - time (sec): 85.62 - samples/sec: 17212.94 - lr: 0.050000 +2023-04-06 01:26:25,217 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:26:25,217 EPOCH 119 done: loss 0.0949 - lr 0.050000 +2023-04-06 01:26:25,217 BAD EPOCHS (no improvement): 2 +2023-04-06 01:26:25,224 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:26:33,754 epoch 120 - iter 265/2650 - loss 0.09318602 - time (sec): 8.53 - samples/sec: 17290.93 - lr: 0.050000 +2023-04-06 01:26:42,458 epoch 120 - iter 530/2650 - loss 0.09432669 - time (sec): 17.23 - samples/sec: 17174.39 - lr: 0.050000 +2023-04-06 01:26:51,071 epoch 120 - iter 795/2650 - loss 0.09445246 - time (sec): 25.85 - samples/sec: 17173.69 - lr: 0.050000 +2023-04-06 01:26:59,597 epoch 120 - iter 1060/2650 - loss 0.09438562 - time (sec): 34.37 - samples/sec: 17151.46 - lr: 0.050000 +2023-04-06 01:27:08,198 epoch 120 - iter 1325/2650 - loss 0.09392931 - time (sec): 42.97 - samples/sec: 17147.02 - lr: 0.050000 +2023-04-06 01:27:16,819 epoch 120 - iter 1590/2650 - loss 0.09433704 - time (sec): 51.59 - samples/sec: 17147.42 - lr: 0.050000 +2023-04-06 01:27:25,398 epoch 120 - iter 1855/2650 - loss 0.09429356 - time (sec): 60.17 - samples/sec: 17143.77 - lr: 0.050000 +2023-04-06 01:27:33,985 epoch 120 - iter 2120/2650 - loss 0.09429639 - time (sec): 68.76 - samples/sec: 17146.39 - lr: 0.050000 +2023-04-06 01:27:42,595 epoch 120 - iter 2385/2650 - loss 0.09443042 - time (sec): 77.37 - samples/sec: 17147.29 - lr: 0.050000 +2023-04-06 01:27:51,239 epoch 120 - iter 2650/2650 - loss 0.09449563 - time (sec): 86.01 - samples/sec: 17134.50 - lr: 0.050000 +2023-04-06 01:27:51,239 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:27:51,240 EPOCH 120 done: loss 0.0945 - lr 0.050000 +2023-04-06 01:27:51,240 BAD EPOCHS (no improvement): 3 +2023-04-06 01:27:51,244 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:27:59,960 epoch 121 - iter 265/2650 - loss 0.09457122 - time (sec): 8.72 - samples/sec: 17081.48 - lr: 0.050000 +2023-04-06 01:28:08,462 epoch 121 - iter 530/2650 - loss 0.09408291 - time (sec): 17.22 - samples/sec: 17117.61 - lr: 0.050000 +2023-04-06 01:28:17,156 epoch 121 - iter 795/2650 - loss 0.09421974 - time (sec): 25.91 - samples/sec: 17111.32 - lr: 0.050000 +2023-04-06 01:28:25,621 epoch 121 - iter 1060/2650 - loss 0.09397486 - time (sec): 34.38 - samples/sec: 17091.37 - lr: 0.050000 +2023-04-06 01:28:34,397 epoch 121 - iter 1325/2650 - loss 0.09499334 - time (sec): 43.15 - samples/sec: 17085.86 - lr: 0.050000 +2023-04-06 01:28:42,971 epoch 121 - iter 1590/2650 - loss 0.09499622 - time (sec): 51.73 - samples/sec: 17091.05 - lr: 0.050000 +2023-04-06 01:28:51,584 epoch 121 - iter 1855/2650 - loss 0.09517018 - time (sec): 60.34 - samples/sec: 17102.51 - lr: 0.050000 +2023-04-06 01:29:00,225 epoch 121 - iter 2120/2650 - loss 0.09481267 - time (sec): 68.98 - samples/sec: 17106.34 - lr: 0.050000 +2023-04-06 01:29:08,854 epoch 121 - iter 2385/2650 - loss 0.09484655 - time (sec): 77.61 - samples/sec: 17100.73 - lr: 0.050000 +2023-04-06 01:29:17,424 epoch 121 - iter 2650/2650 - loss 0.09468988 - time (sec): 86.18 - samples/sec: 17101.62 - lr: 0.050000 +2023-04-06 01:29:17,424 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:29:17,424 EPOCH 121 done: loss 0.0947 - lr 0.050000 +2023-04-06 01:29:17,424 Epoch 121: reducing learning rate of group 0 to 2.5000e-02. +2023-04-06 01:29:17,424 BAD EPOCHS (no improvement): 4 +2023-04-06 01:29:17,428 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:29:25,821 epoch 122 - iter 265/2650 - loss 0.09119404 - time (sec): 8.39 - samples/sec: 17257.93 - lr: 0.025000 +2023-04-06 01:29:34,432 epoch 122 - iter 530/2650 - loss 0.09336163 - time (sec): 17.00 - samples/sec: 17284.36 - lr: 0.025000 +2023-04-06 01:29:43,079 epoch 122 - iter 795/2650 - loss 0.09233280 - time (sec): 25.65 - samples/sec: 17262.80 - lr: 0.025000 +2023-04-06 01:29:51,696 epoch 122 - iter 1060/2650 - loss 0.09223058 - time (sec): 34.27 - samples/sec: 17221.18 - lr: 0.025000 +2023-04-06 01:30:04,139 epoch 122 - iter 1325/2650 - loss 0.09185616 - time (sec): 46.71 - samples/sec: 15796.94 - lr: 0.025000 +2023-04-06 01:30:12,604 epoch 122 - iter 1590/2650 - loss 0.09174146 - time (sec): 55.18 - samples/sec: 16013.49 - lr: 0.025000 +2023-04-06 01:30:21,245 epoch 122 - iter 1855/2650 - loss 0.09166237 - time (sec): 63.82 - samples/sec: 16165.53 - lr: 0.025000 +2023-04-06 01:30:29,836 epoch 122 - iter 2120/2650 - loss 0.09147136 - time (sec): 72.41 - samples/sec: 16281.91 - lr: 0.025000 +2023-04-06 01:30:38,447 epoch 122 - iter 2385/2650 - loss 0.09137542 - time (sec): 81.02 - samples/sec: 16371.57 - lr: 0.025000 +2023-04-06 01:30:47,102 epoch 122 - iter 2650/2650 - loss 0.09134419 - time (sec): 89.67 - samples/sec: 16435.30 - lr: 0.025000 +2023-04-06 01:30:47,102 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:30:47,102 EPOCH 122 done: loss 0.0913 - lr 0.025000 +2023-04-06 01:30:47,102 BAD EPOCHS (no improvement): 0 +2023-04-06 01:30:47,106 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:30:55,729 epoch 123 - iter 265/2650 - loss 0.09176536 - time (sec): 8.62 - samples/sec: 17269.11 - lr: 0.025000 +2023-04-06 01:31:04,239 epoch 123 - iter 530/2650 - loss 0.09215733 - time (sec): 17.13 - samples/sec: 17183.49 - lr: 0.025000 +2023-04-06 01:31:12,918 epoch 123 - iter 795/2650 - loss 0.09172399 - time (sec): 25.81 - samples/sec: 17112.50 - lr: 0.025000 +2023-04-06 01:31:21,612 epoch 123 - iter 1060/2650 - loss 0.09084217 - time (sec): 34.51 - samples/sec: 17115.57 - lr: 0.025000 +2023-04-06 01:31:30,115 epoch 123 - iter 1325/2650 - loss 0.09086701 - time (sec): 43.01 - samples/sec: 17119.91 - lr: 0.025000 +2023-04-06 01:31:38,803 epoch 123 - iter 1590/2650 - loss 0.09102028 - time (sec): 51.70 - samples/sec: 17114.05 - lr: 0.025000 +2023-04-06 01:31:47,376 epoch 123 - iter 1855/2650 - loss 0.09083740 - time (sec): 60.27 - samples/sec: 17112.95 - lr: 0.025000 +2023-04-06 01:31:56,036 epoch 123 - iter 2120/2650 - loss 0.09105915 - time (sec): 68.93 - samples/sec: 17106.51 - lr: 0.025000 +2023-04-06 01:32:04,528 epoch 123 - iter 2385/2650 - loss 0.09116874 - time (sec): 77.42 - samples/sec: 17129.04 - lr: 0.025000 +2023-04-06 01:32:13,104 epoch 123 - iter 2650/2650 - loss 0.09082382 - time (sec): 86.00 - samples/sec: 17137.93 - lr: 0.025000 +2023-04-06 01:32:13,104 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:32:13,105 EPOCH 123 done: loss 0.0908 - lr 0.025000 +2023-04-06 01:32:13,105 BAD EPOCHS (no improvement): 0 +2023-04-06 01:32:13,108 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:32:21,641 epoch 124 - iter 265/2650 - loss 0.09009982 - time (sec): 8.53 - samples/sec: 17239.29 - lr: 0.025000 +2023-04-06 01:32:30,229 epoch 124 - iter 530/2650 - loss 0.09046996 - time (sec): 17.12 - samples/sec: 17267.04 - lr: 0.025000 +2023-04-06 01:32:38,789 epoch 124 - iter 795/2650 - loss 0.08979589 - time (sec): 25.68 - samples/sec: 17252.17 - lr: 0.025000 +2023-04-06 01:32:47,289 epoch 124 - iter 1060/2650 - loss 0.08985204 - time (sec): 34.18 - samples/sec: 17253.35 - lr: 0.025000 +2023-04-06 01:32:55,821 epoch 124 - iter 1325/2650 - loss 0.09005414 - time (sec): 42.71 - samples/sec: 17237.53 - lr: 0.025000 +2023-04-06 01:33:04,284 epoch 124 - iter 1590/2650 - loss 0.08982391 - time (sec): 51.18 - samples/sec: 17249.10 - lr: 0.025000 +2023-04-06 01:33:12,895 epoch 124 - iter 1855/2650 - loss 0.08977971 - time (sec): 59.79 - samples/sec: 17247.58 - lr: 0.025000 +2023-04-06 01:33:21,539 epoch 124 - iter 2120/2650 - loss 0.09012451 - time (sec): 68.43 - samples/sec: 17224.58 - lr: 0.025000 +2023-04-06 01:33:30,108 epoch 124 - iter 2385/2650 - loss 0.09021422 - time (sec): 77.00 - samples/sec: 17226.46 - lr: 0.025000 +2023-04-06 01:33:38,647 epoch 124 - iter 2650/2650 - loss 0.09037322 - time (sec): 85.54 - samples/sec: 17230.02 - lr: 0.025000 +2023-04-06 01:33:38,647 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:33:38,647 EPOCH 124 done: loss 0.0904 - lr 0.025000 +2023-04-06 01:33:38,647 BAD EPOCHS (no improvement): 0 +2023-04-06 01:33:38,650 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:33:47,135 epoch 125 - iter 265/2650 - loss 0.08840071 - time (sec): 8.48 - samples/sec: 17282.49 - lr: 0.025000 +2023-04-06 01:33:55,632 epoch 125 - iter 530/2650 - loss 0.08772743 - time (sec): 16.98 - samples/sec: 17276.30 - lr: 0.025000 +2023-04-06 01:34:04,139 epoch 125 - iter 795/2650 - loss 0.08844325 - time (sec): 25.49 - samples/sec: 17279.93 - lr: 0.025000 +2023-04-06 01:34:12,656 epoch 125 - iter 1060/2650 - loss 0.08846668 - time (sec): 34.01 - samples/sec: 17274.64 - lr: 0.025000 +2023-04-06 01:34:21,155 epoch 125 - iter 1325/2650 - loss 0.08895712 - time (sec): 42.50 - samples/sec: 17280.24 - lr: 0.025000 +2023-04-06 01:34:29,786 epoch 125 - iter 1590/2650 - loss 0.08901106 - time (sec): 51.14 - samples/sec: 17264.22 - lr: 0.025000 +2023-04-06 01:34:38,463 epoch 125 - iter 1855/2650 - loss 0.08872577 - time (sec): 59.81 - samples/sec: 17244.37 - lr: 0.025000 +2023-04-06 01:34:46,970 epoch 125 - iter 2120/2650 - loss 0.08901735 - time (sec): 68.32 - samples/sec: 17250.49 - lr: 0.025000 +2023-04-06 01:34:55,596 epoch 125 - iter 2385/2650 - loss 0.08924518 - time (sec): 76.95 - samples/sec: 17253.30 - lr: 0.025000 +2023-04-06 01:35:04,119 epoch 125 - iter 2650/2650 - loss 0.08931220 - time (sec): 85.47 - samples/sec: 17244.00 - lr: 0.025000 +2023-04-06 01:35:04,119 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:35:04,119 EPOCH 125 done: loss 0.0893 - lr 0.025000 +2023-04-06 01:35:04,119 BAD EPOCHS (no improvement): 0 +2023-04-06 01:35:04,123 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:35:12,671 epoch 126 - iter 265/2650 - loss 0.09026401 - time (sec): 8.55 - samples/sec: 17246.59 - lr: 0.025000 +2023-04-06 01:35:21,228 epoch 126 - iter 530/2650 - loss 0.09066439 - time (sec): 17.10 - samples/sec: 17205.64 - lr: 0.025000 +2023-04-06 01:35:29,824 epoch 126 - iter 795/2650 - loss 0.08938362 - time (sec): 25.70 - samples/sec: 17194.79 - lr: 0.025000 +2023-04-06 01:35:38,420 epoch 126 - iter 1060/2650 - loss 0.08970160 - time (sec): 34.30 - samples/sec: 17168.36 - lr: 0.025000 +2023-04-06 01:35:46,927 epoch 126 - iter 1325/2650 - loss 0.08939843 - time (sec): 42.80 - samples/sec: 17187.37 - lr: 0.025000 +2023-04-06 01:35:55,475 epoch 126 - iter 1590/2650 - loss 0.08932784 - time (sec): 51.35 - samples/sec: 17200.84 - lr: 0.025000 +2023-04-06 01:36:04,036 epoch 126 - iter 1855/2650 - loss 0.08901204 - time (sec): 59.91 - samples/sec: 17212.34 - lr: 0.025000 +2023-04-06 01:36:12,607 epoch 126 - iter 2120/2650 - loss 0.08907662 - time (sec): 68.48 - samples/sec: 17215.80 - lr: 0.025000 +2023-04-06 01:36:21,185 epoch 126 - iter 2385/2650 - loss 0.08894915 - time (sec): 77.06 - samples/sec: 17223.08 - lr: 0.025000 +2023-04-06 01:36:29,675 epoch 126 - iter 2650/2650 - loss 0.08891357 - time (sec): 85.55 - samples/sec: 17227.27 - lr: 0.025000 +2023-04-06 01:36:29,675 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:36:29,676 EPOCH 126 done: loss 0.0889 - lr 0.025000 +2023-04-06 01:36:29,676 BAD EPOCHS (no improvement): 0 +2023-04-06 01:36:29,683 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:36:38,179 epoch 127 - iter 265/2650 - loss 0.08899568 - time (sec): 8.50 - samples/sec: 17259.88 - lr: 0.025000 +2023-04-06 01:36:46,720 epoch 127 - iter 530/2650 - loss 0.09062358 - time (sec): 17.04 - samples/sec: 17232.12 - lr: 0.025000 +2023-04-06 01:36:55,297 epoch 127 - iter 795/2650 - loss 0.09072315 - time (sec): 25.61 - samples/sec: 17206.33 - lr: 0.025000 +2023-04-06 01:37:03,812 epoch 127 - iter 1060/2650 - loss 0.09085772 - time (sec): 34.13 - samples/sec: 17212.47 - lr: 0.025000 +2023-04-06 01:37:12,440 epoch 127 - iter 1325/2650 - loss 0.09066259 - time (sec): 42.76 - samples/sec: 17214.82 - lr: 0.025000 +2023-04-06 01:37:20,976 epoch 127 - iter 1590/2650 - loss 0.09059215 - time (sec): 51.29 - samples/sec: 17204.28 - lr: 0.025000 +2023-04-06 01:37:29,432 epoch 127 - iter 1855/2650 - loss 0.09005899 - time (sec): 59.75 - samples/sec: 17221.50 - lr: 0.025000 +2023-04-06 01:37:37,973 epoch 127 - iter 2120/2650 - loss 0.08977647 - time (sec): 68.29 - samples/sec: 17222.91 - lr: 0.025000 +2023-04-06 01:37:46,628 epoch 127 - iter 2385/2650 - loss 0.08976653 - time (sec): 76.95 - samples/sec: 17216.26 - lr: 0.025000 +2023-04-06 01:37:55,197 epoch 127 - iter 2650/2650 - loss 0.08925828 - time (sec): 85.51 - samples/sec: 17234.93 - lr: 0.025000 +2023-04-06 01:37:55,197 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:37:55,197 EPOCH 127 done: loss 0.0893 - lr 0.025000 +2023-04-06 01:37:55,197 BAD EPOCHS (no improvement): 1 +2023-04-06 01:37:55,201 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:38:03,782 epoch 128 - iter 265/2650 - loss 0.08906253 - time (sec): 8.58 - samples/sec: 17372.98 - lr: 0.025000 +2023-04-06 01:38:12,380 epoch 128 - iter 530/2650 - loss 0.08896875 - time (sec): 17.18 - samples/sec: 17361.31 - lr: 0.025000 +2023-04-06 01:38:20,898 epoch 128 - iter 795/2650 - loss 0.08900982 - time (sec): 25.70 - samples/sec: 17335.52 - lr: 0.025000 +2023-04-06 01:38:29,406 epoch 128 - iter 1060/2650 - loss 0.08966533 - time (sec): 34.20 - samples/sec: 17325.02 - lr: 0.025000 +2023-04-06 01:38:37,988 epoch 128 - iter 1325/2650 - loss 0.08907790 - time (sec): 42.79 - samples/sec: 17321.73 - lr: 0.025000 +2023-04-06 01:38:46,485 epoch 128 - iter 1590/2650 - loss 0.08922541 - time (sec): 51.28 - samples/sec: 17312.33 - lr: 0.025000 +2023-04-06 01:38:58,752 epoch 128 - iter 1855/2650 - loss 0.08888906 - time (sec): 63.55 - samples/sec: 16269.02 - lr: 0.025000 +2023-04-06 01:39:07,139 epoch 128 - iter 2120/2650 - loss 0.08899965 - time (sec): 71.94 - samples/sec: 16415.45 - lr: 0.025000 +2023-04-06 01:39:15,561 epoch 128 - iter 2385/2650 - loss 0.08890834 - time (sec): 80.36 - samples/sec: 16519.17 - lr: 0.025000 +2023-04-06 01:39:24,013 epoch 128 - iter 2650/2650 - loss 0.08895861 - time (sec): 88.81 - samples/sec: 16594.89 - lr: 0.025000 +2023-04-06 01:39:24,013 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:39:24,013 EPOCH 128 done: loss 0.0890 - lr 0.025000 +2023-04-06 01:39:24,013 BAD EPOCHS (no improvement): 2 +2023-04-06 01:39:24,017 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:39:32,480 epoch 129 - iter 265/2650 - loss 0.08580357 - time (sec): 8.46 - samples/sec: 17360.48 - lr: 0.025000 +2023-04-06 01:39:40,962 epoch 129 - iter 530/2650 - loss 0.08689946 - time (sec): 16.95 - samples/sec: 17383.80 - lr: 0.025000 +2023-04-06 01:39:49,519 epoch 129 - iter 795/2650 - loss 0.08778260 - time (sec): 25.50 - samples/sec: 17376.62 - lr: 0.025000 +2023-04-06 01:39:57,980 epoch 129 - iter 1060/2650 - loss 0.08815218 - time (sec): 33.96 - samples/sec: 17355.20 - lr: 0.025000 +2023-04-06 01:40:06,394 epoch 129 - iter 1325/2650 - loss 0.08836636 - time (sec): 42.38 - samples/sec: 17353.59 - lr: 0.025000 +2023-04-06 01:40:14,866 epoch 129 - iter 1590/2650 - loss 0.08801250 - time (sec): 50.85 - samples/sec: 17355.59 - lr: 0.025000 +2023-04-06 01:40:23,427 epoch 129 - iter 1855/2650 - loss 0.08855624 - time (sec): 59.41 - samples/sec: 17331.47 - lr: 0.025000 +2023-04-06 01:40:32,008 epoch 129 - iter 2120/2650 - loss 0.08859293 - time (sec): 67.99 - samples/sec: 17312.34 - lr: 0.025000 +2023-04-06 01:40:40,578 epoch 129 - iter 2385/2650 - loss 0.08865145 - time (sec): 76.56 - samples/sec: 17320.34 - lr: 0.025000 +2023-04-06 01:40:49,083 epoch 129 - iter 2650/2650 - loss 0.08861668 - time (sec): 85.07 - samples/sec: 17325.66 - lr: 0.025000 +2023-04-06 01:40:49,083 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:40:49,083 EPOCH 129 done: loss 0.0886 - lr 0.025000 +2023-04-06 01:40:49,083 BAD EPOCHS (no improvement): 0 +2023-04-06 01:40:49,087 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:40:57,493 epoch 130 - iter 265/2650 - loss 0.08600177 - time (sec): 8.41 - samples/sec: 17301.75 - lr: 0.025000 +2023-04-06 01:41:06,091 epoch 130 - iter 530/2650 - loss 0.08761559 - time (sec): 17.00 - samples/sec: 17275.91 - lr: 0.025000 +2023-04-06 01:41:14,457 epoch 130 - iter 795/2650 - loss 0.08771008 - time (sec): 25.37 - samples/sec: 17316.62 - lr: 0.025000 +2023-04-06 01:41:23,024 epoch 130 - iter 1060/2650 - loss 0.08722064 - time (sec): 33.94 - samples/sec: 17333.35 - lr: 0.025000 +2023-04-06 01:41:31,440 epoch 130 - iter 1325/2650 - loss 0.08730122 - time (sec): 42.35 - samples/sec: 17336.35 - lr: 0.025000 +2023-04-06 01:41:39,946 epoch 130 - iter 1590/2650 - loss 0.08721395 - time (sec): 50.86 - samples/sec: 17323.18 - lr: 0.025000 +2023-04-06 01:41:48,600 epoch 130 - iter 1855/2650 - loss 0.08758861 - time (sec): 59.51 - samples/sec: 17306.93 - lr: 0.025000 +2023-04-06 01:41:57,200 epoch 130 - iter 2120/2650 - loss 0.08789193 - time (sec): 68.11 - samples/sec: 17302.90 - lr: 0.025000 +2023-04-06 01:42:05,794 epoch 130 - iter 2385/2650 - loss 0.08809398 - time (sec): 76.71 - samples/sec: 17289.07 - lr: 0.025000 +2023-04-06 01:42:14,322 epoch 130 - iter 2650/2650 - loss 0.08831161 - time (sec): 85.24 - samples/sec: 17291.27 - lr: 0.025000 +2023-04-06 01:42:14,323 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:42:14,323 EPOCH 130 done: loss 0.0883 - lr 0.025000 +2023-04-06 01:42:14,323 BAD EPOCHS (no improvement): 0 +2023-04-06 01:42:14,326 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:42:22,833 epoch 131 - iter 265/2650 - loss 0.08752983 - time (sec): 8.51 - samples/sec: 17341.62 - lr: 0.025000 +2023-04-06 01:42:31,243 epoch 131 - iter 530/2650 - loss 0.08916409 - time (sec): 16.92 - samples/sec: 17283.68 - lr: 0.025000 +2023-04-06 01:42:39,942 epoch 131 - iter 795/2650 - loss 0.08875912 - time (sec): 25.62 - samples/sec: 17273.04 - lr: 0.025000 +2023-04-06 01:42:48,513 epoch 131 - iter 1060/2650 - loss 0.08869997 - time (sec): 34.19 - samples/sec: 17260.43 - lr: 0.025000 +2023-04-06 01:42:56,991 epoch 131 - iter 1325/2650 - loss 0.08850858 - time (sec): 42.66 - samples/sec: 17258.43 - lr: 0.025000 +2023-04-06 01:43:05,664 epoch 131 - iter 1590/2650 - loss 0.08843607 - time (sec): 51.34 - samples/sec: 17247.54 - lr: 0.025000 +2023-04-06 01:43:14,163 epoch 131 - iter 1855/2650 - loss 0.08847374 - time (sec): 59.84 - samples/sec: 17238.65 - lr: 0.025000 +2023-04-06 01:43:22,754 epoch 131 - iter 2120/2650 - loss 0.08859999 - time (sec): 68.43 - samples/sec: 17246.01 - lr: 0.025000 +2023-04-06 01:43:31,271 epoch 131 - iter 2385/2650 - loss 0.08885166 - time (sec): 76.94 - samples/sec: 17246.75 - lr: 0.025000 +2023-04-06 01:43:39,824 epoch 131 - iter 2650/2650 - loss 0.08884770 - time (sec): 85.50 - samples/sec: 17238.12 - lr: 0.025000 +2023-04-06 01:43:39,824 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:43:39,824 EPOCH 131 done: loss 0.0888 - lr 0.025000 +2023-04-06 01:43:39,824 BAD EPOCHS (no improvement): 1 +2023-04-06 01:43:39,828 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:43:48,438 epoch 132 - iter 265/2650 - loss 0.08739348 - time (sec): 8.61 - samples/sec: 17210.93 - lr: 0.025000 +2023-04-06 01:43:56,906 epoch 132 - iter 530/2650 - loss 0.08655920 - time (sec): 17.08 - samples/sec: 17271.45 - lr: 0.025000 +2023-04-06 01:44:05,363 epoch 132 - iter 795/2650 - loss 0.08729768 - time (sec): 25.54 - samples/sec: 17262.94 - lr: 0.025000 +2023-04-06 01:44:13,858 epoch 132 - iter 1060/2650 - loss 0.08722576 - time (sec): 34.03 - samples/sec: 17267.51 - lr: 0.025000 +2023-04-06 01:44:22,410 epoch 132 - iter 1325/2650 - loss 0.08765236 - time (sec): 42.58 - samples/sec: 17271.18 - lr: 0.025000 +2023-04-06 01:44:30,883 epoch 132 - iter 1590/2650 - loss 0.08829266 - time (sec): 51.06 - samples/sec: 17289.21 - lr: 0.025000 +2023-04-06 01:44:39,430 epoch 132 - iter 1855/2650 - loss 0.08801099 - time (sec): 59.60 - samples/sec: 17280.75 - lr: 0.025000 +2023-04-06 01:44:48,071 epoch 132 - iter 2120/2650 - loss 0.08840418 - time (sec): 68.24 - samples/sec: 17257.03 - lr: 0.025000 +2023-04-06 01:44:56,550 epoch 132 - iter 2385/2650 - loss 0.08868981 - time (sec): 76.72 - samples/sec: 17254.69 - lr: 0.025000 +2023-04-06 01:45:05,260 epoch 132 - iter 2650/2650 - loss 0.08859109 - time (sec): 85.43 - samples/sec: 17251.31 - lr: 0.025000 +2023-04-06 01:45:05,261 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:45:05,261 EPOCH 132 done: loss 0.0886 - lr 0.025000 +2023-04-06 01:45:05,261 BAD EPOCHS (no improvement): 2 +2023-04-06 01:45:05,264 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:45:13,776 epoch 133 - iter 265/2650 - loss 0.08716788 - time (sec): 8.51 - samples/sec: 17297.37 - lr: 0.025000 +2023-04-06 01:45:22,308 epoch 133 - iter 530/2650 - loss 0.08662159 - time (sec): 17.04 - samples/sec: 17251.02 - lr: 0.025000 +2023-04-06 01:45:30,943 epoch 133 - iter 795/2650 - loss 0.08776855 - time (sec): 25.68 - samples/sec: 17229.68 - lr: 0.025000 +2023-04-06 01:45:39,450 epoch 133 - iter 1060/2650 - loss 0.08842162 - time (sec): 34.19 - samples/sec: 17280.92 - lr: 0.025000 +2023-04-06 01:45:48,082 epoch 133 - iter 1325/2650 - loss 0.08854276 - time (sec): 42.82 - samples/sec: 17280.53 - lr: 0.025000 +2023-04-06 01:45:56,578 epoch 133 - iter 1590/2650 - loss 0.08852549 - time (sec): 51.31 - samples/sec: 17287.64 - lr: 0.025000 +2023-04-06 01:46:05,023 epoch 133 - iter 1855/2650 - loss 0.08843860 - time (sec): 59.76 - samples/sec: 17303.45 - lr: 0.025000 +2023-04-06 01:46:13,483 epoch 133 - iter 2120/2650 - loss 0.08871153 - time (sec): 68.22 - samples/sec: 17327.42 - lr: 0.025000 +2023-04-06 01:46:21,882 epoch 133 - iter 2385/2650 - loss 0.08869419 - time (sec): 76.62 - samples/sec: 17328.00 - lr: 0.025000 +2023-04-06 01:46:30,363 epoch 133 - iter 2650/2650 - loss 0.08842933 - time (sec): 85.10 - samples/sec: 17318.96 - lr: 0.025000 +2023-04-06 01:46:30,364 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:46:30,364 EPOCH 133 done: loss 0.0884 - lr 0.025000 +2023-04-06 01:46:30,364 BAD EPOCHS (no improvement): 3 +2023-04-06 01:46:30,370 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:46:38,859 epoch 134 - iter 265/2650 - loss 0.08775160 - time (sec): 8.49 - samples/sec: 17435.51 - lr: 0.025000 +2023-04-06 01:46:47,277 epoch 134 - iter 530/2650 - loss 0.08898451 - time (sec): 16.91 - samples/sec: 17432.20 - lr: 0.025000 +2023-04-06 01:46:55,768 epoch 134 - iter 795/2650 - loss 0.08933240 - time (sec): 25.40 - samples/sec: 17401.19 - lr: 0.025000 +2023-04-06 01:47:04,189 epoch 134 - iter 1060/2650 - loss 0.08849792 - time (sec): 33.82 - samples/sec: 17401.00 - lr: 0.025000 +2023-04-06 01:47:12,606 epoch 134 - iter 1325/2650 - loss 0.08892954 - time (sec): 42.24 - samples/sec: 17404.89 - lr: 0.025000 +2023-04-06 01:47:21,122 epoch 134 - iter 1590/2650 - loss 0.08924017 - time (sec): 50.75 - samples/sec: 17402.60 - lr: 0.025000 +2023-04-06 01:47:29,648 epoch 134 - iter 1855/2650 - loss 0.08886511 - time (sec): 59.28 - samples/sec: 17388.30 - lr: 0.025000 +2023-04-06 01:47:41,973 epoch 134 - iter 2120/2650 - loss 0.08870758 - time (sec): 71.60 - samples/sec: 16466.84 - lr: 0.025000 +2023-04-06 01:47:50,235 epoch 134 - iter 2385/2650 - loss 0.08864099 - time (sec): 79.87 - samples/sec: 16592.66 - lr: 0.025000 +2023-04-06 01:47:58,695 epoch 134 - iter 2650/2650 - loss 0.08855902 - time (sec): 88.32 - samples/sec: 16686.40 - lr: 0.025000 +2023-04-06 01:47:58,695 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:47:58,695 EPOCH 134 done: loss 0.0886 - lr 0.025000 +2023-04-06 01:47:58,695 Epoch 134: reducing learning rate of group 0 to 1.2500e-02. +2023-04-06 01:47:58,696 BAD EPOCHS (no improvement): 4 +2023-04-06 01:47:58,699 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:48:07,146 epoch 135 - iter 265/2650 - loss 0.08766982 - time (sec): 8.45 - samples/sec: 17430.02 - lr: 0.012500 +2023-04-06 01:48:15,544 epoch 135 - iter 530/2650 - loss 0.08740059 - time (sec): 16.84 - samples/sec: 17435.78 - lr: 0.012500 +2023-04-06 01:48:24,038 epoch 135 - iter 795/2650 - loss 0.08726054 - time (sec): 25.34 - samples/sec: 17442.79 - lr: 0.012500 +2023-04-06 01:48:32,501 epoch 135 - iter 1060/2650 - loss 0.08730790 - time (sec): 33.80 - samples/sec: 17432.42 - lr: 0.012500 +2023-04-06 01:48:41,043 epoch 135 - iter 1325/2650 - loss 0.08619140 - time (sec): 42.34 - samples/sec: 17404.14 - lr: 0.012500 +2023-04-06 01:48:49,672 epoch 135 - iter 1590/2650 - loss 0.08671639 - time (sec): 50.97 - samples/sec: 17397.38 - lr: 0.012500 +2023-04-06 01:48:58,086 epoch 135 - iter 1855/2650 - loss 0.08680533 - time (sec): 59.39 - samples/sec: 17400.37 - lr: 0.012500 +2023-04-06 01:49:06,558 epoch 135 - iter 2120/2650 - loss 0.08682838 - time (sec): 67.86 - samples/sec: 17380.04 - lr: 0.012500 +2023-04-06 01:49:15,066 epoch 135 - iter 2385/2650 - loss 0.08692261 - time (sec): 76.37 - samples/sec: 17364.82 - lr: 0.012500 +2023-04-06 01:49:23,561 epoch 135 - iter 2650/2650 - loss 0.08705203 - time (sec): 84.86 - samples/sec: 17367.24 - lr: 0.012500 +2023-04-06 01:49:23,562 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:49:23,562 EPOCH 135 done: loss 0.0871 - lr 0.012500 +2023-04-06 01:49:23,562 BAD EPOCHS (no improvement): 0 +2023-04-06 01:49:23,565 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:49:32,175 epoch 136 - iter 265/2650 - loss 0.08692149 - time (sec): 8.61 - samples/sec: 17398.80 - lr: 0.012500 +2023-04-06 01:49:40,736 epoch 136 - iter 530/2650 - loss 0.08759866 - time (sec): 17.17 - samples/sec: 17375.34 - lr: 0.012500 +2023-04-06 01:49:49,263 epoch 136 - iter 795/2650 - loss 0.08703527 - time (sec): 25.70 - samples/sec: 17347.53 - lr: 0.012500 +2023-04-06 01:49:57,725 epoch 136 - iter 1060/2650 - loss 0.08673358 - time (sec): 34.16 - samples/sec: 17348.91 - lr: 0.012500 +2023-04-06 01:50:06,160 epoch 136 - iter 1325/2650 - loss 0.08616701 - time (sec): 42.59 - samples/sec: 17322.73 - lr: 0.012500 +2023-04-06 01:50:14,738 epoch 136 - iter 1590/2650 - loss 0.08604201 - time (sec): 51.17 - samples/sec: 17315.08 - lr: 0.012500 +2023-04-06 01:50:23,275 epoch 136 - iter 1855/2650 - loss 0.08604817 - time (sec): 59.71 - samples/sec: 17313.24 - lr: 0.012500 +2023-04-06 01:50:31,693 epoch 136 - iter 2120/2650 - loss 0.08588615 - time (sec): 68.13 - samples/sec: 17319.61 - lr: 0.012500 +2023-04-06 01:50:40,218 epoch 136 - iter 2385/2650 - loss 0.08605759 - time (sec): 76.65 - samples/sec: 17316.73 - lr: 0.012500 +2023-04-06 01:50:48,729 epoch 136 - iter 2650/2650 - loss 0.08598834 - time (sec): 85.16 - samples/sec: 17305.71 - lr: 0.012500 +2023-04-06 01:50:48,729 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:50:48,729 EPOCH 136 done: loss 0.0860 - lr 0.012500 +2023-04-06 01:50:48,729 BAD EPOCHS (no improvement): 0 +2023-04-06 01:50:48,732 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:50:57,220 epoch 137 - iter 265/2650 - loss 0.08476475 - time (sec): 8.49 - samples/sec: 17386.58 - lr: 0.012500 +2023-04-06 01:51:05,695 epoch 137 - iter 530/2650 - loss 0.08480244 - time (sec): 16.96 - samples/sec: 17393.83 - lr: 0.012500 +2023-04-06 01:51:14,170 epoch 137 - iter 795/2650 - loss 0.08484427 - time (sec): 25.44 - samples/sec: 17364.07 - lr: 0.012500 +2023-04-06 01:51:22,777 epoch 137 - iter 1060/2650 - loss 0.08541623 - time (sec): 34.04 - samples/sec: 17331.58 - lr: 0.012500 +2023-04-06 01:51:31,351 epoch 137 - iter 1325/2650 - loss 0.08533619 - time (sec): 42.62 - samples/sec: 17322.64 - lr: 0.012500 +2023-04-06 01:51:39,811 epoch 137 - iter 1590/2650 - loss 0.08583397 - time (sec): 51.08 - samples/sec: 17320.96 - lr: 0.012500 +2023-04-06 01:51:48,372 epoch 137 - iter 1855/2650 - loss 0.08583932 - time (sec): 59.64 - samples/sec: 17308.18 - lr: 0.012500 +2023-04-06 01:51:56,865 epoch 137 - iter 2120/2650 - loss 0.08578478 - time (sec): 68.13 - samples/sec: 17297.51 - lr: 0.012500 +2023-04-06 01:52:05,351 epoch 137 - iter 2385/2650 - loss 0.08613433 - time (sec): 76.62 - samples/sec: 17294.40 - lr: 0.012500 +2023-04-06 01:52:13,941 epoch 137 - iter 2650/2650 - loss 0.08640655 - time (sec): 85.21 - samples/sec: 17296.71 - lr: 0.012500 +2023-04-06 01:52:13,941 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:52:13,941 EPOCH 137 done: loss 0.0864 - lr 0.012500 +2023-04-06 01:52:13,941 BAD EPOCHS (no improvement): 1 +2023-04-06 01:52:13,944 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:52:22,459 epoch 138 - iter 265/2650 - loss 0.08441259 - time (sec): 8.51 - samples/sec: 17312.70 - lr: 0.012500 +2023-04-06 01:52:30,941 epoch 138 - iter 530/2650 - loss 0.08418078 - time (sec): 17.00 - samples/sec: 17304.04 - lr: 0.012500 +2023-04-06 01:52:39,372 epoch 138 - iter 795/2650 - loss 0.08454341 - time (sec): 25.43 - samples/sec: 17322.26 - lr: 0.012500 +2023-04-06 01:52:47,864 epoch 138 - iter 1060/2650 - loss 0.08467833 - time (sec): 33.92 - samples/sec: 17317.35 - lr: 0.012500 +2023-04-06 01:52:56,415 epoch 138 - iter 1325/2650 - loss 0.08476238 - time (sec): 42.47 - samples/sec: 17301.08 - lr: 0.012500 +2023-04-06 01:53:05,112 epoch 138 - iter 1590/2650 - loss 0.08497080 - time (sec): 51.17 - samples/sec: 17303.40 - lr: 0.012500 +2023-04-06 01:53:13,602 epoch 138 - iter 1855/2650 - loss 0.08511155 - time (sec): 59.66 - samples/sec: 17297.52 - lr: 0.012500 +2023-04-06 01:53:22,096 epoch 138 - iter 2120/2650 - loss 0.08547480 - time (sec): 68.15 - samples/sec: 17293.78 - lr: 0.012500 +2023-04-06 01:53:30,664 epoch 138 - iter 2385/2650 - loss 0.08541540 - time (sec): 76.72 - samples/sec: 17284.27 - lr: 0.012500 +2023-04-06 01:53:39,174 epoch 138 - iter 2650/2650 - loss 0.08551047 - time (sec): 85.23 - samples/sec: 17292.43 - lr: 0.012500 +2023-04-06 01:53:39,174 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:53:39,174 EPOCH 138 done: loss 0.0855 - lr 0.012500 +2023-04-06 01:53:39,174 BAD EPOCHS (no improvement): 0 +2023-04-06 01:53:39,178 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:53:47,668 epoch 139 - iter 265/2650 - loss 0.08661839 - time (sec): 8.49 - samples/sec: 17493.46 - lr: 0.012500 +2023-04-06 01:53:56,172 epoch 139 - iter 530/2650 - loss 0.08574421 - time (sec): 16.99 - samples/sec: 17428.33 - lr: 0.012500 +2023-04-06 01:54:04,698 epoch 139 - iter 795/2650 - loss 0.08412306 - time (sec): 25.52 - samples/sec: 17380.79 - lr: 0.012500 +2023-04-06 01:54:13,310 epoch 139 - iter 1060/2650 - loss 0.08360922 - time (sec): 34.13 - samples/sec: 17352.47 - lr: 0.012500 +2023-04-06 01:54:21,769 epoch 139 - iter 1325/2650 - loss 0.08395644 - time (sec): 42.59 - samples/sec: 17378.75 - lr: 0.012500 +2023-04-06 01:54:30,180 epoch 139 - iter 1590/2650 - loss 0.08452752 - time (sec): 51.00 - samples/sec: 17376.37 - lr: 0.012500 +2023-04-06 01:54:38,586 epoch 139 - iter 1855/2650 - loss 0.08521613 - time (sec): 59.41 - samples/sec: 17386.34 - lr: 0.012500 +2023-04-06 01:54:47,005 epoch 139 - iter 2120/2650 - loss 0.08521656 - time (sec): 67.83 - samples/sec: 17402.41 - lr: 0.012500 +2023-04-06 01:54:55,488 epoch 139 - iter 2385/2650 - loss 0.08508333 - time (sec): 76.31 - samples/sec: 17416.21 - lr: 0.012500 +2023-04-06 01:55:03,767 epoch 139 - iter 2650/2650 - loss 0.08537940 - time (sec): 84.59 - samples/sec: 17423.44 - lr: 0.012500 +2023-04-06 01:55:03,767 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:55:03,767 EPOCH 139 done: loss 0.0854 - lr 0.012500 +2023-04-06 01:55:03,767 BAD EPOCHS (no improvement): 0 +2023-04-06 01:55:03,771 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:55:12,251 epoch 140 - iter 265/2650 - loss 0.08467557 - time (sec): 8.48 - samples/sec: 17406.43 - lr: 0.012500 +2023-04-06 01:55:20,720 epoch 140 - iter 530/2650 - loss 0.08387951 - time (sec): 16.95 - samples/sec: 17417.79 - lr: 0.012500 +2023-04-06 01:55:29,169 epoch 140 - iter 795/2650 - loss 0.08440544 - time (sec): 25.40 - samples/sec: 17452.71 - lr: 0.012500 +2023-04-06 01:55:37,484 epoch 140 - iter 1060/2650 - loss 0.08475602 - time (sec): 33.71 - samples/sec: 17461.29 - lr: 0.012500 +2023-04-06 01:55:46,001 epoch 140 - iter 1325/2650 - loss 0.08470901 - time (sec): 42.23 - samples/sec: 17431.96 - lr: 0.012500 +2023-04-06 01:55:54,419 epoch 140 - iter 1590/2650 - loss 0.08488743 - time (sec): 50.65 - samples/sec: 17428.55 - lr: 0.012500 +2023-04-06 01:56:02,852 epoch 140 - iter 1855/2650 - loss 0.08499758 - time (sec): 59.08 - samples/sec: 17436.21 - lr: 0.012500 +2023-04-06 01:56:11,352 epoch 140 - iter 2120/2650 - loss 0.08487283 - time (sec): 67.58 - samples/sec: 17437.14 - lr: 0.012500 +2023-04-06 01:56:23,581 epoch 140 - iter 2385/2650 - loss 0.08501586 - time (sec): 79.81 - samples/sec: 16610.10 - lr: 0.012500 +2023-04-06 01:56:31,873 epoch 140 - iter 2650/2650 - loss 0.08515134 - time (sec): 88.10 - samples/sec: 16728.43 - lr: 0.012500 +2023-04-06 01:56:31,874 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:56:31,874 EPOCH 140 done: loss 0.0852 - lr 0.012500 +2023-04-06 01:56:31,874 BAD EPOCHS (no improvement): 0 +2023-04-06 01:56:31,881 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:56:40,228 epoch 141 - iter 265/2650 - loss 0.08643215 - time (sec): 8.35 - samples/sec: 17629.40 - lr: 0.012500 +2023-04-06 01:56:48,687 epoch 141 - iter 530/2650 - loss 0.08709043 - time (sec): 16.81 - samples/sec: 17496.71 - lr: 0.012500 +2023-04-06 01:56:57,178 epoch 141 - iter 795/2650 - loss 0.08692095 - time (sec): 25.30 - samples/sec: 17477.92 - lr: 0.012500 +2023-04-06 01:57:05,550 epoch 141 - iter 1060/2650 - loss 0.08617631 - time (sec): 33.67 - samples/sec: 17490.19 - lr: 0.012500 +2023-04-06 01:57:14,072 epoch 141 - iter 1325/2650 - loss 0.08608029 - time (sec): 42.19 - samples/sec: 17490.40 - lr: 0.012500 +2023-04-06 01:57:22,544 epoch 141 - iter 1590/2650 - loss 0.08600630 - time (sec): 50.66 - samples/sec: 17490.10 - lr: 0.012500 +2023-04-06 01:57:31,027 epoch 141 - iter 1855/2650 - loss 0.08574555 - time (sec): 59.15 - samples/sec: 17475.52 - lr: 0.012500 +2023-04-06 01:57:39,435 epoch 141 - iter 2120/2650 - loss 0.08580893 - time (sec): 67.55 - samples/sec: 17483.98 - lr: 0.012500 +2023-04-06 01:57:47,786 epoch 141 - iter 2385/2650 - loss 0.08590927 - time (sec): 75.91 - samples/sec: 17481.34 - lr: 0.012500 +2023-04-06 01:57:56,226 epoch 141 - iter 2650/2650 - loss 0.08585625 - time (sec): 84.34 - samples/sec: 17473.85 - lr: 0.012500 +2023-04-06 01:57:56,226 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:57:56,226 EPOCH 141 done: loss 0.0859 - lr 0.012500 +2023-04-06 01:57:56,226 BAD EPOCHS (no improvement): 1 +2023-04-06 01:57:56,230 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:58:04,726 epoch 142 - iter 265/2650 - loss 0.08672804 - time (sec): 8.50 - samples/sec: 17435.54 - lr: 0.012500 +2023-04-06 01:58:12,981 epoch 142 - iter 530/2650 - loss 0.08502040 - time (sec): 16.75 - samples/sec: 17458.27 - lr: 0.012500 +2023-04-06 01:58:21,366 epoch 142 - iter 795/2650 - loss 0.08411218 - time (sec): 25.14 - samples/sec: 17449.96 - lr: 0.012500 +2023-04-06 01:58:29,950 epoch 142 - iter 1060/2650 - loss 0.08465343 - time (sec): 33.72 - samples/sec: 17432.96 - lr: 0.012500 +2023-04-06 01:58:38,406 epoch 142 - iter 1325/2650 - loss 0.08444004 - time (sec): 42.18 - samples/sec: 17442.82 - lr: 0.012500 +2023-04-06 01:58:46,752 epoch 142 - iter 1590/2650 - loss 0.08450466 - time (sec): 50.52 - samples/sec: 17466.99 - lr: 0.012500 +2023-04-06 01:58:55,127 epoch 142 - iter 1855/2650 - loss 0.08436467 - time (sec): 58.90 - samples/sec: 17467.00 - lr: 0.012500 +2023-04-06 01:59:03,703 epoch 142 - iter 2120/2650 - loss 0.08489676 - time (sec): 67.47 - samples/sec: 17452.63 - lr: 0.012500 +2023-04-06 01:59:12,179 epoch 142 - iter 2385/2650 - loss 0.08533253 - time (sec): 75.95 - samples/sec: 17457.56 - lr: 0.012500 +2023-04-06 01:59:20,622 epoch 142 - iter 2650/2650 - loss 0.08546246 - time (sec): 84.39 - samples/sec: 17463.94 - lr: 0.012500 +2023-04-06 01:59:20,622 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:59:20,622 EPOCH 142 done: loss 0.0855 - lr 0.012500 +2023-04-06 01:59:20,622 BAD EPOCHS (no improvement): 2 +2023-04-06 01:59:20,625 ---------------------------------------------------------------------------------------------------- +2023-04-06 01:59:29,093 epoch 143 - iter 265/2650 - loss 0.08412266 - time (sec): 8.47 - samples/sec: 17542.00 - lr: 0.012500 +2023-04-06 01:59:37,567 epoch 143 - iter 530/2650 - loss 0.08456431 - time (sec): 16.94 - samples/sec: 17480.69 - lr: 0.012500 +2023-04-06 01:59:46,075 epoch 143 - iter 795/2650 - loss 0.08450246 - time (sec): 25.45 - samples/sec: 17495.91 - lr: 0.012500 +2023-04-06 01:59:54,380 epoch 143 - iter 1060/2650 - loss 0.08396079 - time (sec): 33.75 - samples/sec: 17513.96 - lr: 0.012500 +2023-04-06 02:00:02,808 epoch 143 - iter 1325/2650 - loss 0.08362482 - time (sec): 42.18 - samples/sec: 17491.74 - lr: 0.012500 +2023-04-06 02:00:11,222 epoch 143 - iter 1590/2650 - loss 0.08412801 - time (sec): 50.60 - samples/sec: 17484.19 - lr: 0.012500 +2023-04-06 02:00:19,699 epoch 143 - iter 1855/2650 - loss 0.08422971 - time (sec): 59.07 - samples/sec: 17486.71 - lr: 0.012500 +2023-04-06 02:00:28,102 epoch 143 - iter 2120/2650 - loss 0.08421958 - time (sec): 67.48 - samples/sec: 17466.82 - lr: 0.012500 +2023-04-06 02:00:36,638 epoch 143 - iter 2385/2650 - loss 0.08437392 - time (sec): 76.01 - samples/sec: 17457.10 - lr: 0.012500 +2023-04-06 02:00:45,105 epoch 143 - iter 2650/2650 - loss 0.08434763 - time (sec): 84.48 - samples/sec: 17445.91 - lr: 0.012500 +2023-04-06 02:00:45,105 ---------------------------------------------------------------------------------------------------- +2023-04-06 02:00:45,106 EPOCH 143 done: loss 0.0843 - lr 0.012500 +2023-04-06 02:00:45,106 BAD EPOCHS (no improvement): 0 +2023-04-06 02:00:45,109 ---------------------------------------------------------------------------------------------------- +2023-04-06 02:00:53,534 epoch 144 - iter 265/2650 - loss 0.08514408 - time (sec): 8.42 - samples/sec: 17510.67 - lr: 0.012500 +2023-04-06 02:01:02,074 epoch 144 - iter 530/2650 - loss 0.08460616 - time (sec): 16.96 - samples/sec: 17478.45 - lr: 0.012500 +2023-04-06 02:01:10,541 epoch 144 - iter 795/2650 - loss 0.08454546 - time (sec): 25.43 - samples/sec: 17430.28 - lr: 0.012500 +2023-04-06 02:01:19,082 epoch 144 - iter 1060/2650 - loss 0.08459020 - time (sec): 33.97 - samples/sec: 17393.84 - lr: 0.012500 +2023-04-06 02:01:27,620 epoch 144 - iter 1325/2650 - loss 0.08526056 - time (sec): 42.51 - samples/sec: 17410.25 - lr: 0.012500 +2023-04-06 02:01:36,046 epoch 144 - iter 1590/2650 - loss 0.08498614 - time (sec): 50.94 - samples/sec: 17404.21 - lr: 0.012500 +2023-04-06 02:01:44,498 epoch 144 - iter 1855/2650 - loss 0.08465342 - time (sec): 59.39 - samples/sec: 17404.06 - lr: 0.012500 +2023-04-06 02:01:52,922 epoch 144 - iter 2120/2650 - loss 0.08501815 - time (sec): 67.81 - samples/sec: 17394.07 - lr: 0.012500 +2023-04-06 02:02:01,366 epoch 144 - iter 2385/2650 - loss 0.08485702 - time (sec): 76.26 - samples/sec: 17408.51 - lr: 0.012500 +2023-04-06 02:02:09,738 epoch 144 - iter 2650/2650 - loss 0.08494414 - time (sec): 84.63 - samples/sec: 17415.22 - lr: 0.012500 +2023-04-06 02:02:09,738 ---------------------------------------------------------------------------------------------------- +2023-04-06 02:02:09,738 EPOCH 144 done: loss 0.0849 - lr 0.012500 +2023-04-06 02:02:09,738 BAD EPOCHS (no improvement): 1 +2023-04-06 02:02:09,743 ---------------------------------------------------------------------------------------------------- +2023-04-06 02:02:18,254 epoch 145 - iter 265/2650 - loss 0.08404079 - time (sec): 8.51 - samples/sec: 17424.39 - lr: 0.012500 +2023-04-06 02:02:26,621 epoch 145 - iter 530/2650 - loss 0.08364490 - time (sec): 16.88 - samples/sec: 17460.76 - lr: 0.012500 +2023-04-06 02:02:34,984 epoch 145 - iter 795/2650 - loss 0.08496103 - time (sec): 25.24 - samples/sec: 17507.43 - lr: 0.012500 +2023-04-06 02:02:43,474 epoch 145 - iter 1060/2650 - loss 0.08410846 - time (sec): 33.73 - samples/sec: 17507.66 - lr: 0.012500 +2023-04-06 02:02:51,863 epoch 145 - iter 1325/2650 - loss 0.08451872 - time (sec): 42.12 - samples/sec: 17481.94 - lr: 0.012500 +2023-04-06 02:03:00,326 epoch 145 - iter 1590/2650 - loss 0.08462303 - time (sec): 50.58 - samples/sec: 17477.78 - lr: 0.012500 +2023-04-06 02:03:08,784 epoch 145 - iter 1855/2650 - loss 0.08488801 - time (sec): 59.04 - samples/sec: 17490.79 - lr: 0.012500 +2023-04-06 02:03:17,140 epoch 145 - iter 2120/2650 - loss 0.08494517 - time (sec): 67.40 - samples/sec: 17494.44 - lr: 0.012500 +2023-04-06 02:03:25,525 epoch 145 - iter 2385/2650 - loss 0.08471987 - time (sec): 75.78 - samples/sec: 17484.70 - lr: 0.012500 +2023-04-06 02:03:34,004 epoch 145 - iter 2650/2650 - loss 0.08493393 - time (sec): 84.26 - samples/sec: 17491.03 - lr: 0.012500 +2023-04-06 02:03:34,005 ---------------------------------------------------------------------------------------------------- +2023-04-06 02:03:34,005 EPOCH 145 done: loss 0.0849 - lr 0.012500 +2023-04-06 02:03:34,005 BAD EPOCHS (no improvement): 2 +2023-04-06 02:03:34,008 ---------------------------------------------------------------------------------------------------- +2023-04-06 02:03:42,342 epoch 146 - iter 265/2650 - loss 0.08333622 - time (sec): 8.33 - samples/sec: 17684.63 - lr: 0.012500 +2023-04-06 02:03:50,953 epoch 146 - iter 530/2650 - loss 0.08389065 - time (sec): 16.94 - samples/sec: 17610.62 - lr: 0.012500 +2023-04-06 02:03:59,312 epoch 146 - iter 795/2650 - loss 0.08521514 - time (sec): 25.30 - samples/sec: 17543.25 - lr: 0.012500 +2023-04-06 02:04:07,704 epoch 146 - iter 1060/2650 - loss 0.08513854 - time (sec): 33.70 - samples/sec: 17535.36 - lr: 0.012500 +2023-04-06 02:04:16,050 epoch 146 - iter 1325/2650 - loss 0.08477239 - time (sec): 42.04 - samples/sec: 17521.05 - lr: 0.012500 +2023-04-06 02:04:24,419 epoch 146 - iter 1590/2650 - loss 0.08496632 - time (sec): 50.41 - samples/sec: 17518.59 - lr: 0.012500 +2023-04-06 02:04:32,848 epoch 146 - iter 1855/2650 - loss 0.08515066 - time (sec): 58.84 - samples/sec: 17505.80 - lr: 0.012500 +2023-04-06 02:04:41,292 epoch 146 - iter 2120/2650 - loss 0.08534187 - time (sec): 67.28 - samples/sec: 17504.48 - lr: 0.012500 +2023-04-06 02:04:49,732 epoch 146 - iter 2385/2650 - loss 0.08515106 - time (sec): 75.72 - samples/sec: 17500.24 - lr: 0.012500 +2023-04-06 02:04:58,234 epoch 146 - iter 2650/2650 - loss 0.08512776 - time (sec): 84.23 - samples/sec: 17498.56 - lr: 0.012500 +2023-04-06 02:04:58,234 ---------------------------------------------------------------------------------------------------- +2023-04-06 02:04:58,234 EPOCH 146 done: loss 0.0851 - lr 0.012500 +2023-04-06 02:04:58,234 BAD EPOCHS (no improvement): 3 +2023-04-06 02:04:58,238 ---------------------------------------------------------------------------------------------------- +2023-04-06 02:05:10,626 epoch 147 - iter 265/2650 - loss 0.08274620 - time (sec): 12.39 - samples/sec: 12090.11 - lr: 0.012500 +2023-04-06 02:05:18,893 epoch 147 - iter 530/2650 - loss 0.08344974 - time (sec): 20.66 - samples/sec: 14337.60 - lr: 0.012500 +2023-04-06 02:05:27,192 epoch 147 - iter 795/2650 - loss 0.08478520 - time (sec): 28.95 - samples/sec: 15260.99 - lr: 0.012500 +2023-04-06 02:05:35,700 epoch 147 - iter 1060/2650 - loss 0.08441918 - time (sec): 37.46 - samples/sec: 15746.82 - lr: 0.012500 +2023-04-06 02:05:44,078 epoch 147 - iter 1325/2650 - loss 0.08423769 - time (sec): 45.84 - samples/sec: 16057.27 - lr: 0.012500 +2023-04-06 02:05:52,430 epoch 147 - iter 1590/2650 - loss 0.08431145 - time (sec): 54.19 - samples/sec: 16290.56 - lr: 0.012500 +2023-04-06 02:06:00,868 epoch 147 - iter 1855/2650 - loss 0.08432505 - time (sec): 62.63 - samples/sec: 16459.47 - lr: 0.012500 +2023-04-06 02:06:09,438 epoch 147 - iter 2120/2650 - loss 0.08422386 - time (sec): 71.20 - samples/sec: 16576.07 - lr: 0.012500 +2023-04-06 02:06:17,753 epoch 147 - iter 2385/2650 - loss 0.08413675 - time (sec): 79.51 - samples/sec: 16671.87 - lr: 0.012500 +2023-04-06 02:06:26,179 epoch 147 - iter 2650/2650 - loss 0.08401922 - time (sec): 87.94 - samples/sec: 16759.27 - lr: 0.012500 +2023-04-06 02:06:26,179 ---------------------------------------------------------------------------------------------------- +2023-04-06 02:06:26,179 EPOCH 147 done: loss 0.0840 - lr 0.012500 +2023-04-06 02:06:26,179 BAD EPOCHS (no improvement): 0 +2023-04-06 02:06:26,183 ---------------------------------------------------------------------------------------------------- +2023-04-06 02:06:34,619 epoch 148 - iter 265/2650 - loss 0.08390811 - time (sec): 8.44 - samples/sec: 17467.79 - lr: 0.012500 +2023-04-06 02:06:43,122 epoch 148 - iter 530/2650 - loss 0.08385304 - time (sec): 16.94 - samples/sec: 17433.22 - lr: 0.012500 +2023-04-06 02:06:51,583 epoch 148 - iter 795/2650 - loss 0.08388650 - time (sec): 25.40 - samples/sec: 17440.87 - lr: 0.012500 +2023-04-06 02:07:00,015 epoch 148 - iter 1060/2650 - loss 0.08344917 - time (sec): 33.83 - samples/sec: 17469.44 - lr: 0.012500 +2023-04-06 02:07:08,397 epoch 148 - iter 1325/2650 - loss 0.08372317 - time (sec): 42.21 - samples/sec: 17480.25 - lr: 0.012500 +2023-04-06 02:07:16,917 epoch 148 - iter 1590/2650 - loss 0.08405667 - time (sec): 50.73 - samples/sec: 17472.56 - lr: 0.012500 +2023-04-06 02:07:25,263 epoch 148 - iter 1855/2650 - loss 0.08406057 - time (sec): 59.08 - samples/sec: 17479.34 - lr: 0.012500 +2023-04-06 02:07:33,710 epoch 148 - iter 2120/2650 - loss 0.08419679 - time (sec): 67.53 - samples/sec: 17485.21 - lr: 0.012500 +2023-04-06 02:07:42,071 epoch 148 - iter 2385/2650 - loss 0.08426519 - time (sec): 75.89 - samples/sec: 17475.56 - lr: 0.012500 +2023-04-06 02:07:50,519 epoch 148 - iter 2650/2650 - loss 0.08420663 - time (sec): 84.34 - samples/sec: 17475.77 - lr: 0.012500 +2023-04-06 02:07:50,519 ---------------------------------------------------------------------------------------------------- +2023-04-06 02:07:50,519 EPOCH 148 done: loss 0.0842 - lr 0.012500 +2023-04-06 02:07:50,519 BAD EPOCHS (no improvement): 1 +2023-04-06 02:07:50,523 ---------------------------------------------------------------------------------------------------- +2023-04-06 02:07:58,957 epoch 149 - iter 265/2650 - loss 0.08206100 - time (sec): 8.43 - samples/sec: 17720.34 - lr: 0.012500 +2023-04-06 02:08:07,300 epoch 149 - iter 530/2650 - loss 0.08254810 - time (sec): 16.78 - samples/sec: 17688.29 - lr: 0.012500 +2023-04-06 02:08:15,793 epoch 149 - iter 795/2650 - loss 0.08259181 - time (sec): 25.27 - samples/sec: 17597.60 - lr: 0.012500 +2023-04-06 02:08:24,116 epoch 149 - iter 1060/2650 - loss 0.08363840 - time (sec): 33.59 - samples/sec: 17564.28 - lr: 0.012500 +2023-04-06 02:08:32,521 epoch 149 - iter 1325/2650 - loss 0.08338751 - time (sec): 42.00 - samples/sec: 17577.05 - lr: 0.012500 +2023-04-06 02:08:40,909 epoch 149 - iter 1590/2650 - loss 0.08334045 - time (sec): 50.39 - samples/sec: 17581.36 - lr: 0.012500 +2023-04-06 02:08:49,372 epoch 149 - iter 1855/2650 - loss 0.08330694 - time (sec): 58.85 - samples/sec: 17572.59 - lr: 0.012500 +2023-04-06 02:08:57,744 epoch 149 - iter 2120/2650 - loss 0.08358919 - time (sec): 67.22 - samples/sec: 17566.71 - lr: 0.012500 +2023-04-06 02:09:06,121 epoch 149 - iter 2385/2650 - loss 0.08375847 - time (sec): 75.60 - samples/sec: 17569.21 - lr: 0.012500 +2023-04-06 02:09:14,412 epoch 149 - iter 2650/2650 - loss 0.08384634 - time (sec): 83.89 - samples/sec: 17568.78 - lr: 0.012500 +2023-04-06 02:09:14,412 ---------------------------------------------------------------------------------------------------- +2023-04-06 02:09:14,412 EPOCH 149 done: loss 0.0838 - lr 0.012500 +2023-04-06 02:09:14,412 BAD EPOCHS (no improvement): 0 +2023-04-06 02:09:14,416 ---------------------------------------------------------------------------------------------------- +2023-04-06 02:09:22,935 epoch 150 - iter 265/2650 - loss 0.08208815 - time (sec): 8.52 - samples/sec: 17435.86 - lr: 0.012500 +2023-04-06 02:09:31,356 epoch 150 - iter 530/2650 - loss 0.08175082 - time (sec): 16.94 - samples/sec: 17476.23 - lr: 0.012500 +2023-04-06 02:09:39,597 epoch 150 - iter 795/2650 - loss 0.08300666 - time (sec): 25.18 - samples/sec: 17541.37 - lr: 0.012500 +2023-04-06 02:09:47,984 epoch 150 - iter 1060/2650 - loss 0.08336710 - time (sec): 33.57 - samples/sec: 17540.80 - lr: 0.012500 +2023-04-06 02:09:56,459 epoch 150 - iter 1325/2650 - loss 0.08368950 - time (sec): 42.04 - samples/sec: 17514.71 - lr: 0.012500 +2023-04-06 02:10:04,863 epoch 150 - iter 1590/2650 - loss 0.08415253 - time (sec): 50.45 - samples/sec: 17529.27 - lr: 0.012500 +2023-04-06 02:10:13,201 epoch 150 - iter 1855/2650 - loss 0.08418048 - time (sec): 58.79 - samples/sec: 17547.42 - lr: 0.012500 +2023-04-06 02:10:21,641 epoch 150 - iter 2120/2650 - loss 0.08382533 - time (sec): 67.23 - samples/sec: 17550.62 - lr: 0.012500 +2023-04-06 02:10:30,127 epoch 150 - iter 2385/2650 - loss 0.08397513 - time (sec): 75.71 - samples/sec: 17528.60 - lr: 0.012500 +2023-04-06 02:10:38,540 epoch 150 - iter 2650/2650 - loss 0.08395460 - time (sec): 84.12 - samples/sec: 17519.54 - lr: 0.012500 +2023-04-06 02:10:38,540 ---------------------------------------------------------------------------------------------------- +2023-04-06 02:10:38,540 EPOCH 150 done: loss 0.0840 - lr 0.012500 +2023-04-06 02:10:38,540 BAD EPOCHS (no improvement): 1 +2023-04-06 02:10:39,200 ---------------------------------------------------------------------------------------------------- +2023-04-06 02:10:39,200 Testing using last state of model ... +2023-04-06 02:10:52,313 Evaluating as a multi-label problem: False +2023-04-06 02:10:52,566 0.8939 0.9346 0.9138 0.882 +2023-04-06 02:10:52,566 +Results: +- F-score (micro) 0.9138 +- F-score (macro) 0.6727 +- Accuracy 0.882 + +By class: + precision recall f1-score support + + be.01 0.9651 0.9787 0.9718 3562 + be.03 0.9495 0.9495 0.9495 1962 + have.01 0.9788 0.9788 0.9788 1225 + say.01 0.9962 0.9990 0.9976 1048 + do.01 0.9678 0.9768 0.9723 647 + have.03 0.9133 0.9547 0.9336 552 + think.01 0.9969 1.0000 0.9984 320 + be.02 0.9524 0.9677 0.9600 310 + do.02 0.8380 0.9573 0.8937 281 + see.01 0.9691 0.9930 0.9809 284 + come.01 0.9306 0.9383 0.9344 243 + know.01 0.9099 0.8653 0.8870 245 + go.02 0.8745 0.9248 0.8989 226 + want.01 1.0000 0.9952 0.9976 207 + tell.01 0.9778 1.0000 0.9888 176 + take.01 0.8466 0.8625 0.8545 160 + talk.01 0.9814 0.9937 0.9875 159 + use.01 0.9342 0.9930 0.9627 143 + give.01 0.9530 0.9930 0.9726 143 + make.02 0.9149 0.8836 0.8990 146 + have.02 0.9412 0.9846 0.9624 130 + price.01 0.9923 0.9699 0.9810 133 + get.01 0.8321 0.9237 0.8755 118 + work.01 0.7985 0.9469 0.8664 113 + believe.01 1.0000 1.0000 1.0000 113 + go.04 0.9636 0.9815 0.9725 108 + become.01 0.9815 1.0000 0.9907 106 + know.06 0.7500 0.8660 0.8038 97 + try.01 0.9706 0.9900 0.9802 100 + find.01 0.9314 0.9596 0.9453 99 + make.01 0.6667 0.8000 0.7273 90 + need.01 0.8750 1.0000 0.9333 91 + make.LV 0.7476 0.8370 0.7897 92 + look.01 0.8700 0.9560 0.9110 91 + mean.01 0.9792 1.0000 0.9895 94 + happen.01 1.0000 1.0000 1.0000 91 + trade.01 0.8495 0.9634 0.9029 82 + kill.01 0.9540 1.0000 0.9765 83 + show.01 0.9759 0.9643 0.9701 84 + invest.01 0.9294 0.9753 0.9518 81 + call.01 0.8471 0.9600 0.9000 75 + begin.01 0.9157 0.9870 0.9500 77 + sell.01 0.9146 0.9868 0.9494 76 + live.01 0.9136 0.9737 0.9427 76 + pay.01 0.9241 0.9733 0.9481 75 + increase.01 0.9125 1.0000 0.9542 73 + let.01 0.9868 1.0000 0.9934 75 + offer.01 0.9359 1.0000 0.9669 73 + hear.01 1.0000 1.0000 1.0000 75 + continue.01 0.9605 1.0000 0.9799 73 + put.01 0.8228 0.9420 0.8784 69 + bring.01 1.0000 0.9865 0.9932 74 + report.01 0.9306 0.9178 0.9241 73 + die.01 0.9857 1.0000 0.9928 69 + help.01 0.9286 1.0000 0.9630 65 + get.03 0.8358 0.8358 0.8358 67 + expect.01 1.0000 1.0000 1.0000 67 + ask.02 1.0000 0.9275 0.9624 69 + write.01 0.8732 1.0000 0.9323 62 + speak.01 1.0000 0.9844 0.9921 64 + start.01 0.8529 0.9831 0.9134 59 + deal.01 0.9385 1.0000 0.9683 61 + support.01 0.9385 1.0000 0.9683 61 + ask.01 0.9219 0.9833 0.9516 60 + decide.01 0.9219 1.0000 0.9593 59 + former.01 0.9672 1.0000 0.9833 59 + answer.01 0.9167 1.0000 0.9565 55 + get.05 0.7857 0.7586 0.7719 58 + seem.01 1.0000 1.0000 1.0000 56 + change.01 0.9649 1.0000 0.9821 55 + produce.01 0.8167 0.9608 0.8829 51 + reach.01 0.9107 1.0000 0.9533 51 + provide.01 1.0000 1.0000 1.0000 53 + establish.01 0.9273 1.0000 0.9623 51 + agree.01 0.9615 0.9434 0.9524 53 + develop.02 0.9412 0.9231 0.9320 52 + feel.01 0.9038 0.9592 0.9307 49 + receive.01 0.9800 0.9800 0.9800 50 + buy.01 0.9592 1.0000 0.9792 47 + lose.02 0.8980 0.9565 0.9263 46 + operate.01 0.8800 0.9778 0.9263 45 + show.04 0.8600 0.9556 0.9053 45 + call.02 0.9048 0.7308 0.8085 52 + learn.01 1.0000 1.0000 1.0000 47 + grow.01 0.9091 0.8333 0.8696 48 + own.01 1.0000 0.9783 0.9890 46 + test.01 0.8571 1.0000 0.9231 42 + plan.01 0.9333 0.9767 0.9545 43 + stay.01 0.9333 1.0000 0.9655 42 + negotiate.01 0.9773 1.0000 0.9885 43 + end.01 0.7292 0.9211 0.8140 38 + remember.01 1.0000 0.9767 0.9882 43 + move.01 0.9524 0.9756 0.9639 41 + state.01 0.8636 1.0000 0.9268 38 + stop.01 0.9070 1.0000 0.9512 39 + add.02 0.7333 0.9167 0.8148 36 + go.01 0.7222 0.5778 0.6420 45 + include.01 0.9750 0.9512 0.9630 41 + war.01 0.8372 0.9730 0.9000 37 + leave.11 0.7727 0.9714 0.8608 35 + charge.05 0.9024 0.9737 0.9367 38 + reduce.01 0.9500 1.0000 0.9744 38 + rise.01 0.9744 1.0000 0.9870 38 + expand.01 0.9231 1.0000 0.9600 36 + hope.01 1.0000 1.0000 1.0000 37 + hold.01 0.6905 0.9355 0.7945 31 + announce.01 0.7561 0.9688 0.8493 32 + enter.01 0.9211 1.0000 0.9589 35 + serve.01 0.7179 0.8485 0.7778 33 + accept.01 0.9459 1.0000 0.9722 35 + account.01 0.9714 0.9189 0.9444 37 + implement.01 1.0000 1.0000 1.0000 36 + fall.01 0.9189 1.0000 0.9577 34 + take.LV 0.5897 0.7419 0.6571 31 + look.02 0.8889 0.9412 0.9143 34 + watch.01 0.9167 1.0000 0.9565 33 + face.01 0.7436 0.9667 0.8406 30 + keep.02 0.8788 0.8286 0.8529 35 + require.01 1.0000 1.0000 1.0000 34 + drop.01 0.8611 0.9688 0.9118 32 + lead.02 0.7500 0.9000 0.8182 30 + share.01 0.8056 1.0000 0.8923 29 + relation.03 0.7222 0.8966 0.8000 29 + meet.03 0.7273 0.7742 0.7500 31 + follow.02 0.6389 0.8214 0.7187 28 + turn.01 0.7143 0.8621 0.7813 29 + cut.02 0.7027 0.9630 0.8125 27 + walk.01 0.9688 1.0000 0.9841 31 + eat.01 0.9688 1.0000 0.9841 31 + create.01 0.9688 1.0000 0.9841 31 + cause.01 0.9091 1.0000 0.9524 30 + build.01 0.8235 0.9655 0.8889 29 + suggest.01 1.0000 1.0000 1.0000 31 + involve.01 0.8788 1.0000 0.9355 29 + thank.01 0.9375 1.0000 0.9677 30 + get.06 0.9062 1.0000 0.9508 29 + read.01 0.9062 1.0000 0.9508 29 + understand.01 0.9677 1.0000 0.9836 30 + explain.01 1.0000 1.0000 1.0000 30 + question.01 0.6000 0.8400 0.7000 25 + open.01 0.8125 0.9630 0.8814 27 + force.01 0.9032 1.0000 0.9492 28 + view.02 0.9032 1.0000 0.9492 28 + love.01 0.6471 0.8800 0.7458 25 + manage.01 0.5526 1.0000 0.7119 21 + wait.01 0.8710 1.0000 0.9310 27 + know.02 0.5625 0.6923 0.6207 26 + feel.02 0.8621 0.8621 0.8621 29 + exchange.01 0.8387 0.9630 0.8966 27 + like.02 0.9310 0.9643 0.9474 28 + send.01 0.6364 0.9130 0.7500 23 + remain.01 1.0000 1.0000 1.0000 28 + allow.01 0.9310 1.0000 0.9643 27 + approve.01 0.8667 1.0000 0.9286 26 + control.01 0.8333 1.0000 0.9091 25 + point_out.02 1.0000 1.0000 1.0000 27 + participate.01 1.0000 1.0000 1.0000 27 + name.01 0.9286 1.0000 0.9630 26 + voice.01 0.9630 1.0000 0.9811 26 + concern.01 0.7931 1.0000 0.8846 23 + develop.01 0.8846 0.8846 0.8846 26 + visit.01 0.9615 0.9615 0.9615 26 + succeed.01 0.8571 1.0000 0.9231 24 + express.01 0.9615 0.9615 0.9615 26 + respond.01 0.7333 1.0000 0.8462 22 + sit.01 1.0000 0.9231 0.9600 26 + carry.01 0.9231 1.0000 0.9600 24 + carry_out.03 1.0000 1.0000 1.0000 25 + act.02 0.6000 0.9000 0.7200 20 + study.01 0.7241 1.0000 0.8400 21 + destroy.01 1.0000 1.0000 1.0000 25 + arrive.01 0.9600 1.0000 0.9796 24 + mention.01 0.9600 1.0000 0.9796 24 + import.01 0.8800 0.9167 0.8980 24 + mind.05 0.4242 0.8750 0.5714 16 + vote.01 0.8462 0.9565 0.8980 23 + bear.02 1.0000 1.0000 1.0000 24 + hold.04 1.0000 0.9200 0.9583 25 + win.01 0.9200 1.0000 0.9583 23 + quote.01 0.8462 1.0000 0.9167 22 + attack.01 1.0000 1.0000 1.0000 24 + bomb.01 0.9200 1.0000 0.9583 23 + interview.01 0.6552 1.0000 0.7917 19 + meet.02 0.4815 0.6500 0.5532 20 + set_up.03 0.9583 1.0000 0.9787 23 + find_out.03 0.9583 1.0000 0.9787 23 + choose.01 0.9583 1.0000 0.9787 23 + appear.02 1.0000 0.9583 0.9787 24 + welcome.01 0.7692 0.9524 0.8511 21 + crash.01 0.8800 1.0000 0.9362 22 + issue.01 1.0000 0.9583 0.9787 24 + peace.01 1.0000 1.0000 1.0000 23 + promote.02 0.9565 0.9565 0.9565 23 + run.02 0.7200 0.9000 0.8000 20 + have.04 0.7368 0.5385 0.6222 26 + attract.01 1.0000 0.9565 0.9778 23 + release.01 0.7308 1.0000 0.8444 19 + improve.01 0.6667 1.0000 0.8000 18 + come.03 0.6522 0.7143 0.6818 21 + testify.01 1.0000 1.0000 1.0000 22 + experience.01 0.6923 1.0000 0.8182 18 + handle.01 0.9545 1.0000 0.9767 21 + follow.01 0.6842 0.5417 0.6047 24 + limit.01 0.7917 1.0000 0.8837 19 + promise.01 0.9091 1.0000 0.9524 20 + construct.01 0.8261 1.0000 0.9048 19 + occur.01 0.9524 1.0000 0.9756 20 + take.10 0.9048 0.9500 0.9268 20 + propose.01 0.9524 1.0000 0.9756 20 + achieve.01 0.9524 1.0000 0.9756 20 + consider.01 0.8000 0.8000 0.8000 20 + file.01 1.0000 1.0000 1.0000 20 + go.06 0.5238 0.5789 0.5500 19 + process.02 0.6000 1.0000 0.7500 15 + indicate.01 1.0000 1.0000 1.0000 20 + custody.01 1.0000 1.0000 1.0000 20 + get.02 0.8421 0.8000 0.8205 20 + stand.01 0.8571 1.0000 0.9231 18 + invite.01 0.9500 1.0000 0.9744 19 + lead.01 0.5909 0.7647 0.6667 17 + introduce.02 0.9000 0.9474 0.9231 19 + throw.01 0.9500 1.0000 0.9744 19 + return.01 0.8095 0.9444 0.8718 18 + have.LV 0.2273 0.2941 0.2564 17 + fly.01 0.8571 1.0000 0.9231 18 + save.02 0.9500 1.0000 0.9744 19 + come.04 0.6842 0.6842 0.6842 19 + combine.01 0.6087 0.9333 0.7368 15 + analyze.01 0.9000 1.0000 0.9474 18 + add.01 0.9474 0.9474 0.9474 19 + heal.01 1.0000 1.0000 1.0000 19 + eliminate.01 1.0000 1.0000 1.0000 19 + warn.01 0.8095 1.0000 0.8947 17 + spend.02 1.0000 0.9474 0.9730 19 + purchase.01 0.8500 1.0000 0.9189 17 + keep.04 0.6667 0.8750 0.7568 16 + utilize.01 0.9474 1.0000 0.9730 18 + earn.01 1.0000 1.0000 1.0000 18 + represent.01 1.0000 1.0000 1.0000 18 + close.01 0.8000 1.0000 0.8889 16 + break.01 0.5455 0.8571 0.6667 14 + imagine.01 1.0000 1.0000 1.0000 18 + cover.03 0.9412 0.8421 0.8889 19 + speculate.01 0.8947 1.0000 0.9444 17 + fight.01 0.8947 1.0000 0.9444 17 + join.01 1.0000 0.9444 0.9714 18 + protect.01 0.9444 1.0000 0.9714 17 + profit.01 0.9444 1.0000 0.9714 17 + affect.01 0.7895 0.9375 0.8571 16 + raise.01 0.7895 1.0000 0.8824 15 + get.04 0.5833 0.3182 0.4118 22 + prepare.02 0.8750 0.7778 0.8235 18 + launch.01 0.8889 1.0000 0.9412 16 + impact.01 0.4167 1.0000 0.5882 10 + contribute.01 1.0000 1.0000 1.0000 17 + discuss.01 1.0000 1.0000 1.0000 17 + suffer.01 1.0000 1.0000 1.0000 17 + present.01 1.0000 1.0000 1.0000 17 + post.01 0.8333 0.9375 0.8824 16 + leave.12 0.7059 0.7059 0.7059 17 + rule.03 0.8889 1.0000 0.9412 16 + keep.01 0.8571 0.6316 0.7273 19 + drive.01 0.7222 0.8667 0.7879 15 + turn.02 0.6471 0.6875 0.6667 16 + sit_down.02 0.8333 1.0000 0.9091 15 + react.01 0.8333 1.0000 0.9091 15 + order.01 0.8750 0.8235 0.8485 17 + damage.01 0.9412 1.0000 0.9697 16 + bond.02 1.0000 0.9412 0.9697 17 + 0.0000 0.0000 0.0000 0 + victory.01 1.0000 1.0000 1.0000 16 + set.02 0.7059 0.8000 0.7500 15 + refer.01 0.7778 1.0000 0.8750 14 + challenge.01 1.0000 1.0000 1.0000 16 + go_on.15 0.8824 1.0000 0.9375 15 + matter.02 0.6000 1.0000 0.7500 12 + set.01 0.7647 0.8667 0.8125 15 + meet.01 0.8824 1.0000 0.9375 15 + wish.01 0.8824 1.0000 0.9375 15 + put.03 0.6429 0.5294 0.5806 17 + play.02 0.9375 1.0000 0.9677 15 + seek.01 0.9375 1.0000 0.9677 15 + demand.01 0.8235 1.0000 0.9032 14 + fill.01 0.9375 1.0000 0.9677 15 + draw.02 0.8750 0.9333 0.9032 15 + leave.13 1.0000 0.9375 0.9677 16 + influence.01 0.9375 1.0000 0.9677 15 + violent.01 0.8235 1.0000 0.9032 14 + deny.01 1.0000 1.0000 1.0000 15 + care.01 0.9333 0.9333 0.9333 15 + bless.01 1.0000 1.0000 1.0000 15 + play.01 0.7500 0.8571 0.8000 14 + note.01 0.8750 1.0000 0.9333 14 + spend.01 0.9333 0.9333 0.9333 15 + rule.01 0.5000 1.0000 0.6667 10 + describe.01 0.8750 1.0000 0.9333 14 + solve.01 1.0000 1.0000 1.0000 15 + regard.01 0.7333 0.7333 0.7333 15 + fail.01 1.0000 1.0000 1.0000 15 + take_over.12 0.9333 0.9333 0.9333 15 + prove.01 0.7647 1.0000 0.8667 13 + honor.01 1.0000 1.0000 1.0000 15 + judge.01 0.7500 0.8571 0.8000 14 + shout.01 1.0000 1.0000 1.0000 15 + travel.01 0.7647 1.0000 0.8667 13 + transact.01 1.0000 1.0000 1.0000 15 + pray.01 0.9333 1.0000 0.9655 14 + realize.01 1.0000 0.9333 0.9655 15 + run.01 0.6667 0.7143 0.6897 14 + reveal.01 0.9333 1.0000 0.9655 14 + connect.01 0.6111 1.0000 0.7586 11 + argue.01 0.8667 0.9286 0.8966 14 + contact.01 0.8125 1.0000 0.8966 13 + grow.03 0.6111 1.0000 0.7586 11 + praise.01 0.9333 1.0000 0.9655 14 + assist.01 0.8125 1.0000 0.8966 13 + acquire.01 0.9333 1.0000 0.9655 14 + try.02 0.5556 0.9091 0.6897 11 + sound.01 1.0000 1.0000 1.0000 14 + wear.01 1.0000 1.0000 1.0000 14 + move.02 1.0000 1.0000 1.0000 14 + pursue.01 1.0000 1.0000 1.0000 14 + sign.02 0.6667 0.7692 0.7143 13 + intend.01 0.7500 1.0000 0.8571 12 + cross.02 0.8667 1.0000 0.9286 13 + belong.01 1.0000 1.0000 1.0000 14 + complete.01 0.8667 1.0000 0.9286 13 + encourage.01 0.7692 0.6667 0.7143 15 + form.01 0.9286 0.9286 0.9286 14 + strengthen.01 1.0000 1.0000 1.0000 14 + send.02 0.6923 0.6000 0.6429 15 + bid.01 1.0000 1.0000 1.0000 14 + make.05 0.9167 0.7333 0.8148 15 + miss.01 1.0000 0.9286 0.9630 14 + compare.01 1.0000 0.6875 0.8148 16 + compete.01 0.7857 0.8462 0.8148 13 + finance.01 0.8000 1.0000 0.8889 12 + fire.01 0.8571 0.9231 0.8889 13 + transport.01 0.5882 1.0000 0.7407 10 + appear.01 0.9286 1.0000 0.9630 13 + hit.01 0.5625 0.8182 0.6667 11 + exist.01 0.6875 1.0000 0.8148 11 + repair.01 0.5882 1.0000 0.7407 10 + go.05 0.6364 0.4667 0.5385 15 + depend.01 1.0000 1.0000 1.0000 13 + work.09 0.9091 0.6667 0.7692 15 + base.02 0.8333 0.7143 0.7692 14 + listen.01 1.0000 1.0000 1.0000 13 + consider.02 0.6923 0.6923 0.6923 13 + deliver.01 0.8571 1.0000 0.9231 12 + drink.01 1.0000 1.0000 1.0000 13 + conduct.01 1.0000 1.0000 1.0000 13 + insist.01 1.0000 1.0000 1.0000 13 + translate.01 1.0000 1.0000 1.0000 13 + call.03 0.9231 0.9231 0.9231 13 + maintain.01 1.0000 1.0000 1.0000 13 + emphasize.01 1.0000 1.0000 1.0000 13 + decline.01 1.0000 1.0000 1.0000 13 + defend.01 1.0000 1.0000 1.0000 13 + allege.01 0.7857 0.9167 0.8462 12 + steal.01 0.8462 0.9167 0.8800 12 + discover.01 0.9231 1.0000 0.9600 12 + survive.01 0.9231 1.0000 0.9600 12 + resolve.01 0.9231 1.0000 0.9600 12 + lead.03 0.9091 0.7143 0.8000 14 + guarantee.01 0.7857 1.0000 0.8800 11 + convict.01 0.9231 1.0000 0.9600 12 + confer.01 0.9231 1.0000 0.9600 12 + signal.07 0.9231 1.0000 0.9600 12 + do.LV 0.5714 0.2353 0.3333 17 + enjoy.01 1.0000 1.0000 1.0000 12 + leave.15 0.8182 0.6923 0.7500 13 + cover.02 0.8462 1.0000 0.9167 11 + obtain.01 1.0000 1.0000 1.0000 12 + cite.01 1.0000 1.0000 1.0000 12 + go.08 0.5833 0.5833 0.5833 12 + adjust.01 0.8462 1.0000 0.9167 11 + focus.01 0.7143 1.0000 0.8333 10 + take.14 1.0000 1.0000 1.0000 12 + plant.01 1.0000 1.0000 1.0000 12 + conflict.01 0.7143 1.0000 0.8333 10 + obey.01 1.0000 1.0000 1.0000 12 + violate.01 1.0000 1.0000 1.0000 12 + oppose.01 0.8462 1.0000 0.9167 11 + threaten.01 0.8462 1.0000 0.9167 11 + permit.01 1.0000 1.0000 1.0000 12 + campaign.01 1.0000 1.0000 1.0000 12 + recall.02 0.5714 0.8889 0.6957 9 + export.01 0.9167 1.0000 0.9565 11 + predict.01 0.9167 1.0000 0.9565 11 + publish.01 0.8333 0.9091 0.8696 11 + occupy.01 0.7692 1.0000 0.8696 10 + fear.01 0.7692 1.0000 0.8696 10 + respect.01 0.6923 0.9000 0.7826 10 + shoot.02 0.7692 1.0000 0.8696 10 + borrow.01 0.9167 1.0000 0.9565 11 + last.01 0.9167 1.0000 0.9565 11 + blame.01 0.9167 1.0000 0.9565 11 + terrorize.01 0.9167 1.0000 0.9565 11 + estimate.01 0.8333 0.9091 0.8696 11 + criticize.01 1.0000 0.9167 0.9565 12 + indict.01 0.9167 1.0000 0.9565 11 + ride.01 1.0000 1.0000 1.0000 11 + forget.01 1.0000 1.0000 1.0000 11 + find.02 0.7000 0.5833 0.6364 12 + finish.01 0.5714 1.0000 0.7273 8 + refuse.01 1.0000 1.0000 1.0000 11 + acknowledge.01 1.0000 1.0000 1.0000 11 + dispute.01 1.0000 1.0000 1.0000 11 + result.01 1.0000 1.0000 1.0000 11 + push.01 0.6923 1.0000 0.8182 9 + fund.01 1.0000 1.0000 1.0000 11 + comment.01 0.8333 1.0000 0.9091 10 + recognize.01 1.0000 0.8333 0.9091 12 + divide.02 0.6667 0.8000 0.7273 10 + aim.02 1.0000 1.0000 1.0000 11 + broadcast.01 1.0000 1.0000 1.0000 11 + summit.01 0.8333 1.0000 0.9091 10 + explode.01 0.8333 1.0000 0.9091 10 + impose.01 1.0000 1.0000 1.0000 11 + extend.01 0.6923 1.0000 0.8182 9 + worship.01 1.0000 1.0000 1.0000 11 + model.01 0.1818 0.1818 0.1818 11 + grant.01 0.9091 1.0000 0.9524 10 + argue.02 0.8182 0.9000 0.8571 10 + draw.01 0.9000 0.8182 0.8571 11 + assure.01 0.9091 1.0000 0.9524 10 + treat.01 0.8182 0.9000 0.8571 10 + rush.01 0.9091 1.0000 0.9524 10 + give_up.07 0.7500 1.0000 0.8571 9 + program.01 0.8182 0.9000 0.8571 10 + request.01 0.9091 1.0000 0.9524 10 + direct.01 0.8182 0.9000 0.8571 10 + award.01 0.9091 1.0000 0.9524 10 + rate.01 0.9091 1.0000 0.9524 10 + send.03 0.6667 0.2857 0.4000 14 + guess.01 1.0000 1.0000 1.0000 10 + teach.01 1.0000 1.0000 1.0000 10 + wonder.01 1.0000 1.0000 1.0000 10 + relate.01 0.5455 0.6667 0.6000 9 + gather.01 0.8182 1.0000 0.9000 9 + pass.03 0.5833 0.8750 0.7000 8 + inform.01 1.0000 1.0000 1.0000 10 + commit.02 1.0000 1.0000 1.0000 10 + wash.01 0.9000 0.9000 0.9000 10 + battle.01 0.8182 1.0000 0.9000 9 + apply.02 1.0000 1.0000 1.0000 10 + claim.01 0.8182 1.0000 0.9000 9 + progress.01 0.6667 1.0000 0.8000 8 + exceed.01 1.0000 1.0000 1.0000 10 + charge.01 0.6364 0.8750 0.7368 8 + employ.01 0.5000 0.8571 0.6316 7 + use.03 0.9000 1.0000 0.9474 9 + trip.03 0.8000 0.8889 0.8421 9 + bear.01 1.0000 0.9000 0.9474 10 + repeat.01 1.0000 0.9000 0.9474 10 + engage.01 0.8889 0.8000 0.8421 10 + declare.01 0.9000 1.0000 0.9474 9 + cut.01 0.8000 0.8889 0.8421 9 + accumulate.01 0.9000 1.0000 0.9474 9 + withdraw.01 0.7273 1.0000 0.8421 8 + supply.01 0.5455 0.7500 0.6316 8 + concern.02 0.6000 0.7500 0.6667 8 + worry.02 0.4167 0.8333 0.5556 6 + trust.02 0.8000 1.0000 0.8889 8 + reject.01 1.0000 1.0000 1.0000 9 + lift.01 1.0000 1.0000 1.0000 9 + burn.01 1.0000 1.0000 1.0000 9 + gain.02 1.0000 1.0000 1.0000 9 + hurt.01 1.0000 1.0000 1.0000 9 + link.01 0.8000 1.0000 0.8889 8 + design.01 1.0000 1.0000 1.0000 9 + rank.01 1.0000 1.0000 1.0000 9 + deadly.04 0.8000 1.0000 0.8889 8 + identify.01 1.0000 1.0000 1.0000 9 + place.01 1.0000 1.0000 1.0000 9 + lack.01 1.0000 1.0000 1.0000 9 + lay.01 0.8000 1.0000 0.8889 8 + collect.01 1.0000 1.0000 1.0000 9 + prevent.01 1.0000 1.0000 1.0000 9 + care.03 0.3846 1.0000 0.5556 5 + stand_up.07 1.0000 1.0000 1.0000 9 + disclose.01 1.0000 1.0000 1.0000 9 + drop.05 1.0000 0.8000 0.8889 10 + confirm.01 1.0000 1.0000 1.0000 9 + demonstrate.01 1.0000 1.0000 1.0000 9 + hide.01 1.0000 1.0000 1.0000 9 + survey.01 0.6364 1.0000 0.7778 7 + reverse.01 1.0000 1.0000 1.0000 9 + measure.02 0.2857 1.0000 0.4444 4 + register.02 0.5000 1.0000 0.6667 6 + ensure.01 1.0000 1.0000 1.0000 9 + dismantle.01 1.0000 1.0000 1.0000 9 + sleep.01 0.7000 1.0000 0.8235 7 + base.01 0.7778 0.8750 0.8235 8 + favor.01 1.0000 0.5455 0.7059 11 + build_up.05 0.8889 1.0000 0.9412 8 + process.01 0.6000 0.8571 0.7059 7 + contain.01 0.8889 1.0000 0.9412 8 + resume.01 0.8889 1.0000 0.9412 8 + attend.01 0.8889 1.0000 0.9412 8 + grow.02 0.7000 1.0000 0.8235 7 + record.01 0.8889 1.0000 0.9412 8 + notice.01 0.8889 1.0000 0.9412 8 + injure.01 0.8889 1.0000 0.9412 8 + head.02 0.8889 1.0000 0.9412 8 + explore.01 0.7000 1.0000 0.8235 7 + murder.01 1.0000 0.8889 0.9412 9 + hit.02 0.7778 0.8750 0.8235 8 + join.04 0.8889 1.0000 0.9412 8 + pull.01 0.5455 1.0000 0.7059 6 + pass.01 0.7000 1.0000 0.8235 7 + market.01 0.7000 1.0000 0.8235 7 + climb.02 0.8889 1.0000 0.9412 8 + go.12 0.6667 0.8571 0.7500 7 + separate.01 1.0000 1.0000 1.0000 8 + order.02 0.8750 0.8750 0.8750 8 + come_out.09 0.6667 0.8571 0.7500 7 + turn_out.11 0.8750 0.8750 0.8750 8 + cost.01 1.0000 1.0000 1.0000 8 + resign.01 1.0000 1.0000 1.0000 8 + embrace.01 1.0000 1.0000 1.0000 8 + adopt.01 1.0000 1.0000 1.0000 8 + accelerate.01 1.0000 1.0000 1.0000 8 + task.01 1.0000 1.0000 1.0000 8 + recommend.01 1.0000 1.0000 1.0000 8 + abandon.01 1.0000 1.0000 1.0000 8 + photograph.01 0.7778 1.0000 0.8750 7 + integrate.01 0.4545 1.0000 0.6250 5 + come_up.11 1.0000 1.0000 1.0000 8 + review.01 1.0000 1.0000 1.0000 8 + found.01 1.0000 1.0000 1.0000 8 + catch.03 0.8333 0.5000 0.6250 10 + harm.01 1.0000 1.0000 1.0000 8 + step.01 1.0000 0.7778 0.8750 9 + suspect.01 0.7500 0.7500 0.7500 8 + compensate.01 0.6000 1.0000 0.7500 6 + cancel.01 1.0000 1.0000 1.0000 8 + urge.01 1.0000 1.0000 1.0000 8 + happen.02 1.0000 1.0000 1.0000 8 + look_after.07 1.0000 1.0000 1.0000 8 + generate.01 1.0000 0.7778 0.8750 9 + perform.01 0.7778 1.0000 0.8750 7 + activate.01 1.0000 1.0000 1.0000 8 + settle.03 0.6667 0.4444 0.5333 9 + check_out.05 0.8750 1.0000 0.9333 7 + climb.01 0.8750 1.0000 0.9333 7 + rent.01 0.8750 1.0000 0.9333 7 + perform.02 0.7500 0.8571 0.8000 7 + open_up.03 1.0000 0.8750 0.9333 8 + arrest.01 0.8750 1.0000 0.9333 7 + list.01 1.0000 0.8750 0.9333 8 + emerge.01 0.8750 1.0000 0.9333 7 + attempt.01 0.8750 1.0000 0.9333 7 + free.01 0.8750 1.0000 0.9333 7 + feature.01 0.8750 1.0000 0.9333 7 + sentence.01 0.6667 1.0000 0.8000 6 + age.01 0.8750 1.0000 0.9333 7 + satisfy.01 0.6667 1.0000 0.8000 6 + resolve.02 0.8750 1.0000 0.9333 7 + inflate.01 1.0000 0.8750 0.9333 8 + owe.01 1.0000 1.0000 1.0000 7 + suppose.02 1.0000 1.0000 1.0000 7 + diagnose.01 1.0000 1.0000 1.0000 7 + remind.01 1.0000 1.0000 1.0000 7 + abuse.01 0.3750 0.5000 0.4286 6 + sing.01 1.0000 1.0000 1.0000 7 + supervise.01 1.0000 1.0000 1.0000 7 + experiment.01 0.7500 1.0000 0.8571 6 + determine.01 0.8571 0.8571 0.8571 7 + address.02 0.7500 1.0000 0.8571 6 + disagree.01 1.0000 1.0000 1.0000 7 + sound.02 0.5556 1.0000 0.7143 5 + settle.02 0.5556 1.0000 0.7143 5 + sink.01 0.7500 1.0000 0.8571 6 + cast.01 1.0000 1.0000 1.0000 7 + escape.01 1.0000 1.0000 1.0000 7 + apologize.01 1.0000 1.0000 1.0000 7 + love.02 1.0000 1.0000 1.0000 7 + approach.01 0.7500 1.0000 0.8571 6 + regulate.01 0.7500 1.0000 0.8571 6 + benefit.01 1.0000 1.0000 1.0000 7 + capture.01 1.0000 1.0000 1.0000 7 + punish.01 1.0000 1.0000 1.0000 7 + count.01 0.7500 1.0000 0.8571 6 + accuse.01 1.0000 1.0000 1.0000 7 + cap.01 0.8571 0.8571 0.8571 7 + justify.01 1.0000 1.0000 1.0000 7 + mission.01 0.7500 1.0000 0.8571 6 + delay.01 0.5556 1.0000 0.7143 5 + debate.01 1.0000 1.0000 1.0000 7 + cry.02 0.5556 1.0000 0.7143 5 + divorce.01 1.0000 1.0000 1.0000 7 + strip.01 0.7500 1.0000 0.8571 6 + shift.01 0.7500 1.0000 0.8571 6 + front.01 0.5556 1.0000 0.7143 5 + abuse.02 0.0769 1.0000 0.1429 1 + pick_up.04 0.8571 1.0000 0.9231 6 + strive.01 0.8571 1.0000 0.9231 6 + locate.01 0.8571 1.0000 0.9231 6 + check.01 0.8333 0.7143 0.7692 7 + investigate.01 1.0000 0.8571 0.9231 7 + amend.01 0.6250 1.0000 0.7692 5 + observe.01 0.4444 1.0000 0.6154 4 + mark.01 1.0000 0.8571 0.9231 7 + organize.01 1.0000 0.8571 0.9231 7 + concentrate.01 0.4444 1.0000 0.6154 4 + renew.01 0.8571 1.0000 0.9231 6 + miss.02 0.8571 1.0000 0.9231 6 + deserve.01 0.8571 1.0000 0.9231 6 + marry.01 0.8333 0.7143 0.7692 7 + relieve.01 0.8571 1.0000 0.9231 6 + educate.01 0.5000 0.8000 0.6154 5 + transfer.01 0.8571 1.0000 0.9231 6 + bury.01 0.8571 1.0000 0.9231 6 + lie.08 0.5000 0.8000 0.6154 5 + hand_over.02 0.8571 1.0000 0.9231 6 + communicate.01 0.6250 1.0000 0.7692 5 + back.01 0.8333 0.7143 0.7692 7 + flow.01 0.8571 1.0000 0.9231 6 + spread.02 0.7143 0.8333 0.7692 6 + contract.02 0.8571 1.0000 0.9231 6 + circulate.01 0.1818 1.0000 0.3077 2 + merge.01 0.8571 1.0000 0.9231 6 + dissent.01 0.5000 0.4286 0.4615 7 + recall.01 0.7500 0.3333 0.4615 9 + cheat.02 0.8571 1.0000 0.9231 6 + figure_out.05 1.0000 1.0000 1.0000 6 + end_up.03 1.0000 1.0000 1.0000 6 + tolerate.01 1.0000 1.0000 1.0000 6 + boast.01 1.0000 1.0000 1.0000 6 + endure.01 1.0000 1.0000 1.0000 6 + roll.01 0.8333 0.8333 0.8333 6 + confront.01 1.0000 1.0000 1.0000 6 + save.01 1.0000 0.7143 0.8333 7 + replace.01 1.0000 1.0000 1.0000 6 + accord.02 1.0000 1.0000 1.0000 6 + dialogue.01 0.3333 1.0000 0.5000 3 + tend.02 1.0000 1.0000 1.0000 6 + train.01 0.7143 1.0000 0.8333 5 + wound.01 1.0000 1.0000 1.0000 6 + give.LV 1.0000 0.5000 0.6667 8 + advance.01 0.5000 1.0000 0.6667 4 + tear.01 0.7143 1.0000 0.8333 5 + appreciate.02 1.0000 1.0000 1.0000 6 + distract.01 0.8333 0.8333 0.8333 6 + touch.01 1.0000 1.0000 1.0000 6 + clash.01 1.0000 1.0000 1.0000 6 + condemn.01 1.0000 1.0000 1.0000 6 + update.01 1.0000 1.0000 1.0000 6 + forgive.01 1.0000 1.0000 1.0000 6 + guide.01 0.7143 1.0000 0.8333 5 + plot.01 0.7143 1.0000 0.8333 5 + elect.01 1.0000 1.0000 1.0000 6 + remove.01 0.7143 1.0000 0.8333 5 + jump.01 1.0000 1.0000 1.0000 6 + surprise.01 0.8333 0.8333 0.8333 6 + ease.02 1.0000 1.0000 1.0000 6 + cut_off.04 0.7143 1.0000 0.8333 5 + restrict.01 1.0000 1.0000 1.0000 6 + strike.01 0.7143 1.0000 0.8333 5 + suspend.01 1.0000 0.7143 0.8333 7 + enhance.01 1.0000 1.0000 1.0000 6 + air.01 0.8333 0.8333 0.8333 6 + take_away.05 0.6000 0.5000 0.5455 6 + bet.01 0.6667 0.8000 0.7273 5 + act.01 0.4286 0.7500 0.5455 4 + lie.07 0.5000 0.6000 0.5455 5 + push.02 0.6667 0.8000 0.7273 5 + return.02 1.0000 0.5714 0.7273 7 + break.18 0.4286 0.7500 0.5455 4 + engineer.01 0.5714 1.0000 0.7273 4 + contrast.01 0.8333 1.0000 0.9091 5 + assume.01 1.0000 0.8333 0.9091 6 + govern.01 0.8333 1.0000 0.9091 5 + sign.01 0.4000 0.3333 0.3636 6 + stand.04 0.7500 0.4286 0.5455 7 + interact.01 0.3750 1.0000 0.5455 3 + evoke.01 0.8333 1.0000 0.9091 5 + assess.01 0.8333 1.0000 0.9091 5 + range.01 1.0000 0.8333 0.9091 6 + clear.01 0.8333 1.0000 0.9091 5 + execute.01 1.0000 0.8333 0.9091 6 + accomplish.01 1.0000 0.8333 0.9091 6 + breed.01 0.6667 0.8000 0.7273 5 + freeze.01 0.5714 1.0000 0.7273 4 + raise.02 1.0000 0.8333 0.9091 6 + lend.01 0.8333 1.0000 0.9091 5 + double.01 0.5714 1.0000 0.7273 4 + make_up.07 0.8333 1.0000 0.9091 5 + leak.01 0.8333 1.0000 0.9091 5 + block.01 0.8000 0.6667 0.7273 6 + recover.02 0.8000 0.6667 0.7273 6 + round.05 1.0000 0.8333 0.9091 6 + blast.05 0.8333 1.0000 0.9091 5 + stand.11 0.5714 1.0000 0.7273 4 + sin.01 0.8333 1.0000 0.9091 5 + shrink.01 0.8333 1.0000 0.9091 5 + hurry.01 0.8000 0.6667 0.7273 6 + realize.02 0.8333 1.0000 0.9091 5 + transform.01 0.5714 1.0000 0.7273 4 + notice.03 1.0000 0.8333 0.9091 6 + return.06 0.5714 1.0000 0.7273 4 + verify.01 0.8333 1.0000 0.9091 5 + pass_away.16 1.0000 1.0000 1.0000 5 + qualify.02 0.6667 1.0000 0.8000 4 + assume.02 0.6667 1.0000 0.8000 4 + mind.01 1.0000 1.0000 1.0000 5 + anticipate.01 1.0000 1.0000 1.0000 5 + scare.01 1.0000 1.0000 1.0000 5 + waste.01 0.6667 1.0000 0.8000 4 + afford.01 1.0000 1.0000 1.0000 5 + stipulate.01 1.0000 1.0000 1.0000 5 + detain.01 1.0000 1.0000 1.0000 5 + pressure.01 1.0000 1.0000 1.0000 5 + earthquake.01 1.0000 1.0000 1.0000 5 + enable.01 1.0000 1.0000 1.0000 5 + search.01 0.6667 1.0000 0.8000 4 + bind.01 0.8000 0.8000 0.8000 5 + stress.01 1.0000 1.0000 1.0000 5 + originate.01 1.0000 1.0000 1.0000 5 + donate.01 1.0000 1.0000 1.0000 5 + greet.01 1.0000 1.0000 1.0000 5 + exploit.01 1.0000 1.0000 1.0000 5 + object.01 1.0000 1.0000 1.0000 5 + avoid.01 1.0000 1.0000 1.0000 5 + hate.01 1.0000 1.0000 1.0000 5 + depart.01 1.0000 1.0000 1.0000 5 + ceremony.01 1.0000 1.0000 1.0000 5 + undergo.28 1.0000 1.0000 1.0000 5 + associate.01 1.0000 1.0000 1.0000 5 + beg.01 1.0000 1.0000 1.0000 5 + scream.01 1.0000 1.0000 1.0000 5 + enact.01 1.0000 1.0000 1.0000 5 + persuade.01 1.0000 1.0000 1.0000 5 + distribute.01 0.4286 1.0000 0.6000 3 + notify.01 1.0000 0.6667 0.8000 6 + hire.01 1.0000 1.0000 1.0000 5 + consult.01 1.0000 1.0000 1.0000 5 + convince.01 0.4286 1.0000 0.6000 3 + serve.02 0.3333 0.5000 0.4000 4 + finalize.01 1.0000 1.0000 1.0000 5 + refuel.01 1.0000 1.0000 1.0000 5 + defeat.01 1.0000 1.0000 1.0000 5 + step_down.04 1.0000 1.0000 1.0000 5 + trigger.01 1.0000 1.0000 1.0000 5 + deploy.01 1.0000 1.0000 1.0000 5 + invade.01 1.0000 1.0000 1.0000 5 + target.01 1.0000 1.0000 1.0000 5 + bankrupt.01 0.6667 1.0000 0.8000 4 + press.01 1.0000 1.0000 1.0000 5 + conclude.02 0.2857 0.6667 0.4000 3 + prosecute.01 1.0000 1.0000 1.0000 5 + nail.01 1.0000 1.0000 1.0000 5 + authorize.01 1.0000 1.0000 1.0000 5 + encourage.02 0.3333 0.5000 0.4000 4 + reorganize.01 0.8000 0.8000 0.8000 5 + total.01 1.0000 1.0000 1.0000 5 + abort.01 1.0000 1.0000 1.0000 5 + turmoil.01 1.0000 1.0000 1.0000 5 + conclude.01 0.8000 0.8000 0.8000 5 + liberalize.01 1.0000 1.0000 1.0000 5 + leverage.01 1.0000 1.0000 1.0000 5 + isolate.01 0.2500 1.0000 0.4000 2 + hold.02 0.7500 0.6000 0.6667 5 + leave.17 0.6000 0.7500 0.6667 4 + have.05 0.5000 0.4000 0.4444 5 + fit.06 1.0000 0.8000 0.8889 5 + drive.02 0.1667 0.3333 0.2222 3 + break.02 1.0000 0.8000 0.8889 5 + pass.05 0.8000 1.0000 0.8889 4 + copy.01 0.8000 1.0000 0.8889 4 + screen.01 0.6000 0.7500 0.6667 4 + confuse.01 1.0000 0.8000 0.8889 5 + arrange.01 0.8000 1.0000 0.8889 4 + take_out.11 1.0000 0.8000 0.8889 5 + call_on.05 0.8000 1.0000 0.8889 4 + relax.01 0.8000 1.0000 0.8889 4 + access.01 1.0000 0.8000 0.8889 5 + cultivate.01 0.8000 1.0000 0.8889 4 + postpone.01 0.8000 1.0000 0.8889 4 + boost.01 0.8000 1.0000 0.8889 4 + soften.01 0.8000 1.0000 0.8889 4 + stick.01 0.5000 1.0000 0.6667 3 + measure.01 0.8000 1.0000 0.8889 4 + make_it.14 1.0000 0.8000 0.8889 5 + sue.02 1.0000 0.8000 0.8889 5 + entrust.01 0.8000 1.0000 0.8889 4 + struggle.02 1.0000 0.8000 0.8889 5 + tighten.01 0.8000 1.0000 0.8889 4 + surround.01 0.8000 1.0000 0.8889 4 + spread.03 0.5000 1.0000 0.6667 3 + plead.02 1.0000 0.8000 0.8889 5 + dance.01 0.5000 1.0000 0.6667 3 + withhold.01 1.0000 0.8000 0.8889 5 + hang.01 0.6000 0.7500 0.6667 4 + prevail.01 1.0000 0.8000 0.8889 5 + contest.02 0.8000 1.0000 0.8889 4 + jump.03 0.8000 1.0000 0.8889 4 + mix.01 0.5000 1.0000 0.6667 3 + fast.01 0.8000 1.0000 0.8889 4 + store.01 0.8000 1.0000 0.8889 4 + discount.01 0.8000 1.0000 0.8889 4 + worry.01 0.7500 0.6000 0.6667 5 + burden.01 0.5000 1.0000 0.6667 3 + look.09 1.0000 0.8000 0.8889 5 + tax.01 1.0000 1.0000 1.0000 4 + show_up.02 1.0000 1.0000 1.0000 4 + affiliate.01 1.0000 1.0000 1.0000 4 + submit.01 1.0000 1.0000 1.0000 4 + work_out.02 0.6000 1.0000 0.7500 3 + be_like.04 1.0000 0.6000 0.7500 5 + hunt.01 0.3333 1.0000 0.5000 2 + concentrate.02 1.0000 1.0000 1.0000 4 + tour.01 1.0000 1.0000 1.0000 4 + surge.01 1.0000 1.0000 1.0000 4 + lower.05 1.0000 1.0000 1.0000 4 + laugh.01 1.0000 1.0000 1.0000 4 + revise.01 1.0000 1.0000 1.0000 4 + apply.01 1.0000 1.0000 1.0000 4 + display.01 1.0000 1.0000 1.0000 4 + finish.02 1.0000 0.3333 0.5000 6 + session.01 0.6000 1.0000 0.7500 3 + draft.01 1.0000 1.0000 1.0000 4 + inspire.01 1.0000 1.0000 1.0000 4 + resist.01 1.0000 1.0000 1.0000 4 + fun.01 0.6000 1.0000 0.7500 3 + bind.02 0.6000 1.0000 0.7500 3 + house.01 1.0000 1.0000 1.0000 4 + retire.01 1.0000 1.0000 1.0000 4 + ignore.01 1.0000 1.0000 1.0000 4 + taste.01 1.0000 1.0000 1.0000 4 + proceed.01 1.0000 1.0000 1.0000 4 + disappoint.01 0.4000 0.6667 0.5000 3 + turn_over.12 1.0000 1.0000 1.0000 4 + arise.02 1.0000 1.0000 1.0000 4 + march.01 1.0000 1.0000 1.0000 4 + catch.02 0.7500 0.7500 0.7500 4 + doubt.01 1.0000 1.0000 1.0000 4 + tie.01 1.0000 1.0000 1.0000 4 + joke.01 1.0000 1.0000 1.0000 4 + complicate.01 0.7500 0.7500 0.7500 4 + stop.03 1.0000 0.6000 0.7500 5 + hand.01 1.0000 1.0000 1.0000 4 + back.02 0.7500 0.7500 0.7500 4 + grow_up.04 1.0000 1.0000 1.0000 4 + command.02 1.0000 1.0000 1.0000 4 + interfere.01 1.0000 1.0000 1.0000 4 + outbreak.01 1.0000 1.0000 1.0000 4 + admit.01 1.0000 1.0000 1.0000 4 + syndicate.01 0.6000 1.0000 0.7500 3 + undermine.01 1.0000 1.0000 1.0000 4 + lose.03 1.0000 0.6000 0.7500 5 + go_out.17 0.5000 0.5000 0.5000 4 + fluctuate.01 1.0000 1.0000 1.0000 4 + collapse.01 1.0000 1.0000 1.0000 4 + drought.01 0.6000 1.0000 0.7500 3 + credit.01 0.7500 0.7500 0.7500 4 + reopen.01 1.0000 1.0000 1.0000 4 + race.02 0.6000 1.0000 0.7500 3 + concede.01 1.0000 1.0000 1.0000 4 + anniversary.01 1.0000 1.0000 1.0000 4 + sprinkle.01 1.0000 1.0000 1.0000 4 + possess.01 1.0000 1.0000 1.0000 4 + fix.03 1.0000 1.0000 1.0000 4 + ship.01 0.3333 1.0000 0.5000 2 + decline.02 1.0000 1.0000 1.0000 4 + average.01 1.0000 1.0000 1.0000 4 + correct.01 1.0000 1.0000 1.0000 4 + hearing.02 1.0000 1.0000 1.0000 4 + look_forward.03 0.7500 1.0000 0.8571 3 + turn_in.06 0.0000 0.0000 0.0000 6 + catch.01 0.2000 0.5000 0.2857 2 + manufacture.01 1.0000 0.7500 0.8571 4 + sacrifice.01 0.7500 1.0000 0.8571 3 + detect.01 1.0000 0.7500 0.8571 4 + research.01 1.0000 0.7500 0.8571 4 + reiterate.01 0.7500 1.0000 0.8571 3 + run_out.05 0.7500 1.0000 0.8571 3 + leave_behind.18 0.1667 1.0000 0.2857 1 + ruin.01 0.7500 1.0000 0.8571 3 + divert.01 1.0000 0.7500 0.8571 4 + commit.01 1.0000 0.7500 0.8571 4 + pass.02 0.6667 0.5000 0.5714 4 + exercise.02 0.5000 0.6667 0.5714 3 + complain.01 1.0000 0.7500 0.8571 4 + beat.01 0.4000 1.0000 0.5714 2 + approach.02 1.0000 0.7500 0.8571 4 + dominate.01 0.7500 1.0000 0.8571 3 + distort.01 0.7500 1.0000 0.8571 3 + view.01 1.0000 0.4000 0.5714 5 + cover.01 0.5000 0.6667 0.5714 3 + inhibit.01 1.0000 0.7500 0.8571 4 + bring_down.03 0.7500 1.0000 0.8571 3 + rid.01 0.7500 1.0000 0.8571 3 + rip.01 0.7500 1.0000 0.8571 3 + rescue.01 0.7500 1.0000 0.8571 3 + celebrate.02 0.6667 0.5000 0.5714 4 + coordinate.01 0.7500 1.0000 0.8571 3 + obligate.01 0.7500 1.0000 0.8571 3 + recover.01 0.5000 0.6667 0.5714 3 + certify.01 0.7500 1.0000 0.8571 3 + vow.01 0.7500 1.0000 0.8571 3 + rally.01 0.5000 0.6667 0.5714 3 + set_out.07 0.7500 1.0000 0.8571 3 + deter.01 0.7500 1.0000 0.8571 3 + aid.01 0.7500 1.0000 0.8571 3 + harvest.01 0.7500 1.0000 0.8571 3 + baptize.02 0.7500 1.0000 0.8571 3 + question.03 0.2500 0.3333 0.2857 3 + break_through.22 0.7500 1.0000 0.8571 3 + appraise.01 1.0000 0.7500 0.8571 4 + boil.01 0.1667 1.0000 0.2857 1 + formulate.01 0.7500 1.0000 0.8571 3 + persist.01 0.7500 1.0000 0.8571 3 + exclude.01 0.4000 1.0000 0.5714 2 + yield.01 0.7500 1.0000 0.8571 3 + distinguish.01 0.7500 1.0000 0.8571 3 + reflect.01 0.7500 1.0000 0.8571 3 + disparage.01 1.0000 0.4000 0.5714 5 + narrow.01 0.7500 1.0000 0.8571 3 + cooperate.01 0.7500 1.0000 0.8571 3 + offend.01 1.0000 1.0000 1.0000 3 + look.04 1.0000 0.5000 0.6667 4 + come_up.13 1.0000 1.0000 1.0000 3 + starve.01 1.0000 1.0000 1.0000 3 + take_down.22 0.6667 0.6667 0.6667 3 + carry_on.02 1.0000 1.0000 1.0000 3 + see.03 0.0000 0.0000 0.0000 4 + shoot.01 1.0000 0.5000 0.6667 4 + crawl.01 1.0000 1.0000 1.0000 3 + invoke.01 1.0000 1.0000 1.0000 3 + pride.01 1.0000 1.0000 1.0000 3 + golf.01 1.0000 1.0000 1.0000 3 + orient.01 1.0000 1.0000 1.0000 3 + attribute.01 1.0000 1.0000 1.0000 3 + run.04 0.0000 0.0000 0.0000 3 + fill_out.03 1.0000 1.0000 1.0000 3 + consume.01 0.5000 1.0000 0.6667 2 + treat.03 0.6667 0.6667 0.6667 3 + derive.01 1.0000 1.0000 1.0000 3 + overcome.01 1.0000 1.0000 1.0000 3 + commercialize.01 0.6667 0.6667 0.6667 3 + lift.02 1.0000 1.0000 1.0000 3 + recruit.01 1.0000 1.0000 1.0000 3 + step_up.03 1.0000 1.0000 1.0000 3 + pull_out.02 1.0000 0.2000 0.3333 5 + interpret.01 1.0000 1.0000 1.0000 3 + admit.02 1.0000 1.0000 1.0000 3 + flood.01 0.6667 0.6667 0.6667 3 + flee.05 1.0000 1.0000 1.0000 3 + land.01 0.6667 0.6667 0.6667 3 + blow.01 0.6667 0.6667 0.6667 3 + subside.02 0.6667 0.6667 0.6667 3 + stroll.01 1.0000 1.0000 1.0000 3 + convert.01 1.0000 1.0000 1.0000 3 + bypass.01 0.5000 1.0000 0.6667 2 + terminate.01 1.0000 1.0000 1.0000 3 + optimize.01 1.0000 1.0000 1.0000 3 + regret.01 1.0000 1.0000 1.0000 3 + overlook.01 1.0000 1.0000 1.0000 3 + excuse.02 1.0000 1.0000 1.0000 3 + attain.01 1.0000 1.0000 1.0000 3 + live_up.04 1.0000 1.0000 1.0000 3 + switch.01 0.5000 1.0000 0.6667 2 + value.02 1.0000 1.0000 1.0000 3 + bring_about.05 1.0000 1.0000 1.0000 3 + terror.02 1.0000 1.0000 1.0000 3 + overthrow.01 1.0000 1.0000 1.0000 3 + curse.01 1.0000 1.0000 1.0000 3 + dress.01 0.5000 1.0000 0.6667 2 + stare.01 0.5000 1.0000 0.6667 2 + grab.01 1.0000 1.0000 1.0000 3 + exile.01 1.0000 1.0000 1.0000 3 + spook.01 1.0000 1.0000 1.0000 3 + live.02 1.0000 0.5000 0.6667 4 + ban.01 1.0000 1.0000 1.0000 3 + rob.01 1.0000 1.0000 1.0000 3 + practice.01 1.0000 1.0000 1.0000 3 + monitor.01 1.0000 1.0000 1.0000 3 + implicate.01 1.0000 1.0000 1.0000 3 + substitute.01 1.0000 1.0000 1.0000 3 + imitate.01 1.0000 1.0000 1.0000 3 + tow.01 1.0000 1.0000 1.0000 3 + retain.01 0.5000 1.0000 0.6667 2 + amount.01 1.0000 1.0000 1.0000 3 + rely.01 1.0000 1.0000 1.0000 3 + suppress.01 1.0000 1.0000 1.0000 3 + mind.04 0.2000 1.0000 0.3333 1 + excuse.01 1.0000 1.0000 1.0000 3 + time.02 1.0000 1.0000 1.0000 3 + ransom.01 1.0000 1.0000 1.0000 3 + liquidate.01 1.0000 0.5000 0.6667 4 + encounter.01 1.0000 1.0000 1.0000 3 + feed.01 1.0000 1.0000 1.0000 3 + escalate.01 1.0000 1.0000 1.0000 3 + bar.01 0.5000 1.0000 0.6667 2 + schedule.01 1.0000 1.0000 1.0000 3 + coincide.01 1.0000 1.0000 1.0000 3 + open.02 1.0000 0.5000 0.6667 4 + suppose.01 1.0000 1.0000 1.0000 3 + shake.01 1.0000 1.0000 1.0000 3 + tell.02 1.0000 0.5000 0.6667 4 + exercise.01 0.6667 0.6667 0.6667 3 + build.02 0.5000 0.2500 0.3333 4 + scandal.01 1.0000 1.0000 1.0000 3 + fine.01 1.0000 1.0000 1.0000 3 + stretch.01 1.0000 1.0000 1.0000 3 + gun_down.01 1.0000 1.0000 1.0000 3 + insult.01 0.3333 0.3333 0.3333 3 + preclude.01 1.0000 1.0000 1.0000 3 + poll.01 1.0000 1.0000 1.0000 3 + specify.01 1.0000 1.0000 1.0000 3 + match.01 1.0000 1.0000 1.0000 3 + craft.01 1.0000 1.0000 1.0000 3 + triumph.01 1.0000 1.0000 1.0000 3 + guard.01 1.0000 1.0000 1.0000 3 + panic.01 1.0000 1.0000 1.0000 3 + dispatch.01 1.0000 1.0000 1.0000 3 + moderate.01 1.0000 1.0000 1.0000 3 + near.01 1.0000 1.0000 1.0000 3 + pour.01 1.0000 1.0000 1.0000 3 + bow_down.04 1.0000 1.0000 1.0000 3 + riot.01 1.0000 1.0000 1.0000 3 + untie.01 1.0000 1.0000 1.0000 3 + decrease.01 1.0000 1.0000 1.0000 3 + allocate.01 1.0000 1.0000 1.0000 3 + surpass.01 1.0000 1.0000 1.0000 3 + vary.01 1.0000 1.0000 1.0000 3 + initiate.01 1.0000 1.0000 1.0000 3 + restructure.01 0.5000 1.0000 0.6667 2 + designate.01 1.0000 1.0000 1.0000 3 + examine.01 0.5000 1.0000 0.6667 2 + conquer.01 1.0000 1.0000 1.0000 3 + comply.01 1.0000 1.0000 1.0000 3 + prospect.02 0.5000 1.0000 0.6667 2 + reply.01 1.0000 1.0000 1.0000 3 + protest.02 1.0000 1.0000 1.0000 3 + top.02 1.0000 1.0000 1.0000 3 + diminish.01 1.0000 1.0000 1.0000 3 + consolidate.01 1.0000 1.0000 1.0000 3 + overshadow.01 1.0000 1.0000 1.0000 3 + discourage.01 1.0000 1.0000 1.0000 3 + sum_up.01 1.0000 1.0000 1.0000 3 + simmer.01 0.0000 0.0000 0.0000 6 + differ.02 0.5000 1.0000 0.6667 2 + consist.01 1.0000 1.0000 1.0000 3 + assert.03 1.0000 1.0000 1.0000 3 + repeal.01 1.0000 1.0000 1.0000 3 + compel.01 1.0000 1.0000 1.0000 3 + curb.01 1.0000 1.0000 1.0000 3 + absent.01 1.0000 1.0000 1.0000 3 + stage.01 1.0000 1.0000 1.0000 3 + rehearse.01 1.0000 1.0000 1.0000 3 + pose.02 1.0000 1.0000 1.0000 3 + miscalculate.01 1.0000 1.0000 1.0000 3 + detour.01 1.0000 0.5000 0.6667 4 + drag.01 1.0000 0.6667 0.8000 3 + know.03 1.0000 0.6667 0.8000 3 + end.02 0.0000 0.0000 0.0000 3 + go.09 1.0000 0.2500 0.4000 4 + breathe.01 0.6667 1.0000 0.8000 2 + sustain.01 0.6667 1.0000 0.8000 2 + break.19 0.6667 1.0000 0.8000 2 + flash.01 0.6667 1.0000 0.8000 2 + dawn.02 0.6667 1.0000 0.8000 2 + go.10 0.5000 0.3333 0.4000 3 + detail.01 0.6667 1.0000 0.8000 2 + collaborate.01 0.6667 1.0000 0.8000 2 + differentiate.01 0.6667 1.0000 0.8000 2 + count.04 1.0000 0.6667 0.8000 3 + speed.01 0.6667 1.0000 0.8000 2 + take.04 0.0000 0.0000 0.0000 4 + restore.01 0.5000 0.3333 0.4000 3 + oversee.01 0.6667 1.0000 0.8000 2 + renovate.01 1.0000 0.6667 0.8000 3 + entitle.01 0.6667 1.0000 0.8000 2 + weep.01 1.0000 0.6667 0.8000 3 + obstruct.01 0.6667 1.0000 0.8000 2 + wrap.01 1.0000 0.6667 0.8000 3 + sweep.01 1.0000 0.6667 0.8000 3 + dream.01 0.6667 1.0000 0.8000 2 + spotlight.01 1.0000 0.6667 0.8000 3 + corrupt.01 0.6667 1.0000 0.8000 2 + fish.01 0.6667 1.0000 0.8000 2 + revolve.06 1.0000 0.6667 0.8000 3 + movement.07 0.2500 1.0000 0.4000 1 + inaugurate.01 0.6667 1.0000 0.8000 2 + reinforce.01 1.0000 0.6667 0.8000 3 + pound.02 1.0000 0.6667 0.8000 3 + cry.01 0.0000 0.0000 0.0000 4 + loom.01 1.0000 0.6667 0.8000 3 + comfort.01 0.6667 1.0000 0.8000 2 + enforce.01 0.6667 1.0000 0.8000 2 + license.01 1.0000 0.6667 0.8000 3 + put.02 1.0000 0.6667 0.8000 3 + assault.01 0.6667 1.0000 0.8000 2 + liberate.01 0.6667 1.0000 0.8000 2 + smuggle.01 0.6667 1.0000 0.8000 2 + bother.01 0.6667 1.0000 0.8000 2 + interrogate.01 0.6667 1.0000 0.8000 2 + log.01 0.6667 1.0000 0.8000 2 + address.03 0.6667 1.0000 0.8000 2 + select.01 0.6667 1.0000 0.8000 2 + sell_out.03 1.0000 0.6667 0.8000 3 + storm.02 0.6667 1.0000 0.8000 2 + wake_up.02 0.6667 1.0000 0.8000 2 + catch_up.04 0.6667 1.0000 0.8000 2 + break.13 1.0000 0.2500 0.4000 4 + play.11 0.5000 0.3333 0.4000 3 + put_up.11 1.0000 0.6667 0.8000 3 + auction_off.01 1.0000 0.6667 0.8000 3 + wave.04 0.6667 1.0000 0.8000 2 + outpace.01 0.6667 1.0000 0.8000 2 + cap.02 1.0000 0.6667 0.8000 3 + combat.01 0.6667 1.0000 0.8000 2 + clarify.10 0.6667 1.0000 0.8000 2 + take_off.19 1.0000 0.2500 0.4000 4 + pick.01 0.6667 1.0000 0.8000 2 + execute.02 0.3333 0.5000 0.4000 2 + compile.01 1.0000 0.6667 0.8000 3 + shine.01 0.6667 1.0000 0.8000 2 + give_up.08 1.0000 0.2500 0.4000 4 + blow.09 0.6667 1.0000 0.8000 2 + restrain.01 0.6667 1.0000 0.8000 2 + calculate.01 0.6667 1.0000 0.8000 2 + add.03 0.0000 0.0000 0.0000 4 + ferment.01 1.0000 0.6667 0.8000 3 + make_up.16 0.6667 1.0000 0.8000 2 + succeed.03 0.6667 1.0000 0.8000 2 + telecommunicate.01 0.6667 1.0000 0.8000 2 + advertise.01 0.6667 1.0000 0.8000 2 + perceive.01 0.6667 1.0000 0.8000 2 + lock.01 0.6667 1.0000 0.8000 2 + charge.06 1.0000 0.6667 0.8000 3 + forecast.01 0.6667 1.0000 0.8000 2 + plunge.01 0.6667 1.0000 0.8000 2 + prepare.01 0.0000 0.0000 0.0000 1 + attach.01 0.6667 1.0000 0.8000 2 + wield.01 0.6667 1.0000 0.8000 2 + sample.01 0.0000 0.0000 0.0000 1 + frustrate.01 0.2500 1.0000 0.4000 1 + instruct.01 0.2500 1.0000 0.4000 1 + rewrite.01 0.2500 1.0000 0.4000 1 + alert.01 0.2500 1.0000 0.4000 1 + underlie.01 0.0000 0.0000 0.0000 0 + park.01 1.0000 1.0000 1.0000 2 + station.01 1.0000 1.0000 1.0000 2 + figure.01 0.3333 1.0000 0.5000 1 + dial.01 1.0000 1.0000 1.0000 2 + operate.101 0.0000 0.0000 0.0000 4 + inflame.01 1.0000 1.0000 1.0000 2 + hint.01 1.0000 1.0000 1.0000 2 + fry.01 1.0000 1.0000 1.0000 2 + mask.01 1.0000 1.0000 1.0000 2 + relinquish.01 1.0000 1.0000 1.0000 2 + paint.01 1.0000 0.3333 0.5000 3 + wage.01 1.0000 1.0000 1.0000 2 + kid.01 1.0000 1.0000 1.0000 2 + print.01 1.0000 1.0000 1.0000 2 + affirm.01 1.0000 1.0000 1.0000 2 + draw_up.03 1.0000 1.0000 1.0000 2 + network.01 1.0000 1.0000 1.0000 2 + modernize.01 1.0000 1.0000 1.0000 2 + outline.01 1.0000 1.0000 1.0000 2 + accompany.01 1.0000 1.0000 1.0000 2 + aim.01 0.3333 1.0000 0.5000 1 + illustrate.01 1.0000 1.0000 1.0000 2 + extract.01 1.0000 1.0000 1.0000 2 + observe.02 1.0000 0.3333 0.5000 3 + wrestle.01 0.5000 0.5000 0.5000 2 + advocate.01 1.0000 1.0000 1.0000 2 + chair.01 1.0000 1.0000 1.0000 2 + side.01 0.0000 0.0000 0.0000 4 + uphold.01 1.0000 1.0000 1.0000 2 + phase_out.01 0.3333 1.0000 0.5000 1 + drift.01 1.0000 1.0000 1.0000 2 + widen.01 1.0000 1.0000 1.0000 2 + tide.01 1.0000 1.0000 1.0000 2 + scoop_up.02 1.0000 1.0000 1.0000 2 + fade.01 1.0000 1.0000 1.0000 2 + converse.01 1.0000 1.0000 1.0000 2 + line.01 1.0000 1.0000 1.0000 2 + dwindle.01 1.0000 1.0000 1.0000 2 + wander.01 1.0000 1.0000 1.0000 2 + fetch.01 1.0000 1.0000 1.0000 2 + farm.01 1.0000 1.0000 1.0000 2 + prompt.01 1.0000 1.0000 1.0000 2 + set_about.12 1.0000 1.0000 1.0000 2 + chat.01 1.0000 1.0000 1.0000 2 + join_in.05 1.0000 1.0000 1.0000 2 + erect.01 1.0000 1.0000 1.0000 2 + outing.07 1.0000 1.0000 1.0000 2 + degrade.01 1.0000 1.0000 1.0000 2 + endeavor.01 1.0000 1.0000 1.0000 2 + fulfill.01 1.0000 1.0000 1.0000 2 + ridicule.01 0.3333 1.0000 0.5000 1 + imprison.01 1.0000 1.0000 1.0000 2 + tip.05 1.0000 1.0000 1.0000 2 + retreat.01 1.0000 1.0000 1.0000 2 + discard.01 1.0000 1.0000 1.0000 2 + manifest.01 1.0000 1.0000 1.0000 2 + float.01 1.0000 1.0000 1.0000 2 + abound.01 1.0000 1.0000 1.0000 2 + lighten.01 1.0000 1.0000 1.0000 2 + alleviate.01 1.0000 1.0000 1.0000 2 + press.02 1.0000 1.0000 1.0000 2 + dare.01 1.0000 1.0000 1.0000 2 + run.09 1.0000 0.3333 0.5000 3 + sense.01 1.0000 1.0000 1.0000 2 + break.16 1.0000 0.3333 0.5000 3 + scrap.01 1.0000 1.0000 1.0000 2 + resemble.01 1.0000 1.0000 1.0000 2 + hold_on.05 1.0000 1.0000 1.0000 2 + penetrate.01 1.0000 1.0000 1.0000 2 + prefer.01 1.0000 1.0000 1.0000 2 + salvation.01 1.0000 1.0000 1.0000 2 + utter.01 1.0000 1.0000 1.0000 2 + brainwash.01 1.0000 1.0000 1.0000 2 + wave.01 1.0000 1.0000 1.0000 2 + take.17 1.0000 1.0000 1.0000 2 + embed.01 1.0000 1.0000 1.0000 2 + abduct.01 1.0000 1.0000 1.0000 2 + refrain.01 1.0000 1.0000 1.0000 2 + hang_up.03 1.0000 1.0000 1.0000 2 + reproduce.01 1.0000 1.0000 1.0000 2 + triple.01 1.0000 1.0000 1.0000 2 + come_about.06 1.0000 1.0000 1.0000 2 + enroll.01 1.0000 1.0000 1.0000 2 + dedicate.01 1.0000 1.0000 1.0000 2 + note.02 1.0000 0.3333 0.5000 3 + levy.01 1.0000 1.0000 1.0000 2 + inherit.01 1.0000 0.3333 0.5000 3 + dub.01 1.0000 1.0000 1.0000 2 + embarrass.01 1.0000 1.0000 1.0000 2 + advise.01 1.0000 1.0000 1.0000 2 + constitute.01 1.0000 1.0000 1.0000 2 + extend.02 0.0000 0.0000 0.0000 4 + interrupt.01 1.0000 1.0000 1.0000 2 + topple.01 1.0000 1.0000 1.0000 2 + disarm.01 1.0000 1.0000 1.0000 2 + rethink.01 1.0000 1.0000 1.0000 2 + bleed.01 1.0000 1.0000 1.0000 2 + cover_up.04 1.0000 1.0000 1.0000 2 + light_up.08 0.3333 1.0000 0.5000 1 + wrap_up.02 1.0000 1.0000 1.0000 2 + debut.01 1.0000 1.0000 1.0000 2 + nominate.01 1.0000 1.0000 1.0000 2 + flock.02 0.5000 0.5000 0.5000 2 + span.01 1.0000 1.0000 1.0000 2 + procedure.01 0.3333 1.0000 0.5000 1 + mean.02 1.0000 1.0000 1.0000 2 + stand_by.05 1.0000 1.0000 1.0000 2 + do.04 1.0000 1.0000 1.0000 2 + devastate.01 0.3333 1.0000 0.5000 1 + mistake.02 0.5000 0.5000 0.5000 2 + cope.01 1.0000 1.0000 1.0000 2 + set.08 1.0000 0.3333 0.5000 3 + unfold.02 1.0000 1.0000 1.0000 2 + legalize.01 1.0000 1.0000 1.0000 2 + bail_out.01 1.0000 1.0000 1.0000 2 + peak.01 1.0000 1.0000 1.0000 2 + confiscate.01 1.0000 1.0000 1.0000 2 + paralyze.01 0.3333 1.0000 0.5000 1 + assassinate.01 1.0000 1.0000 1.0000 2 + preserve.01 1.0000 1.0000 1.0000 2 + uncover.01 1.0000 1.0000 1.0000 2 + retaliate.01 1.0000 1.0000 1.0000 2 + spark.01 1.0000 1.0000 1.0000 2 + escort.01 1.0000 1.0000 1.0000 2 + risk.01 1.0000 1.0000 1.0000 2 + caution.01 0.3333 1.0000 0.5000 1 + overturn.01 1.0000 1.0000 1.0000 2 + slam.02 1.0000 0.3333 0.5000 3 + speak_out.03 1.0000 1.0000 1.0000 2 + pardon.01 1.0000 1.0000 1.0000 2 + reprieve.01 1.0000 1.0000 1.0000 2 + proliferate.01 1.0000 1.0000 1.0000 2 + bathe.01 0.3333 1.0000 0.5000 1 + portray.01 1.0000 1.0000 1.0000 2 + load.01 1.0000 1.0000 1.0000 2 + stabilize.01 1.0000 1.0000 1.0000 2 + persecute.01 1.0000 1.0000 1.0000 2 + foam.01 1.0000 0.3333 0.5000 3 + dip.02 1.0000 1.0000 1.0000 2 + grind.01 0.3333 1.0000 0.5000 1 + brag.01 1.0000 1.0000 1.0000 2 + stimulate.01 1.0000 1.0000 1.0000 2 + revive.01 1.0000 1.0000 1.0000 2 + perfect.01 1.0000 1.0000 1.0000 2 + exempt.01 1.0000 1.0000 1.0000 2 + line_up.02 1.0000 1.0000 1.0000 2 + speed_up.02 1.0000 1.0000 1.0000 2 + entertain.01 0.3333 1.0000 0.5000 1 + offset.01 1.0000 1.0000 1.0000 2 + employ.02 1.0000 1.0000 1.0000 2 + motivate.01 1.0000 1.0000 1.0000 2 + discriminate.02 1.0000 1.0000 1.0000 2 + paint.03 0.5000 0.5000 0.5000 2 + recession.02 1.0000 1.0000 1.0000 2 + hail.02 1.0000 1.0000 1.0000 2 + spur.01 1.0000 1.0000 1.0000 2 + seize.01 1.0000 1.0000 1.0000 2 + intensify.01 1.0000 1.0000 1.0000 2 + beat.03 0.3333 1.0000 0.5000 1 + appoint.01 1.0000 1.0000 1.0000 2 + weaken.01 1.0000 1.0000 1.0000 2 + worsen.01 1.0000 1.0000 1.0000 2 + blow.14 1.0000 1.0000 1.0000 2 + disappear.01 1.0000 1.0000 1.0000 2 + maturate.03 1.0000 1.0000 1.0000 2 + materialize.01 1.0000 1.0000 1.0000 2 + massacre.01 1.0000 1.0000 1.0000 2 + rally.02 0.5000 0.5000 0.5000 2 + explode.02 0.5000 0.5000 0.5000 2 + depress.01 1.0000 1.0000 1.0000 2 + dismiss.01 0.3333 1.0000 0.5000 1 + reshape.01 1.0000 1.0000 1.0000 2 + break_out.06 0.0000 0.0000 0.0000 4 + tune_in.02 1.0000 1.0000 1.0000 2 + assemble.02 0.3333 1.0000 0.5000 1 + evolve.01 1.0000 1.0000 1.0000 2 + lay_off.02 1.0000 1.0000 1.0000 2 + garner.01 1.0000 1.0000 1.0000 2 + shoot.06 1.0000 1.0000 1.0000 2 + package.01 1.0000 1.0000 1.0000 2 + contend.01 1.0000 1.0000 1.0000 2 + rhyme.01 1.0000 1.0000 1.0000 2 + facilitate.01 1.0000 1.0000 1.0000 2 + erase.01 1.0000 1.0000 1.0000 2 + foresee.01 1.0000 1.0000 1.0000 2 + plummet.01 1.0000 1.0000 1.0000 2 + disrupt.01 1.0000 1.0000 1.0000 2 + subject.01 1.0000 1.0000 1.0000 2 + plague.01 1.0000 1.0000 1.0000 2 + thrive.01 1.0000 1.0000 1.0000 2 + title.01 1.0000 1.0000 1.0000 2 + blunt.01 0.3333 1.0000 0.5000 1 + incur.01 1.0000 1.0000 1.0000 2 + come.12 1.0000 1.0000 1.0000 2 + recognize.02 0.3333 1.0000 0.5000 1 + tune.01 1.0000 1.0000 1.0000 2 + contradict.01 1.0000 1.0000 1.0000 2 + envy.01 1.0000 1.0000 1.0000 2 + assimilate.01 0.3333 1.0000 0.5000 1 + ponder.01 1.0000 1.0000 1.0000 2 + take_up.31 0.3333 1.0000 0.5000 1 + expose.01 1.0000 1.0000 1.0000 2 + peddle.01 0.3333 1.0000 0.5000 1 + rebut.01 1.0000 1.0000 1.0000 2 + edit.01 1.0000 1.0000 1.0000 2 + abide.01 1.0000 1.0000 1.0000 2 + fool.01 1.0000 1.0000 1.0000 2 + rule_out.02 1.0000 1.0000 1.0000 2 + host.01 1.0000 1.0000 1.0000 2 + heat.01 1.0000 1.0000 1.0000 2 + shoot.03 0.3333 1.0000 0.5000 1 + publicize.01 1.0000 1.0000 1.0000 2 + follow.04 0.0000 0.0000 0.0000 0 + charge.08 0.0000 0.0000 0.0000 0 + unite.01 0.0000 0.0000 0.0000 0 + get.22 1.0000 0.5000 0.6667 2 + compromise.01 0.0000 0.0000 0.0000 1 + entertain.02 0.0000 0.0000 0.0000 3 + write_down.03 0.5000 1.0000 0.6667 1 + light.04 0.0000 0.0000 0.0000 3 + keep_up.05 0.5000 1.0000 0.6667 1 + trail.01 1.0000 0.5000 0.6667 2 + introduce.01 0.0000 0.0000 0.0000 2 + desire.01 0.5000 1.0000 0.6667 1 + ply.02 0.5000 1.0000 0.6667 1 + merit.01 1.0000 0.5000 0.6667 2 + stir_up.04 0.5000 1.0000 0.6667 1 + emerge.02 1.0000 0.5000 0.6667 2 + trial.06 1.0000 0.5000 0.6667 2 + interest.01 0.5000 1.0000 0.6667 1 + map.01 0.0000 0.0000 0.0000 3 + patent.01 0.5000 1.0000 0.6667 1 + stymie.01 1.0000 0.5000 0.6667 2 + shun.01 1.0000 0.5000 0.6667 2 + transit.01 0.5000 1.0000 0.6667 1 + lobby.01 0.5000 1.0000 0.6667 1 + smell.01 1.0000 0.5000 0.6667 2 + gaze.01 0.0000 0.0000 0.0000 3 + cross.01 1.0000 0.5000 0.6667 2 + celebrate.01 1.0000 0.5000 0.6667 2 + catch_on.05 0.5000 1.0000 0.6667 1 + mount.03 1.0000 0.5000 0.6667 2 + get_through.13 0.0000 0.0000 0.0000 1 + effort.01 0.5000 1.0000 0.6667 1 + cheat.01 1.0000 0.5000 0.6667 2 + project.02 1.0000 0.5000 0.6667 2 + victimize.01 0.5000 1.0000 0.6667 1 + reactivate.01 0.5000 1.0000 0.6667 1 + kick.01 0.5000 1.0000 0.6667 1 + curse.02 1.0000 0.5000 0.6667 2 + modify.01 0.5000 1.0000 0.6667 1 + stunt.02 0.0000 0.0000 0.0000 3 + perpetrate.01 1.0000 0.5000 0.6667 2 + run.07 1.0000 0.5000 0.6667 2 + sponsor.01 1.0000 0.5000 0.6667 2 + specialize.01 0.5000 1.0000 0.6667 1 + swell.01 1.0000 0.5000 0.6667 2 + whip.01 1.0000 0.5000 0.6667 2 + impend.01 0.5000 1.0000 0.6667 1 + make_up.10 1.0000 0.5000 0.6667 2 + tinker.01 0.5000 1.0000 0.6667 1 + pass.08 0.0000 0.0000 0.0000 1 + pump.01 0.5000 1.0000 0.6667 1 + shape.01 0.0000 0.0000 0.0000 1 + narrate.01 0.5000 1.0000 0.6667 1 + refine.01 0.5000 1.0000 0.6667 1 + centralize.01 0.5000 1.0000 0.6667 1 + disdain.01 1.0000 0.5000 0.6667 2 + hanging.07 0.5000 1.0000 0.6667 1 + loot.01 0.5000 1.0000 0.6667 1 + provoke.01 1.0000 0.5000 0.6667 2 + tend.01 1.0000 0.5000 0.6667 2 + rain.01 1.0000 0.5000 0.6667 2 + resort.01 0.5000 1.0000 0.6667 1 + reach.02 0.0000 0.0000 0.0000 3 + close_down.04 0.5000 1.0000 0.6667 1 + await.01 1.0000 0.5000 0.6667 2 + coat.01 0.5000 1.0000 0.6667 1 + call.07 0.0000 0.0000 0.0000 2 + shuffle.02 0.5000 1.0000 0.6667 1 + quit.01 1.0000 0.5000 0.6667 2 + slide.01 0.5000 1.0000 0.6667 1 + go.23 0.0000 0.0000 0.0000 2 + rock.01 1.0000 0.5000 0.6667 2 + rape.01 0.5000 1.0000 0.6667 1 + dim.01 0.5000 1.0000 0.6667 1 + vacate.01 1.0000 0.5000 0.6667 2 + take_up.13 1.0000 0.5000 0.6667 2 + shock.01 0.5000 1.0000 0.6667 1 + deregulate.01 1.0000 0.5000 0.6667 2 + roar.02 1.0000 0.5000 0.6667 2 + twist.01 1.0000 0.5000 0.6667 2 + undertake.01 1.0000 0.5000 0.6667 2 + recreation.02 0.5000 1.0000 0.6667 1 + veto.01 0.5000 1.0000 0.6667 1 + scatter.01 0.5000 1.0000 0.6667 1 + tempt.01 0.5000 1.0000 0.6667 1 + plow.01 1.0000 0.5000 0.6667 2 + sew.01 0.5000 1.0000 0.6667 1 + force.03 0.0000 0.0000 0.0000 3 + bow.01 0.5000 1.0000 0.6667 1 + sting.01 1.0000 0.5000 0.6667 2 + drown.02 0.5000 1.0000 0.6667 1 + devalue.01 0.5000 1.0000 0.6667 1 + assail.01 1.0000 0.5000 0.6667 2 + evaluate.01 0.5000 1.0000 0.6667 1 + distill.01 1.0000 0.5000 0.6667 2 + conserve.01 0.5000 1.0000 0.6667 1 + split.01 0.5000 1.0000 0.6667 1 + appropriate.01 1.0000 0.5000 0.6667 2 + reach.03 0.0000 0.0000 0.0000 2 + subscribe.01 1.0000 0.5000 0.6667 2 + pile_up.02 1.0000 0.5000 0.6667 2 + rise_up.03 0.5000 1.0000 0.6667 1 + bill.01 0.5000 1.0000 0.6667 1 + kick_in.02 0.0000 0.0000 0.0000 1 + incline.01 0.5000 1.0000 0.6667 1 + top.01 1.0000 0.5000 0.6667 2 + dislike.01 1.0000 0.5000 0.6667 2 + squeeze.01 1.0000 0.5000 0.6667 2 + dilute.01 1.0000 0.5000 0.6667 2 + tumble.01 1.0000 0.5000 0.6667 2 + edge.01 0.5000 1.0000 0.6667 1 + align.01 0.5000 1.0000 0.6667 1 + serve.04 0.5000 1.0000 0.6667 1 + slip.01 0.5000 1.0000 0.6667 1 + strike.03 0.0000 0.0000 0.0000 3 + mount.02 0.5000 1.0000 0.6667 1 + incriminate.01 0.0000 0.0000 0.0000 3 + pause.01 0.5000 1.0000 0.6667 1 + push.04 0.0000 0.0000 0.0000 3 + save.03 0.5000 1.0000 0.6667 1 + defy.01 1.0000 0.5000 0.6667 2 + arm.01 1.0000 0.5000 0.6667 2 + exhaust.01 0.5000 1.0000 0.6667 1 + preoccupy.01 0.5000 1.0000 0.6667 1 + take_on.09 0.5000 1.0000 0.6667 1 + blink.01 0.5000 1.0000 0.6667 1 + matter.01 0.5000 1.0000 0.6667 1 + inaction.01 1.0000 0.5000 0.6667 2 + gear.01 0.5000 1.0000 0.6667 1 + lock_up.04 1.0000 0.5000 0.6667 2 + restore.02 0.0000 0.0000 0.0000 1 + summarize.01 0.5000 1.0000 0.6667 1 + overemphasize.01 0.0000 0.0000 0.0000 0 + dwell.01 0.0000 0.0000 0.0000 0 + take_off.07 0.0000 0.0000 0.0000 0 + stagnate.01 0.0000 0.0000 0.0000 0 + beat.02 0.0000 0.0000 0.0000 1 + deduct.01 1.0000 1.0000 1.0000 1 + call_up.08 1.0000 1.0000 1.0000 1 + email.01 1.0000 1.0000 1.0000 1 + put_on.08 0.0000 0.0000 0.0000 2 + detach.01 1.0000 1.0000 1.0000 1 + irritate.01 1.0000 1.0000 1.0000 1 + wind_down.04 0.0000 0.0000 0.0000 2 + feel.05 0.0000 0.0000 0.0000 1 + join_up.02 1.0000 1.0000 1.0000 1 + debit.01 0.0000 0.0000 0.0000 2 + leave.02 0.0000 0.0000 0.0000 2 + characterize.01 1.0000 1.0000 1.0000 1 + push.05 0.0000 0.0000 0.0000 2 + tone_down.01 1.0000 1.0000 1.0000 1 + parent.01 1.0000 1.0000 1.0000 1 + reserve.01 1.0000 1.0000 1.0000 1 + absorb.01 1.0000 1.0000 1.0000 1 + hop.01 1.0000 1.0000 1.0000 1 + squeeze.02 1.0000 1.0000 1.0000 1 + trace.02 1.0000 1.0000 1.0000 1 + assemble.01 0.0000 0.0000 0.0000 2 + chew.01 1.0000 1.0000 1.0000 1 + entail.01 1.0000 1.0000 1.0000 1 + color.01 1.0000 1.0000 1.0000 1 + slack_off.01 1.0000 1.0000 1.0000 1 + blossom.01 0.0000 0.0000 0.0000 2 + serve_up.03 1.0000 1.0000 1.0000 1 + board.01 1.0000 1.0000 1.0000 1 + inspect.01 1.0000 1.0000 1.0000 1 + drape.01 1.0000 1.0000 1.0000 1 + sprawl.01 1.0000 1.0000 1.0000 1 + count.03 1.0000 1.0000 1.0000 1 + turn.14 0.0000 0.0000 0.0000 2 + spawn.01 1.0000 1.0000 1.0000 1 + epidemic.01 1.0000 1.0000 1.0000 1 + grip.01 1.0000 1.0000 1.0000 1 + label.01 1.0000 1.0000 1.0000 1 + infringe.01 1.0000 1.0000 1.0000 1 + override.01 1.0000 1.0000 1.0000 1 + shed.01 1.0000 1.0000 1.0000 1 + convene.01 1.0000 1.0000 1.0000 1 + precondition.01 1.0000 1.0000 1.0000 1 + necessitate.01 1.0000 1.0000 1.0000 1 + refurbish.01 1.0000 1.0000 1.0000 1 + carve.02 1.0000 1.0000 1.0000 1 + reflect.02 1.0000 1.0000 1.0000 1 + pass_up.13 1.0000 1.0000 1.0000 1 + shelter.01 1.0000 1.0000 1.0000 1 + settle_down.04 0.0000 0.0000 0.0000 2 + bridge.01 1.0000 1.0000 1.0000 1 + melt.01 1.0000 1.0000 1.0000 1 + darken.01 1.0000 1.0000 1.0000 1 + scuttle.01 1.0000 1.0000 1.0000 1 + moan.01 1.0000 1.0000 1.0000 1 + relate.02 1.0000 1.0000 1.0000 1 + pass_by.17 0.0000 0.0000 0.0000 2 + take.03 0.0000 0.0000 0.0000 1 + spell.01 1.0000 1.0000 1.0000 1 + pollute.01 1.0000 1.0000 1.0000 1 + lug.01 0.0000 0.0000 0.0000 2 + bud.01 1.0000 1.0000 1.0000 1 + dredge.01 1.0000 1.0000 1.0000 1 + leave.14 1.0000 1.0000 1.0000 1 + sign_up.03 1.0000 1.0000 1.0000 1 + fret.01 1.0000 1.0000 1.0000 1 + volunteer.01 1.0000 1.0000 1.0000 1 + tidy_up.01 1.0000 1.0000 1.0000 1 + foster.01 1.0000 1.0000 1.0000 1 + accession.01 1.0000 1.0000 1.0000 1 + adapt.01 1.0000 1.0000 1.0000 1 + treasure.01 1.0000 1.0000 1.0000 1 + strew.01 1.0000 1.0000 1.0000 1 + protrude.01 1.0000 1.0000 1.0000 1 + conduct.02 1.0000 1.0000 1.0000 1 + cherish.01 1.0000 1.0000 1.0000 1 + throw_away.07 1.0000 1.0000 1.0000 1 + outweigh.01 1.0000 1.0000 1.0000 1 + admire.01 1.0000 1.0000 1.0000 1 + wallow.01 1.0000 1.0000 1.0000 1 + flaw.01 1.0000 1.0000 1.0000 1 + yearn.01 1.0000 1.0000 1.0000 1 + hone.01 1.0000 1.0000 1.0000 1 + opt.01 1.0000 1.0000 1.0000 1 + tie_up.04 1.0000 1.0000 1.0000 1 + sweat.01 1.0000 1.0000 1.0000 1 + divide_up.03 0.0000 0.0000 0.0000 1 + rage.02 1.0000 1.0000 1.0000 1 + snatch.01 1.0000 1.0000 1.0000 1 + rediscover.01 1.0000 1.0000 1.0000 1 + chain.01 1.0000 1.0000 1.0000 1 + dysfunction.01 1.0000 1.0000 1.0000 1 + wake.01 1.0000 1.0000 1.0000 1 + annihilate.01 1.0000 1.0000 1.0000 1 + spew.01 1.0000 1.0000 1.0000 1 + name.02 0.0000 0.0000 0.0000 2 + cleanse.01 1.0000 1.0000 1.0000 1 + spar.01 1.0000 1.0000 1.0000 1 + piss_off.02 1.0000 1.0000 1.0000 1 + classify.01 1.0000 1.0000 1.0000 1 + shut_up.06 1.0000 1.0000 1.0000 1 + headquarter.01 1.0000 1.0000 1.0000 1 + ferry.01 1.0000 1.0000 1.0000 1 + ravage.01 1.0000 1.0000 1.0000 1 + come_across.21 1.0000 1.0000 1.0000 1 + unveil.01 1.0000 1.0000 1.0000 1 + make_out.12 0.0000 0.0000 0.0000 2 + fit_in.02 1.0000 1.0000 1.0000 1 + dissolve.01 1.0000 1.0000 1.0000 1 + start_off.02 0.0000 0.0000 0.0000 2 + envision.01 1.0000 1.0000 1.0000 1 + hype.01 0.0000 0.0000 0.0000 2 + sport.01 1.0000 1.0000 1.0000 1 + swallow.01 1.0000 1.0000 1.0000 1 + spray.01 1.0000 1.0000 1.0000 1 + salute.01 1.0000 1.0000 1.0000 1 + proclaim.01 1.0000 1.0000 1.0000 1 + disavow.01 0.0000 0.0000 0.0000 2 + go.11 1.0000 1.0000 1.0000 1 + sharpen.01 1.0000 1.0000 1.0000 1 + internalize.01 1.0000 1.0000 1.0000 1 + watch_out.02 1.0000 1.0000 1.0000 1 + perish.01 1.0000 1.0000 1.0000 1 + dig.01 1.0000 1.0000 1.0000 1 + crave.01 1.0000 1.0000 1.0000 1 + play.08 0.0000 0.0000 0.0000 1 + fascinate.01 1.0000 1.0000 1.0000 1 + calm_down.02 1.0000 1.0000 1.0000 1 + ring.01 0.0000 0.0000 0.0000 1 + prosper.01 1.0000 1.0000 1.0000 1 + humanize.01 1.0000 1.0000 1.0000 1 + keep_on.08 1.0000 1.0000 1.0000 1 + destine.01 1.0000 1.0000 1.0000 1 + illusion.01 1.0000 1.0000 1.0000 1 + shop.01 1.0000 1.0000 1.0000 1 + slow_down.03 1.0000 1.0000 1.0000 1 + fill_up.02 1.0000 1.0000 1.0000 1 + warm.01 1.0000 1.0000 1.0000 1 + congest.01 1.0000 1.0000 1.0000 1 + hold.13 0.0000 0.0000 0.0000 2 + underpin.01 1.0000 1.0000 1.0000 1 + labor.01 0.0000 0.0000 0.0000 2 + throttle.01 1.0000 1.0000 1.0000 1 + root.02 1.0000 1.0000 1.0000 1 + win_over.02 1.0000 1.0000 1.0000 1 + conform.01 1.0000 1.0000 1.0000 1 + weigh.02 1.0000 1.0000 1.0000 1 + commiserate.01 1.0000 1.0000 1.0000 1 + pump_up.02 0.0000 0.0000 0.0000 2 + memorize.01 1.0000 1.0000 1.0000 1 + dictate.01 1.0000 1.0000 1.0000 1 + form.02 0.0000 0.0000 0.0000 1 + comprehend.01 1.0000 1.0000 1.0000 1 + oppress.01 1.0000 1.0000 1.0000 1 + commission.01 1.0000 1.0000 1.0000 1 + beam.02 1.0000 1.0000 1.0000 1 + shackle.01 1.0000 1.0000 1.0000 1 + reevaluate.01 0.0000 0.0000 0.0000 2 + spill.01 1.0000 1.0000 1.0000 1 + ascend.01 1.0000 1.0000 1.0000 1 + bow.02 0.0000 0.0000 0.0000 2 + witness.01 1.0000 1.0000 1.0000 1 + dangle.01 1.0000 1.0000 1.0000 1 + kidnap.01 1.0000 1.0000 1.0000 1 + genocide.01 1.0000 1.0000 1.0000 1 + swear.01 1.0000 1.0000 1.0000 1 + convey.01 1.0000 1.0000 1.0000 1 + empower.01 1.0000 1.0000 1.0000 1 + scale.01 1.0000 1.0000 1.0000 1 + broker.01 1.0000 1.0000 1.0000 1 + call_off.06 1.0000 1.0000 1.0000 1 + classify.02 1.0000 1.0000 1.0000 1 + head.01 1.0000 1.0000 1.0000 1 + oust.01 1.0000 1.0000 1.0000 1 + cling.01 1.0000 1.0000 1.0000 1 + christen.01 1.0000 1.0000 1.0000 1 + bid.03 0.0000 0.0000 0.0000 2 + televise.01 1.0000 1.0000 1.0000 1 + suck.01 0.0000 0.0000 0.0000 1 + hang.02 0.0000 0.0000 0.0000 2 + giggle.01 1.0000 1.0000 1.0000 1 + loosen_up.02 1.0000 1.0000 1.0000 1 + protest.01 1.0000 1.0000 1.0000 1 + brief.01 1.0000 1.0000 1.0000 1 + undercut.01 1.0000 1.0000 1.0000 1 + whip_out.02 1.0000 1.0000 1.0000 1 + gesture.01 1.0000 1.0000 1.0000 1 + drive.03 1.0000 1.0000 1.0000 1 + torture.01 1.0000 1.0000 1.0000 1 + hoist.01 1.0000 1.0000 1.0000 1 + kick_off.04 0.0000 0.0000 0.0000 2 + take_off.18 0.0000 0.0000 0.0000 2 + snap.07 1.0000 1.0000 1.0000 1 + chronicle.01 0.0000 0.0000 0.0000 2 + bank.01 1.0000 1.0000 1.0000 1 + burst.02 1.0000 1.0000 1.0000 1 + remission.02 1.0000 1.0000 1.0000 1 + rehabilitate.01 1.0000 1.0000 1.0000 1 + ground.01 1.0000 1.0000 1.0000 1 + scam.01 1.0000 1.0000 1.0000 1 + define.01 1.0000 1.0000 1.0000 1 + appeal.01 1.0000 1.0000 1.0000 1 + union.02 0.0000 0.0000 0.0000 2 + hamper.01 1.0000 1.0000 1.0000 1 + skip.01 1.0000 1.0000 1.0000 1 + enthrall.01 1.0000 1.0000 1.0000 1 + converge.01 1.0000 1.0000 1.0000 1 + overlap.01 1.0000 1.0000 1.0000 1 + clap.01 1.0000 1.0000 1.0000 1 + hug.01 1.0000 1.0000 1.0000 1 + surrender.01 1.0000 1.0000 1.0000 1 + reside.01 1.0000 1.0000 1.0000 1 + run.08 0.0000 0.0000 0.0000 2 + roost.01 1.0000 1.0000 1.0000 1 + crack_down.06 1.0000 1.0000 1.0000 1 + ignite.01 1.0000 1.0000 1.0000 1 + handcuff.01 0.0000 0.0000 0.0000 1 + ambush.01 1.0000 1.0000 1.0000 1 + casualties.01 1.0000 1.0000 1.0000 1 + halt.01 1.0000 1.0000 1.0000 1 + transmit.01 1.0000 1.0000 1.0000 1 + restart.01 1.0000 1.0000 1.0000 1 + redirect.01 1.0000 1.0000 1.0000 1 + bargain.01 1.0000 1.0000 1.0000 1 + ratify.01 1.0000 1.0000 1.0000 1 + put_off.06 1.0000 1.0000 1.0000 1 + address.01 0.0000 0.0000 0.0000 2 + captivate.01 1.0000 1.0000 1.0000 1 + wreck.01 1.0000 1.0000 1.0000 1 + venture.01 1.0000 1.0000 1.0000 1 + scribble.01 1.0000 1.0000 1.0000 1 + shatter.01 1.0000 1.0000 1.0000 1 + spread.01 0.0000 0.0000 0.0000 2 + reaffirm.01 1.0000 1.0000 1.0000 1 + blind.01 1.0000 1.0000 1.0000 1 + click.01 1.0000 1.0000 1.0000 1 + break_up.08 1.0000 1.0000 1.0000 1 + allow.02 0.0000 0.0000 0.0000 2 + tally.01 1.0000 1.0000 1.0000 1 + flip.01 1.0000 1.0000 1.0000 1 + contest.01 1.0000 1.0000 1.0000 1 + play_out.03 1.0000 1.0000 1.0000 1 + intake.01 1.0000 1.0000 1.0000 1 + downplay.01 1.0000 1.0000 1.0000 1 + populate.01 1.0000 1.0000 1.0000 1 + grapple.01 1.0000 1.0000 1.0000 1 + burn_up.02 1.0000 1.0000 1.0000 1 + boycott.01 1.0000 1.0000 1.0000 1 + taint.01 1.0000 1.0000 1.0000 1 + trounce.01 1.0000 1.0000 1.0000 1 + endow.01 1.0000 1.0000 1.0000 1 + manage.02 1.0000 1.0000 1.0000 1 + score.01 1.0000 1.0000 1.0000 1 + molest.01 1.0000 1.0000 1.0000 1 + pack.01 1.0000 1.0000 1.0000 1 + echo.01 1.0000 1.0000 1.0000 1 + ring.05 0.0000 0.0000 0.0000 2 + abate.01 1.0000 1.0000 1.0000 1 + strike.05 1.0000 1.0000 1.0000 1 + iron_out.01 1.0000 1.0000 1.0000 1 + spill_out.03 1.0000 1.0000 1.0000 1 + give_away.02 1.0000 1.0000 1.0000 1 + prophesy.01 1.0000 1.0000 1.0000 1 + confess.01 1.0000 1.0000 1.0000 1 + kneel.01 1.0000 1.0000 1.0000 1 + sit_up.03 1.0000 1.0000 1.0000 1 + spit.01 1.0000 1.0000 1.0000 1 + weave.01 1.0000 1.0000 1.0000 1 + soak.01 1.0000 1.0000 1.0000 1 + stab.01 1.0000 1.0000 1.0000 1 + trust.01 0.0000 0.0000 0.0000 2 + rest.01 1.0000 1.0000 1.0000 1 + cry_out.03 1.0000 1.0000 1.0000 1 + stumble.01 1.0000 1.0000 1.0000 1 + bite.01 1.0000 1.0000 1.0000 1 + rejoice.01 1.0000 1.0000 1.0000 1 + crush.01 1.0000 1.0000 1.0000 1 + trick.01 1.0000 1.0000 1.0000 1 + hinder.01 1.0000 1.0000 1.0000 1 + remit.01 1.0000 1.0000 1.0000 1 + deepen.01 1.0000 1.0000 1.0000 1 + automate.01 1.0000 1.0000 1.0000 1 + invent.01 1.0000 1.0000 1.0000 1 + signify.01 1.0000 1.0000 1.0000 1 + adhere.02 1.0000 1.0000 1.0000 1 + promote.01 0.0000 0.0000 0.0000 1 + appeal.02 1.0000 1.0000 1.0000 1 + enter.02 0.0000 0.0000 0.0000 2 + seal.01 1.0000 1.0000 1.0000 1 + administer.01 1.0000 1.0000 1.0000 1 + go.22 0.0000 0.0000 0.0000 1 + reform.01 1.0000 1.0000 1.0000 1 + waive.01 1.0000 1.0000 1.0000 1 + pay_off.02 1.0000 1.0000 1.0000 1 + mine.01 1.0000 1.0000 1.0000 1 + add_up.04 1.0000 1.0000 1.0000 1 + couple.01 1.0000 1.0000 1.0000 1 + complement.01 1.0000 1.0000 1.0000 1 + flock.01 0.0000 0.0000 0.0000 1 + mobilize.01 1.0000 1.0000 1.0000 1 + cater.01 1.0000 1.0000 1.0000 1 + take_up.30 1.0000 1.0000 1.0000 1 + pay_out.03 1.0000 1.0000 1.0000 1 + mortgage.01 1.0000 1.0000 1.0000 1 + rename.01 1.0000 1.0000 1.0000 1 + situate.01 1.0000 1.0000 1.0000 1 + evade.01 1.0000 1.0000 1.0000 1 + copyright.01 1.0000 1.0000 1.0000 1 + exert.01 1.0000 1.0000 1.0000 1 + climax.01 1.0000 1.0000 1.0000 1 + cease.01 1.0000 1.0000 1.0000 1 + unify.01 1.0000 1.0000 1.0000 1 + commend.01 1.0000 1.0000 1.0000 1 + enlarge.01 1.0000 1.0000 1.0000 1 + reap.01 1.0000 1.0000 1.0000 1 + reason.01 1.0000 1.0000 1.0000 1 + erode.01 1.0000 1.0000 1.0000 1 + cut_back.05 1.0000 1.0000 1.0000 1 + deemphasize.01 1.0000 1.0000 1.0000 1 + upgrade.02 1.0000 1.0000 1.0000 1 + finger.03 1.0000 1.0000 1.0000 1 + reconcile.01 1.0000 1.0000 1.0000 1 + repudiate.01 0.0000 0.0000 0.0000 2 + outlaw.01 1.0000 1.0000 1.0000 1 + rot.01 1.0000 1.0000 1.0000 1 + pronounce.01 1.0000 1.0000 1.0000 1 + purge.01 1.0000 1.0000 1.0000 1 + remark.01 1.0000 1.0000 1.0000 1 + swamp.01 1.0000 1.0000 1.0000 1 + evacuate.01 1.0000 1.0000 1.0000 1 + rebuff.01 1.0000 1.0000 1.0000 1 + clean_up.02 1.0000 1.0000 1.0000 1 + pave.02 1.0000 1.0000 1.0000 1 + bribe.01 1.0000 1.0000 1.0000 1 + pay_off.05 1.0000 1.0000 1.0000 1 + reward.01 1.0000 1.0000 1.0000 1 + shave.01 1.0000 1.0000 1.0000 1 + ride_out.02 1.0000 1.0000 1.0000 1 + besiege.01 1.0000 1.0000 1.0000 1 + trap.01 1.0000 1.0000 1.0000 1 + underwrite.01 1.0000 1.0000 1.0000 1 + collateralize.02 1.0000 1.0000 1.0000 1 + pool.01 1.0000 1.0000 1.0000 1 + repackage.01 0.0000 0.0000 0.0000 1 + prepay.01 1.0000 1.0000 1.0000 1 + deteriorate.01 1.0000 1.0000 1.0000 1 + equal.01 1.0000 1.0000 1.0000 1 + pick_up.05 1.0000 1.0000 1.0000 1 + rebound.01 1.0000 1.0000 1.0000 1 + spot.01 1.0000 1.0000 1.0000 1 + hang_on.05 1.0000 1.0000 1.0000 1 + quiet.03 1.0000 1.0000 1.0000 1 + defuse.01 1.0000 1.0000 1.0000 1 + number.01 1.0000 1.0000 1.0000 1 + dismiss.02 0.0000 0.0000 0.0000 2 + foreclose.01 1.0000 1.0000 1.0000 1 + clear.02 1.0000 1.0000 1.0000 1 + heighten.01 1.0000 1.0000 1.0000 1 + appease.01 1.0000 1.0000 1.0000 1 + premiere.01 1.0000 1.0000 1.0000 1 + lure.01 1.0000 1.0000 1.0000 1 + embark.01 1.0000 1.0000 1.0000 1 + mold.01 1.0000 1.0000 1.0000 1 + conceive.01 1.0000 1.0000 1.0000 1 + slate.01 1.0000 1.0000 1.0000 1 + succeed.02 1.0000 1.0000 1.0000 1 + barrage.01 1.0000 1.0000 1.0000 1 + highlight.01 1.0000 1.0000 1.0000 1 + tackle.01 1.0000 1.0000 1.0000 1 + divest.01 1.0000 1.0000 1.0000 1 + downgrade.02 1.0000 1.0000 1.0000 1 + register.01 1.0000 1.0000 1.0000 1 + follow_suit.06 1.0000 1.0000 1.0000 1 + redeem.01 1.0000 1.0000 1.0000 1 + stem.01 1.0000 1.0000 1.0000 1 + dump.01 1.0000 1.0000 1.0000 1 + clean.01 1.0000 1.0000 1.0000 1 + vie.01 1.0000 1.0000 1.0000 1 + install.01 1.0000 1.0000 1.0000 1 + malign.01 0.0000 0.0000 0.0000 2 + go.07 1.0000 1.0000 1.0000 1 + date.01 1.0000 1.0000 1.0000 1 + part.01 1.0000 1.0000 1.0000 1 + circuit.01 1.0000 1.0000 1.0000 1 + articulate.01 1.0000 1.0000 1.0000 1 + imply.01 1.0000 1.0000 1.0000 1 + mock.01 1.0000 1.0000 1.0000 1 + boil_over.02 0.0000 0.0000 0.0000 2 + court.01 1.0000 1.0000 1.0000 1 + evidence.01 1.0000 1.0000 1.0000 1 + preach.01 1.0000 1.0000 1.0000 1 + cool_down.02 1.0000 1.0000 1.0000 1 + heat_up.02 1.0000 1.0000 1.0000 1 + compromise.02 1.0000 1.0000 1.0000 1 + divvy_up.01 1.0000 1.0000 1.0000 1 + slump.01 1.0000 1.0000 1.0000 1 + wreak.01 1.0000 1.0000 1.0000 1 + default.01 1.0000 1.0000 1.0000 1 + manipulate.02 1.0000 1.0000 1.0000 1 + rumor.01 1.0000 1.0000 1.0000 1 + recur.01 1.0000 1.0000 1.0000 1 + term.01 1.0000 1.0000 1.0000 1 + hold.03 0.0000 0.0000 0.0000 1 + solidify.01 1.0000 1.0000 1.0000 1 + reconsider.01 1.0000 1.0000 1.0000 1 + curtail.01 1.0000 1.0000 1.0000 1 + allot.01 1.0000 1.0000 1.0000 1 + fuel.01 1.0000 1.0000 1.0000 1 + fire.02 1.0000 1.0000 1.0000 1 + glamorize.01 1.0000 1.0000 1.0000 1 + decorate.01 1.0000 1.0000 1.0000 1 + reinvent.01 1.0000 1.0000 1.0000 1 + flirt.01 1.0000 1.0000 1.0000 1 + wedge.01 1.0000 1.0000 1.0000 1 + excise.01 0.0000 0.0000 0.0000 2 + date.02 1.0000 1.0000 1.0000 1 + size_up.02 1.0000 1.0000 1.0000 1 + swing.03 1.0000 1.0000 1.0000 1 + run_up.06 1.0000 1.0000 1.0000 1 + exacerbate.01 1.0000 1.0000 1.0000 1 + mire.01 1.0000 1.0000 1.0000 1 + bemoan.01 1.0000 1.0000 1.0000 1 + command.01 1.0000 1.0000 1.0000 1 + endorse.01 1.0000 1.0000 1.0000 1 + defraud.01 1.0000 1.0000 1.0000 1 + conceal.01 1.0000 1.0000 1.0000 1 + shoot_down.05 1.0000 1.0000 1.0000 1 + audit.01 1.0000 1.0000 1.0000 1 + streamline.01 1.0000 1.0000 1.0000 1 + mandate.01 1.0000 1.0000 1.0000 1 + hover.01 1.0000 1.0000 1.0000 1 + expire.01 1.0000 1.0000 1.0000 1 + swap.01 1.0000 1.0000 1.0000 1 + anger.01 1.0000 1.0000 1.0000 1 + silence.01 1.0000 1.0000 1.0000 1 + blast.02 1.0000 1.0000 1.0000 1 + shut_down.05 1.0000 1.0000 1.0000 1 + heap.01 1.0000 1.0000 1.0000 1 + slap.01 1.0000 1.0000 1.0000 1 + proceeding.02 1.0000 1.0000 1.0000 1 + concur.01 1.0000 1.0000 1.0000 1 + seek_out.02 1.0000 1.0000 1.0000 1 + reunify.01 1.0000 1.0000 1.0000 1 + pretend.01 1.0000 1.0000 1.0000 1 + flop.01 1.0000 1.0000 1.0000 1 + championship.02 1.0000 1.0000 1.0000 1 + run.13 0.0000 0.0000 0.0000 1 + long.02 1.0000 1.0000 1.0000 1 + dot.01 1.0000 1.0000 1.0000 1 + impress.01 1.0000 1.0000 1.0000 1 + cure.01 1.0000 1.0000 1.0000 1 + forbid.01 1.0000 1.0000 1.0000 1 + scold.01 1.0000 1.0000 1.0000 1 + wear_out.03 1.0000 1.0000 1.0000 1 + dissatisfy.01 1.0000 1.0000 1.0000 1 + hijack.01 1.0000 1.0000 1.0000 1 + unleash.01 1.0000 1.0000 1.0000 1 + lean.01 1.0000 1.0000 1.0000 1 + recount.01 1.0000 1.0000 1.0000 1 + exonerate.01 1.0000 1.0000 1.0000 1 + come.16 0.0000 0.0000 0.0000 1 + mess.01 1.0000 1.0000 1.0000 1 + jump_in.04 1.0000 1.0000 1.0000 1 + wind_up.02 1.0000 1.0000 1.0000 1 + sound_off.03 1.0000 1.0000 1.0000 1 + unload.02 1.0000 1.0000 1.0000 1 + thwart.01 1.0000 1.0000 1.0000 1 + counter.01 1.0000 1.0000 1.0000 1 + solicit.01 1.0000 1.0000 1.0000 1 + back_off.11 1.0000 1.0000 1.0000 1 + collide.01 1.0000 1.0000 1.0000 1 + patrol.01 1.0000 1.0000 1.0000 1 + scrutinize.01 1.0000 1.0000 1.0000 1 + blow_up.06 1.0000 1.0000 1.0000 1 + turn_out.17 1.0000 1.0000 1.0000 1 + profile.01 1.0000 1.0000 1.0000 1 + bounce.01 1.0000 1.0000 1.0000 1 + engender.01 1.0000 1.0000 1.0000 1 + help.02 1.0000 1.0000 1.0000 1 + play_down.07 1.0000 1.0000 1.0000 1 + denuclearize.01 0.0000 0.0000 0.0000 2 + strike.04 1.0000 1.0000 1.0000 1 + weigh_in.03 1.0000 1.0000 1.0000 1 + hunker.01 1.0000 1.0000 1.0000 1 + channel.01 1.0000 1.0000 1.0000 1 + inflict.01 1.0000 1.0000 1.0000 1 + intervene.01 1.0000 1.0000 1.0000 1 + knit.01 1.0000 1.0000 1.0000 1 + corner.01 1.0000 1.0000 1.0000 1 + quadruple.01 1.0000 1.0000 1.0000 1 + outsource.01 1.0000 1.0000 1.0000 1 + get_back.10 0.0000 0.0000 0.0000 1 + ally.01 1.0000 1.0000 1.0000 1 + bog_down.01 1.0000 1.0000 1.0000 1 + categorize.01 1.0000 1.0000 1.0000 1 + deviate.01 1.0000 1.0000 1.0000 1 + string.01 1.0000 1.0000 1.0000 1 + intersect.01 1.0000 1.0000 1.0000 1 + accommodate.01 1.0000 1.0000 1.0000 1 + assign.01 1.0000 1.0000 1.0000 1 + minimize.01 1.0000 1.0000 1.0000 1 + lurk.01 1.0000 1.0000 1.0000 1 + privatize.01 1.0000 1.0000 1.0000 1 + withstand.01 1.0000 1.0000 1.0000 1 + dry.02 1.0000 1.0000 1.0000 1 + wind_up.05 0.0000 0.0000 0.0000 0 + boom.02 0.0000 0.0000 0.0000 0 + croon.01 0.0000 0.0000 0.0000 0 + sweep.02 0.0000 0.0000 0.0000 0 + vacation.01 0.0000 0.0000 0.0000 0 + scald.01 0.0000 0.0000 0.0000 0 + start_out.05 0.0000 0.0000 0.0000 0 + bang.02 0.0000 0.0000 0.0000 0 + gut.01 0.0000 0.0000 0.0000 0 + scrimp.01 0.0000 0.0000 0.0000 0 + innovate.01 0.0000 0.0000 0.0000 0 + pump_out.03 0.0000 0.0000 0.0000 0 + fall.05 0.0000 0.0000 0.0000 0 + reexamine.01 0.0000 0.0000 0.0000 0 + bid.02 0.0000 0.0000 0.0000 0 + hook_up.02 0.0000 0.0000 0.0000 0 + blindfold.01 0.0000 0.0000 0.0000 0 + smile.01 0.0000 0.0000 0.0000 0 + paint.02 0.0000 0.0000 0.0000 0 + cook.01 0.0000 0.0000 0.0000 0 + comeback.01 0.0000 0.0000 0.0000 0 + diversify.01 0.0000 0.0000 0.0000 0 + computerize.01 0.0000 0.0000 0.0000 0 + grope.01 0.0000 0.0000 0.0000 0 + knock_down.02 0.0000 0.0000 0.0000 0 + call.10 0.0000 0.0000 0.0000 0 + stun.01 0.0000 0.0000 0.0000 0 + suspension.03 0.0000 0.0000 0.0000 0 + correspond.02 0.0000 0.0000 0.0000 0 + pick_out.03 0.0000 0.0000 0.0000 1 + come.14 0.0000 0.0000 0.0000 1 + carve.01 0.0000 0.0000 0.0000 1 + catch_on.06 0.0000 0.0000 0.0000 1 + work.07 0.0000 0.0000 0.0000 1 + work_out.03 0.0000 0.0000 0.0000 1 + oscillate.01 0.0000 0.0000 0.0000 1 + damp.04 0.0000 0.0000 0.0000 1 + write_up.07 0.0000 0.0000 0.0000 1 + make.18 0.0000 0.0000 0.0000 1 + lie_down.09 0.0000 0.0000 0.0000 1 + get_down.15 0.0000 0.0000 0.0000 1 + clock.01 0.0000 0.0000 0.0000 1 + zip.01 0.0000 0.0000 0.0000 1 + start_up.04 0.0000 0.0000 0.0000 1 + pulsate.01 0.0000 0.0000 0.0000 1 + carouse.01 0.0000 0.0000 0.0000 1 + source.02 0.0000 0.0000 0.0000 1 + fill.06 0.0000 0.0000 0.0000 1 + space.03 0.0000 0.0000 0.0000 1 + leave.05 0.0000 0.0000 0.0000 1 + clear.03 0.0000 0.0000 0.0000 1 + emblazon.01 0.0000 0.0000 0.0000 1 + survive.02 0.0000 0.0000 0.0000 1 + terrify.01 0.0000 0.0000 0.0000 1 + pass_off.18 0.0000 0.0000 0.0000 1 + meditate.01 0.0000 0.0000 0.0000 1 + extrapolate.01 0.0000 0.0000 0.0000 1 + head_up.04 0.0000 0.0000 0.0000 1 + miniaturize.01 0.0000 0.0000 0.0000 1 + amplify.01 0.0000 0.0000 0.0000 1 + vex.01 0.0000 0.0000 0.0000 1 + wince.01 0.0000 0.0000 0.0000 1 + impression.03 0.0000 0.0000 0.0000 1 + shelve.01 0.0000 0.0000 0.0000 1 + swirl.01 0.0000 0.0000 0.0000 1 + dance.02 0.0000 0.0000 0.0000 1 + chug.03 0.0000 0.0000 0.0000 1 + wheel.01 0.0000 0.0000 0.0000 1 + jilt.01 0.0000 0.0000 0.0000 1 + agitate.01 0.0000 0.0000 0.0000 1 + stick_up.04 0.0000 0.0000 0.0000 1 + rotate.01 0.0000 0.0000 0.0000 1 + bulldoze.01 0.0000 0.0000 0.0000 1 + bob.01 0.0000 0.0000 0.0000 1 + abut.01 0.0000 0.0000 0.0000 1 + perspire.01 0.0000 0.0000 0.0000 1 + munch.01 0.0000 0.0000 0.0000 1 + tag.01 0.0000 0.0000 0.0000 1 + regenerate.01 0.0000 0.0000 0.0000 1 + make_over.22 0.0000 0.0000 0.0000 1 + dyke.01 0.0000 0.0000 0.0000 1 + concrete_over.01 0.0000 0.0000 0.0000 1 + chip_in.02 0.0000 0.0000 0.0000 1 + intermarry.01 0.0000 0.0000 0.0000 1 + moot.01 0.0000 0.0000 0.0000 1 + halve.01 0.0000 0.0000 0.0000 1 + overawe.01 0.0000 0.0000 0.0000 1 + pick_off.08 0.0000 0.0000 0.0000 1 + groom.01 0.0000 0.0000 0.0000 1 + overdo.01 0.0000 0.0000 0.0000 1 + bear_up.04 0.0000 0.0000 0.0000 1 + overwhelm.01 0.0000 0.0000 0.0000 1 + explode.03 0.0000 0.0000 0.0000 1 + put.LV 0.0000 0.0000 0.0000 1 + use_up.04 0.0000 0.0000 0.0000 1 + work.06 0.0000 0.0000 0.0000 1 + suffocate.01 0.0000 0.0000 0.0000 1 + close_off.05 0.0000 0.0000 0.0000 1 + discount.02 0.0000 0.0000 0.0000 1 + foretell.01 0.0000 0.0000 0.0000 1 + devour.01 0.0000 0.0000 0.0000 1 + paste.01 0.0000 0.0000 0.0000 1 + fake.01 0.0000 0.0000 0.0000 1 + wire.01 0.0000 0.0000 0.0000 1 + pass_out.11 0.0000 0.0000 0.0000 1 + glance.01 0.0000 0.0000 0.0000 1 + drip.01 0.0000 0.0000 0.0000 1 + shove.01 0.0000 0.0000 0.0000 1 + jump_up.05 0.0000 0.0000 0.0000 1 + party.01 0.0000 0.0000 0.0000 1 + ramble.02 0.0000 0.0000 0.0000 1 + ply.01 0.0000 0.0000 0.0000 1 + cop.01 0.0000 0.0000 0.0000 1 + care.02 0.0000 0.0000 0.0000 1 + tie_in.02 0.0000 0.0000 0.0000 1 + bump.01 0.0000 0.0000 0.0000 1 + pump.04 0.0000 0.0000 0.0000 1 + cum.01 0.0000 0.0000 0.0000 1 + trip.01 0.0000 0.0000 0.0000 1 + don.01 0.0000 0.0000 0.0000 1 + syncopate.01 0.0000 0.0000 0.0000 1 + disgrace.01 0.0000 0.0000 0.0000 1 + stagger.01 0.0000 0.0000 0.0000 1 + zap.01 0.0000 0.0000 0.0000 1 + fuck.01 0.0000 0.0000 0.0000 1 + clench.01 0.0000 0.0000 0.0000 1 + thicken.01 0.0000 0.0000 0.0000 1 + lead_up.05 0.0000 0.0000 0.0000 1 + pederastize.01 0.0000 0.0000 0.0000 1 + substantiate.01 0.0000 0.0000 0.0000 1 + claim.02 0.0000 0.0000 0.0000 1 + defray.01 0.0000 0.0000 0.0000 1 + pass.04 0.0000 0.0000 0.0000 1 + delve.01 0.0000 0.0000 0.0000 1 + traumatize.01 0.0000 0.0000 0.0000 1 + fall.04 0.0000 0.0000 0.0000 1 + skimp.01 0.0000 0.0000 0.0000 1 + eat_up.02 0.0000 0.0000 0.0000 1 + sow.01 0.0000 0.0000 0.0000 1 + nourish.01 0.0000 0.0000 0.0000 1 + box.02 0.0000 0.0000 0.0000 1 + institute.01 0.0000 0.0000 0.0000 1 + marginalize.01 0.0000 0.0000 0.0000 1 + sort_out.02 0.0000 0.0000 0.0000 1 + retrogress.01 0.0000 0.0000 0.0000 1 + admonish.02 0.0000 0.0000 0.0000 1 + smear.02 0.0000 0.0000 0.0000 1 + send_out.04 0.0000 0.0000 0.0000 1 + curry.02 0.0000 0.0000 0.0000 1 + murmur.01 0.0000 0.0000 0.0000 1 + repent.01 0.0000 0.0000 0.0000 1 + stain.01 0.0000 0.0000 0.0000 1 + ravish.01 0.0000 0.0000 0.0000 1 + pass_on.19 0.0000 0.0000 0.0000 1 + instigate.01 0.0000 0.0000 0.0000 1 + desecrate.01 0.0000 0.0000 0.0000 1 + get_back.09 0.0000 0.0000 0.0000 1 + treat.02 0.0000 0.0000 0.0000 1 + exalt.01 0.0000 0.0000 0.0000 1 + confine.01 0.0000 0.0000 0.0000 1 + sadden.01 0.0000 0.0000 0.0000 1 + differ.01 0.0000 0.0000 0.0000 1 + subside.01 0.0000 0.0000 0.0000 1 + heartbreak.01 0.0000 0.0000 0.0000 1 + withdrawal.02 0.0000 0.0000 0.0000 1 + rip.02 0.0000 0.0000 0.0000 1 + bill.02 0.0000 0.0000 0.0000 1 + animate.01 0.0000 0.0000 0.0000 1 + dampen.02 0.0000 0.0000 0.0000 1 + beat_out.04 0.0000 0.0000 0.0000 1 + strategize.01 0.0000 0.0000 0.0000 1 + gaming.02 0.0000 0.0000 0.0000 1 + blow.08 0.0000 0.0000 0.0000 1 + unseal.01 0.0000 0.0000 0.0000 1 + smoke.01 0.0000 0.0000 0.0000 1 + shut.01 0.0000 0.0000 0.0000 1 + overrule.01 0.0000 0.0000 0.0000 1 + inaugurate.02 0.0000 0.0000 0.0000 1 + sedate.01 0.0000 0.0000 0.0000 1 + commence.01 0.0000 0.0000 0.0000 1 + break_down.11 0.0000 0.0000 0.0000 1 + loosen.01 0.0000 0.0000 0.0000 1 + drug.01 0.0000 0.0000 0.0000 1 + tank.01 0.0000 0.0000 0.0000 1 + nuzzle.01 0.0000 0.0000 0.0000 1 + shoo.01 0.0000 0.0000 0.0000 1 + know.04 0.0000 0.0000 0.0000 1 + swoop_up.02 0.0000 0.0000 0.0000 1 + barricade.01 0.0000 0.0000 0.0000 1 + track_down.02 0.0000 0.0000 0.0000 1 + clamber.01 0.0000 0.0000 0.0000 1 + get.LV 0.0000 0.0000 0.0000 1 + reintegrate.01 0.0000 0.0000 0.0000 1 + misperceive.01 0.0000 0.0000 0.0000 1 + litigate.01 0.0000 0.0000 0.0000 1 + count.02 0.0000 0.0000 0.0000 1 + grieve.01 0.0000 0.0000 0.0000 1 + bound.05 0.0000 0.0000 0.0000 1 + gasp.01 0.0000 0.0000 0.0000 1 + recap.01 0.0000 0.0000 0.0000 1 + tomb.01 0.0000 0.0000 0.0000 1 + close.03 0.0000 0.0000 0.0000 1 + sit_out.04 0.0000 0.0000 0.0000 1 + throw.03 0.0000 0.0000 0.0000 1 + rap.01 0.0000 0.0000 0.0000 1 + colonize.01 0.0000 0.0000 0.0000 1 + tangle.03 0.0000 0.0000 0.0000 1 + roast.01 0.0000 0.0000 0.0000 1 + blare.01 0.0000 0.0000 0.0000 1 + improvise.01 0.0000 0.0000 0.0000 1 + brand.01 0.0000 0.0000 0.0000 1 + impersonate.01 0.0000 0.0000 0.0000 1 + dock.01 0.0000 0.0000 0.0000 1 + beat_up.05 0.0000 0.0000 0.0000 1 + pity.01 0.0000 0.0000 0.0000 1 + salt.01 0.0000 0.0000 0.0000 1 + value.01 0.0000 0.0000 0.0000 1 + combust.01 0.0000 0.0000 0.0000 1 + parade.01 0.0000 0.0000 0.0000 1 + braise.01 0.0000 0.0000 0.0000 1 + function.01 0.0000 0.0000 0.0000 1 + irrigate.01 0.0000 0.0000 0.0000 1 + sightsee.01 0.0000 0.0000 0.0000 1 + foreshadow.01 0.0000 0.0000 0.0000 1 + falsify.01 0.0000 0.0000 0.0000 1 + promulgate.01 0.0000 0.0000 0.0000 1 + pass.07 0.0000 0.0000 0.0000 1 + input.01 0.0000 0.0000 0.0000 1 + tame.01 0.0000 0.0000 0.0000 1 + persevere.01 0.0000 0.0000 0.0000 1 + compose.02 0.0000 0.0000 0.0000 1 + yield.02 0.0000 0.0000 0.0000 1 + woo.01 0.0000 0.0000 0.0000 1 + drive.04 0.0000 0.0000 0.0000 1 + wean.01 0.0000 0.0000 0.0000 1 + screen_out.02 0.0000 0.0000 0.0000 1 + insure.01 0.0000 0.0000 0.0000 1 + strip_away.02 0.0000 0.0000 0.0000 1 + fall_through.06 0.0000 0.0000 0.0000 1 + set.11 0.0000 0.0000 0.0000 1 + brandish.01 0.0000 0.0000 0.0000 1 + strike.02 0.0000 0.0000 0.0000 1 + daunt.01 0.0000 0.0000 0.0000 1 + jettison.01 0.0000 0.0000 0.0000 1 + discern.01 0.0000 0.0000 0.0000 1 + overlay.01 0.0000 0.0000 0.0000 1 + disconnect.01 0.0000 0.0000 0.0000 1 + chalk_up.01 0.0000 0.0000 0.0000 1 + kill.03 0.0000 0.0000 0.0000 1 + retreat.02 0.0000 0.0000 0.0000 1 + lag.01 0.0000 0.0000 0.0000 1 + tick_off.03 0.0000 0.0000 0.0000 1 + overheat.01 0.0000 0.0000 0.0000 1 + clock.02 0.0000 0.0000 0.0000 1 + lodge.02 0.0000 0.0000 0.0000 1 + nibble.01 0.0000 0.0000 0.0000 1 + prick.01 0.0000 0.0000 0.0000 1 + thrill.01 0.0000 0.0000 0.0000 1 + stir.02 0.0000 0.0000 0.0000 1 + ebb.01 0.0000 0.0000 0.0000 1 + multiply.01 0.0000 0.0000 0.0000 1 + reposition.01 0.0000 0.0000 0.0000 1 + coanchor.01 0.0000 0.0000 0.0000 1 + switch_over.02 0.0000 0.0000 0.0000 1 + follow_through.07 0.0000 0.0000 0.0000 1 + caption.01 0.0000 0.0000 0.0000 1 + outstrip.01 0.0000 0.0000 0.0000 1 + clobber.01 0.0000 0.0000 0.0000 1 + bomb.02 0.0000 0.0000 0.0000 1 + hook.01 0.0000 0.0000 0.0000 1 + retreat.03 0.0000 0.0000 0.0000 1 + bother.02 0.0000 0.0000 0.0000 1 + taboo.01 0.0000 0.0000 0.0000 1 + enlighten.01 0.0000 0.0000 0.0000 1 + slip.02 0.0000 0.0000 0.0000 1 + mete_out.01 0.0000 0.0000 0.0000 1 + carry_over.04 0.0000 0.0000 0.0000 1 + pivot.01 0.0000 0.0000 0.0000 1 + buck.01 0.0000 0.0000 0.0000 1 + eke_out.02 0.0000 0.0000 0.0000 1 + revisit.01 0.0000 0.0000 0.0000 1 + skew.01 0.0000 0.0000 0.0000 1 + zoom.01 0.0000 0.0000 0.0000 1 + feud.01 0.0000 0.0000 0.0000 1 + people.01 0.0000 0.0000 0.0000 1 + relieve.02 0.0000 0.0000 0.0000 1 + raise.03 0.0000 0.0000 0.0000 1 + realign.01 0.0000 0.0000 0.0000 1 + come_by.20 0.0000 0.0000 0.0000 1 + figure.03 0.0000 0.0000 0.0000 1 + flash_back.03 0.0000 0.0000 0.0000 1 + resuscitate.01 0.0000 0.0000 0.0000 1 + riff.01 0.0000 0.0000 0.0000 1 + tuck_in.03 0.0000 0.0000 0.0000 1 + roll_up.03 0.0000 0.0000 0.0000 1 + contract.01 0.0000 0.0000 0.0000 1 + deflate.01 0.0000 0.0000 0.0000 1 + anchor.01 0.0000 0.0000 0.0000 1 + come.05 0.0000 0.0000 0.0000 1 + run.03 0.0000 0.0000 0.0000 1 + cast.03 0.0000 0.0000 0.0000 1 + locate.02 0.0000 0.0000 0.0000 1 + jinx.01 0.0000 0.0000 0.0000 1 + fraction.01 0.0000 0.0000 0.0000 1 + pare.01 0.0000 0.0000 0.0000 1 + acquiesce.01 0.0000 0.0000 0.0000 1 + overhaul.01 0.0000 0.0000 0.0000 1 + buy_out.03 0.0000 0.0000 0.0000 1 + skid.01 0.0000 0.0000 0.0000 1 + trickle.01 0.0000 0.0000 0.0000 1 + idle.01 0.0000 0.0000 0.0000 1 + take.02 0.0000 0.0000 0.0000 1 + loan.01 0.0000 0.0000 0.0000 1 + sandwich.01 0.0000 0.0000 0.0000 1 + wash.02 0.0000 0.0000 0.0000 1 + clamor.01 0.0000 0.0000 0.0000 1 + bowl.01 0.0000 0.0000 0.0000 1 + crusade.01 0.0000 0.0000 0.0000 1 + socialize.01 0.0000 0.0000 0.0000 1 + pamper.01 0.0000 0.0000 0.0000 1 + hoe.01 0.0000 0.0000 0.0000 1 + till.01 0.0000 0.0000 0.0000 1 + pull.06 0.0000 0.0000 0.0000 1 + notate.01 0.0000 0.0000 0.0000 1 + script.01 0.0000 0.0000 0.0000 1 + besmirch.01 0.0000 0.0000 0.0000 1 + overthink.06 0.0000 0.0000 0.0000 1 + take_on.21 0.0000 0.0000 0.0000 1 + hit_up.05 0.0000 0.0000 0.0000 1 + put_out.10 0.0000 0.0000 0.0000 1 + stand.03 0.0000 0.0000 0.0000 1 + level.03 0.0000 0.0000 0.0000 1 + vandalize.01 0.0000 0.0000 0.0000 1 + defile.01 0.0000 0.0000 0.0000 1 + numb.01 0.0000 0.0000 0.0000 1 + shoulder.01 0.0000 0.0000 0.0000 1 + frame.03 0.0000 0.0000 0.0000 1 + flatten.01 0.0000 0.0000 0.0000 1 + reengage.01 0.0000 0.0000 0.0000 1 + conviction.02 0.0000 0.0000 0.0000 1 + set_out.06 0.0000 0.0000 0.0000 1 + critique.01 0.0000 0.0000 0.0000 1 + get_even.16 0.0000 0.0000 0.0000 1 + will.02 0.0000 0.0000 0.0000 1 + outshine.01 0.0000 0.0000 0.0000 1 + work.13 0.0000 0.0000 0.0000 1 + fester.01 0.0000 0.0000 0.0000 1 + loathe.01 0.0000 0.0000 0.0000 1 + cut_out.06 0.0000 0.0000 0.0000 1 + wait_out.03 0.0000 0.0000 0.0000 1 + toast.01 0.0000 0.0000 0.0000 1 + turn_out.10 0.0000 0.0000 0.0000 1 + free_up.02 0.0000 0.0000 0.0000 1 + delight.01 0.0000 0.0000 0.0000 1 + shoot_off.04 0.0000 0.0000 0.0000 1 + misplace.01 0.0000 0.0000 0.0000 1 + cave_in.02 0.0000 0.0000 0.0000 1 + snow.01 0.0000 0.0000 0.0000 1 + reroute.01 0.0000 0.0000 0.0000 1 + link_up.02 0.0000 0.0000 0.0000 1 + try.04 0.0000 0.0000 0.0000 1 + put_in.05 0.0000 0.0000 0.0000 1 + marketize.01 0.0000 0.0000 0.0000 1 +institutionalize.02 0.0000 0.0000 0.0000 1 + discharge.01 0.0000 0.0000 0.0000 1 + block_up.02 0.0000 0.0000 0.0000 1 + rearrange.01 0.0000 0.0000 0.0000 1 + settle.01 0.0000 0.0000 0.0000 0 + blur.01 0.0000 0.0000 0.0000 0 + carve_out.03 0.0000 0.0000 0.0000 0 + reinvest.01 0.0000 0.0000 0.0000 0 + wed.01 0.0000 0.0000 0.0000 0 + charge.02 0.0000 0.0000 0.0000 0 + saturate.01 0.0000 0.0000 0.0000 0 + candy.01 0.0000 0.0000 0.0000 0 + transplant.01 0.0000 0.0000 0.0000 0 + flourish.01 0.0000 0.0000 0.0000 0 + engrave.01 0.0000 0.0000 0.0000 0 + sense.02 0.0000 0.0000 0.0000 0 + frighten.01 0.0000 0.0000 0.0000 0 + emanate.01 0.0000 0.0000 0.0000 0 + live_out.05 0.0000 0.0000 0.0000 0 + infect.01 0.0000 0.0000 0.0000 0 + scale.03 0.0000 0.0000 0.0000 0 + rekindle.01 0.0000 0.0000 0.0000 0 + linger.01 0.0000 0.0000 0.0000 0 + snake.01 0.0000 0.0000 0.0000 0 + sneak.01 0.0000 0.0000 0.0000 0 + smell.02 0.0000 0.0000 0.0000 0 + spin.04 0.0000 0.0000 0.0000 0 + mark.02 0.0000 0.0000 0.0000 0 + slather.01 0.0000 0.0000 0.0000 0 + stand_out.06 0.0000 0.0000 0.0000 0 + duck.01 0.0000 0.0000 0.0000 0 + stink.01 0.0000 0.0000 0.0000 0 + bloom.01 0.0000 0.0000 0.0000 0 + chip.01 0.0000 0.0000 0.0000 0 + wax.01 0.0000 0.0000 0.0000 0 + duplicate.01 0.0000 0.0000 0.0000 0 + retrieve.01 0.0000 0.0000 0.0000 0 + outdo.01 0.0000 0.0000 0.0000 0 + bear_out.05 0.0000 0.0000 0.0000 0 + counsel.01 0.0000 0.0000 0.0000 0 + despise.01 0.0000 0.0000 0.0000 0 + work_up.04 0.0000 0.0000 0.0000 0 + faint.01 0.0000 0.0000 0.0000 0 + order.03 0.0000 0.0000 0.0000 0 + acquaint.01 0.0000 0.0000 0.0000 0 + compassion.01 0.0000 0.0000 0.0000 0 + tarnish.01 0.0000 0.0000 0.0000 0 + list.03 0.0000 0.0000 0.0000 0 + wire.02 0.0000 0.0000 0.0000 0 + drop.06 0.0000 0.0000 0.0000 0 + alter.01 0.0000 0.0000 0.0000 0 + reassure.01 0.0000 0.0000 0.0000 0 + tie_up.05 0.0000 0.0000 0.0000 0 + sublimate.01 0.0000 0.0000 0.0000 0 + berate.01 0.0000 0.0000 0.0000 0 + make_up.08 0.0000 0.0000 0.0000 0 + corroborate.01 0.0000 0.0000 0.0000 0 + defame.01 0.0000 0.0000 0.0000 0 + stream.02 0.0000 0.0000 0.0000 0 + mistreat.01 0.0000 0.0000 0.0000 0 + beautify.01 0.0000 0.0000 0.0000 0 + degenerate.01 0.0000 0.0000 0.0000 0 + vest.01 0.0000 0.0000 0.0000 0 + center.01 0.0000 0.0000 0.0000 0 + pass_on.14 0.0000 0.0000 0.0000 0 + incite.01 0.0000 0.0000 0.0000 0 + dissociate.01 0.0000 0.0000 0.0000 0 + download.01 0.0000 0.0000 0.0000 0 + belie.01 0.0000 0.0000 0.0000 0 + elevate.01 0.0000 0.0000 0.0000 0 + dazzle.01 0.0000 0.0000 0.0000 0 + philosophize.01 0.0000 0.0000 0.0000 0 + sober_up.02 0.0000 0.0000 0.0000 0 + give_back.03 0.0000 0.0000 0.0000 0 + foil.01 0.0000 0.0000 0.0000 0 + have.11 0.0000 0.0000 0.0000 0 + savor.01 0.0000 0.0000 0.0000 0 + film.01 0.0000 0.0000 0.0000 0 + break_down.12 0.0000 0.0000 0.0000 0 + get_by.17 0.0000 0.0000 0.0000 0 + reinstate.01 0.0000 0.0000 0.0000 0 + struggle.01 0.0000 0.0000 0.0000 0 + put_up.13 0.0000 0.0000 0.0000 0 + go.03 0.0000 0.0000 0.0000 0 + reinvigorate.01 0.0000 0.0000 0.0000 0 + track.01 0.0000 0.0000 0.0000 0 + putter.01 0.0000 0.0000 0.0000 0 + demobilize.01 0.0000 0.0000 0.0000 0 + hike.01 0.0000 0.0000 0.0000 0 + take_off.08 0.0000 0.0000 0.0000 0 + smash.02 0.0000 0.0000 0.0000 0 + check_in.04 0.0000 0.0000 0.0000 0 + prevail.02 0.0000 0.0000 0.0000 0 + scurry.01 0.0000 0.0000 0.0000 0 + slice.01 0.0000 0.0000 0.0000 0 + amount.02 0.0000 0.0000 0.0000 0 + balance.01 0.0000 0.0000 0.0000 0 + code.01 0.0000 0.0000 0.0000 0 + sell_out.02 0.0000 0.0000 0.0000 0 + safeguard.01 0.0000 0.0000 0.0000 0 + input.02 0.0000 0.0000 0.0000 0 + compose.01 0.0000 0.0000 0.0000 0 + insure.02 0.0000 0.0000 0.0000 0 + liquidize.01 0.0000 0.0000 0.0000 0 + underinflate.01 0.0000 0.0000 0.0000 0 + leeway.01 0.0000 0.0000 0.0000 0 + plead.01 0.0000 0.0000 0.0000 0 + shunt.01 0.0000 0.0000 0.0000 0 + relabel.01 0.0000 0.0000 0.0000 0 + gobble_up.03 0.0000 0.0000 0.0000 0 + tick_off.02 0.0000 0.0000 0.0000 0 + lodge.03 0.0000 0.0000 0.0000 0 + equip.01 0.0000 0.0000 0.0000 0 + top_off.03 0.0000 0.0000 0.0000 0 + thrust.01 0.0000 0.0000 0.0000 0 + subordinate.01 0.0000 0.0000 0.0000 0 + trouble.01 0.0000 0.0000 0.0000 0 + abet.01 0.0000 0.0000 0.0000 0 + upset.01 0.0000 0.0000 0.0000 0 + widow.01 0.0000 0.0000 0.0000 0 + squeeze.03 0.0000 0.0000 0.0000 0 + sweeten.02 0.0000 0.0000 0.0000 0 + enumerate.01 0.0000 0.0000 0.0000 0 + obscure.01 0.0000 0.0000 0.0000 0 + barge.01 0.0000 0.0000 0.0000 0 + ingratiate.01 0.0000 0.0000 0.0000 0 + homework.01 0.0000 0.0000 0.0000 0 + writhe.01 0.0000 0.0000 0.0000 0 + drill.01 0.0000 0.0000 0.0000 0 + turn_on.13 0.0000 0.0000 0.0000 0 + hobble.02 0.0000 0.0000 0.0000 0 + interchange.01 0.0000 0.0000 0.0000 0 + pare.02 0.0000 0.0000 0.0000 0 + defer.02 0.0000 0.0000 0.0000 0 + strain.04 0.0000 0.0000 0.0000 0 + deplete.01 0.0000 0.0000 0.0000 0 + contaminate.01 0.0000 0.0000 0.0000 0 + mislead.01 0.0000 0.0000 0.0000 0 + fold.03 0.0000 0.0000 0.0000 0 + hold_up.10 0.0000 0.0000 0.0000 0 + scramble.01 0.0000 0.0000 0.0000 0 + pile.03 0.0000 0.0000 0.0000 0 + bore.08 0.0000 0.0000 0.0000 0 + run.14 0.0000 0.0000 0.0000 0 + depict.01 0.0000 0.0000 0.0000 0 + socialize.02 0.0000 0.0000 0.0000 0 + obfuscate.01 0.0000 0.0000 0.0000 0 + scapegoat.01 0.0000 0.0000 0.0000 0 + delude.01 0.0000 0.0000 0.0000 0 + denude.01 0.0000 0.0000 0.0000 0 + assuage.01 0.0000 0.0000 0.0000 0 + level_off.02 0.0000 0.0000 0.0000 0 + drag_on.02 0.0000 0.0000 0.0000 0 + redress.01 0.0000 0.0000 0.0000 0 + globalize.01 0.0000 0.0000 0.0000 0 + reenter.01 0.0000 0.0000 0.0000 0 + lambaste.01 0.0000 0.0000 0.0000 0 + demonize.01 0.0000 0.0000 0.0000 0 + loiter.01 0.0000 0.0000 0.0000 0 + bend.01 0.0000 0.0000 0.0000 0 + dispose.01 0.0000 0.0000 0.0000 0 + enrich.01 0.0000 0.0000 0.0000 0 + demoralize.01 0.0000 0.0000 0.0000 0 + turn_up.15 0.0000 0.0000 0.0000 0 + sully.01 0.0000 0.0000 0.0000 0 + glow.01 0.0000 0.0000 0.0000 0 + discharge.101 0.0000 0.0000 0.0000 0 + + micro avg 0.8939 0.9346 0.9138 28250 + macro avg 0.6659 0.7051 0.6727 28250 + weighted avg 0.9005 0.9346 0.9131 28250 + +2023-04-06 02:10:52,569 ----------------------------------------------------------------------------------------------------