--- license: apache-2.0 language: ti library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers widget: - text: "ግራፋይት ኣብ መላእ ዓለም ዳርጋ ብምዕሩይ ዝርጋሐ’ዩ ዝርከብ" --- # TiRoBERTa BiEncoder Model This is a [sentence-transformers](https://www.SBERT.net) model for the Tigrinya language based on [TiRoBERTa-base](https://huggingface.co/fgaim/tiroberta-base). The maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Using Sentence-Transformers Using this model becomes easy when you have sentence-transformersinstalled: ```shell pip install -U sentence-transformers ``` Then use the model as follows: ```python from sentence_transformers import SentenceTransformer sentences = ["ሓደ ሰብኣይ ፈረስ ይጋልብ ኣሎ።", "ሓንቲ ጓል ክራር ትጻወት ኣላ።"] model = SentenceTransformer('fgaim/tiroberta-bi-encoder') embeddings = model.encode(sentences) print(embeddings) ``` ## Using 🤗 Transformers Use the transformers library as follows: Pass the input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python import torch from transformers import AutoModel, AutoTokenizer # Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] # First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["ሓደ ሰብኣይ ፈረስ ይጋልብ ኣሎ።", "ሓንቲ ጓል ክራር ትጻወት ኣላ።"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained("fgaim/tiroberta-bi-encoder") model = AutoModel.from_pretrained("fgaim/tiroberta-bi-encoder") # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt") # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input["attention_mask"]) print("Sentence embeddings:", sentence_embeddings) ``` ## Architecture ### Base Model The model properties: | Model Size | Layers | Attn. Heads | Hidden Size | FFN | Parameters | Max. Seq | |------------|----|----|-----|------|------|------| | BASE | 12 | 12 | 768 | 3072 | 125M | 512 | ### BiEncoder Model - Max Seq Length: `512` - Word embedding dimension: `768` ``` SentenceTransformer( Transformer( { 'max_seq_length': 512, 'do_lower_case': False } ) # with Transformer model: RobertaModel Pooling( { 'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True, } ) ) ``` ## Cite If you use this model in your product or research, you can cite it as follows: ```bibtex @article{Fitsum2021TiPLMs, author={Fitsum Gaim and Wonsuk Yang and Jong C. Park}, title={Monolingual Pre-trained Language Models for Tigrinya}, year=2021, publisher={WiNLP 2021 co-located EMNLP 2021} } ```