--- license: mit library_name: peft tags: - generated_from_trainer metrics: - precision - recall - accuracy base_model: roberta-large model-index: - name: roberta-large-lora-token-classification results: [] --- # roberta-large-lora-token-classification This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4772 - Precision: 0.7667 - Recall: 0.7573 - F1-score: 0.7620 - Accuracy: 0.7978 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1-score | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:|:--------:| | 0.6534 | 1.0 | 762 | 0.5813 | 0.5741 | 0.8633 | 0.6896 | 0.6678 | | 0.5574 | 2.0 | 1524 | 0.6461 | 0.5373 | 0.8848 | 0.6686 | 0.6251 | | 0.5534 | 3.0 | 2286 | 0.5031 | 0.6658 | 0.8264 | 0.7375 | 0.7485 | | 0.5434 | 4.0 | 3048 | 0.4725 | 0.7818 | 0.7373 | 0.7589 | 0.7997 | | 0.5531 | 5.0 | 3810 | 0.4772 | 0.7667 | 0.7573 | 0.7620 | 0.7978 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2