from transformers import PretrainedConfig, PreTrainedModel import inspect import math from dataclasses import dataclass from typing import Dict, List, Optional, Tuple, Union import json import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from transformers.activations import ACT2FN from transformers.cache_utils import Cache, DynamicCache from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask from transformers.modeling_outputs import BaseModelOutput, ModelOutput from transformers.utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings, ) if is_flash_attn_2_available(): from flash_attn import flash_attn_func, flash_attn_varlen_func from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) class Idefics2VisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Idefics2VisionModel`]. It is used to instantiate a Idefics2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SigLIP checkpoint [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) used in the Idefics2 model [HuggingFaceM4/idefics2-8b](https://huggingface.co/HuggingFaceM4/idefics2-8b). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. num_channels (`int`, *optional*, defaults to 3): Number of channels in the input images. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 32): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. intializer_range (`float`, *optional*, defaults to 0.02): The standard deviation for initializing all weight matrices in the model. Example: ```python >>> from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer >>> from transformers.models.idefics2.configuration_idefics2 import Idefics2VisionConfig >>> # Initializing a Idefics2VisionConfig with google/siglip-base-patch16-224 style configuration >>> configuration = Idefics2VisionConfig() >>> # Initializing a Idefics2VisionTransformer (with random weights) from the google/siglip-base-patch16-224 style configuration >>> model = Idefics2VisionTransformer(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" _auto_class = 'AutoConfig' model_type = "Idefics2VisionConfig" def __init__( self, hidden_size=768, intermediate_size=3072, num_hidden_layers=12, num_attention_heads=12, num_channels=3, image_size=224, patch_size=32, hidden_act="gelu_pytorch_tanh", layer_norm_eps=1e-6, attention_dropout=0.0, initializer_range=0.02, model_type='Idefics2VisionConfig', **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.patch_size = patch_size self.image_size = image_size self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.initializer_range = initializer_range """ @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs) -> "PretrainedConfig": with open(pretrained_model_name_or_path, "r", encoding="utf-8") as f: config_dict = json.load(f) cls = Idefics2VisionConfig( hidden_size=config_dict["hidden_size"], image_size=config_dict["image_size"], intermediate_size = config_dict["intermediate_size"], model_type=config_dict["model_type"], num_attention_heads = config_dict["num_attention_heads"], num_hidden_layers = config_dict["num_hidden_layers"], patch_size = config_dict["patch_size"] ) return cls """ # Copied from transformers.models.llama.modeling_llama._get_unpad_data def _get_unpad_data(attention_mask): seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) return ( indices, cu_seqlens, max_seqlen_in_batch, ) # Copied from transformers.models.siglip.modeling_siglip.SiglipAttention with Siglip->Idefics2Vision class Idefics2VisionAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" # Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__ def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) # Ignore copy self.is_causal = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" batch_size, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) k_v_seq_len = key_states.shape[-2] attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len): raise ValueError( f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len): raise ValueError( f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights class Idefics2VisionFlashAttention2(Idefics2VisionAttention): """ Idefics2Vision flash attention module. This module inherits from `Idefics2VisionAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: output_attentions = False bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) # Flash attention requires the input to have the shape # batch_size x seq_length x head_dim x hidden_dim # therefore we just need to keep the original shape query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache # to be able to avoid many of these transpose/reshape/view. query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) dropout_rate = self.dropout if self.training else 0.0 # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. (Idefics2VisionRMSNorm handles it correctly) input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) attn_output = self._flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate ) attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous() attn_output = self.out_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward def _flash_attention_forward( self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None ): """ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token first unpad the input, then computes the attention scores and pad the final attention scores. Args: query_states (`torch.Tensor`): Input query states to be passed to Flash Attention API key_states (`torch.Tensor`): Input key states to be passed to Flash Attention API value_states (`torch.Tensor`): Input value states to be passed to Flash Attention API attention_mask (`torch.Tensor`): The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the position of padding tokens and 1 for the position of non-padding tokens. dropout (`float`): Attention dropout softmax_scale (`float`, *optional*): The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) """ if not self._flash_attn_uses_top_left_mask: causal = self.is_causal else: # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. causal = self.is_causal and query_length != 1 # Contains at least one padding token in the sequence if attention_mask is not None: batch_size = query_states.shape[0] query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( query_states, key_states, value_states, attention_mask, query_length ) cu_seqlens_q, cu_seqlens_k = cu_seq_lens max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens attn_output_unpad = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=dropout, softmax_scale=softmax_scale, causal=causal, ) attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) else: attn_output = flash_attn_func( query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal ) return attn_output # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape key_layer = index_first_axis( key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k ) value_layer = index_first_axis( value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k ) if query_length == kv_seq_len: query_layer = index_first_axis( query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k ) cu_seqlens_q = cu_seqlens_k max_seqlen_in_batch_q = max_seqlen_in_batch_k indices_q = indices_k elif query_length == 1: max_seqlen_in_batch_q = 1 cu_seqlens_q = torch.arange( batch_size + 1, dtype=torch.int32, device=query_layer.device ) # There is a memcpy here, that is very bad. indices_q = cu_seqlens_q[:-1] query_layer = query_layer.squeeze(1) else: # The -q_len: slice assumes left padding. attention_mask = attention_mask[:, -query_length:] query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) return ( query_layer, key_layer, value_layer, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_in_batch_q, max_seqlen_in_batch_k), ) IDEFICS_VISION_ATTENTION_CLASSES = { "eager": Idefics2VisionAttention, "flash_attention_2": Idefics2VisionFlashAttention2, } # Copied from transformers.models.siglip.modeling_siglip.SiglipMLP with Siglip->Idefics2Vision class Idefics2VisionMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states class Idefics2EncoderLayer(nn.Module): def __init__(self, config: Idefics2VisionConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = IDEFICS_VISION_ATTENTION_CLASSES[config._attn_implementation](config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = Idefics2VisionMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) # Copied from transformers.models.siglip.modeling_siglip.SiglipEncoderLayer.forward def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): Input to the layer of shape `(batch, seq_len, embed_dim)`. attention_mask (`torch.FloatTensor`): Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.siglip.modeling_siglip.SiglipEncoder with Siglip->Idefics2 class Idefics2Encoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`Idefics2EncoderLayer`]. Args: config: Idefics2VisionConfig """ def __init__(self, config: Idefics2VisionConfig): super().__init__() self.config = config self.layers = nn.ModuleList([Idefics2EncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False # Ignore copy def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for encoder_layer in self.layers: if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class Idefics2VisionEmbeddings(nn.Module): """ This is a modified version of `siglip.modelign_siglip.SiglipVisionEmbeddings` to enable images of variable resolution. The modifications are adapted from [Patch n' Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution](https://arxiv.org/abs/2307.06304) which allows treating images in their native aspect ratio and without the need to resize them to the same fixed size. In particular, we start from the original pre-trained SigLIP model (which uses images of fixed-size square images) and adapt it by training on images of variable resolutions. """ def __init__(self, config: Idefics2VisionConfig): super().__init__() self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.patch_embedding = nn.Conv2d( in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, padding="valid", ) self.num_patches_per_side = self.image_size // self.patch_size self.num_patches = self.num_patches_per_side**2 self.num_positions = self.num_patches self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) def forward(self, pixel_values: torch.FloatTensor, patch_attention_mask: torch.BoolTensor) -> torch.Tensor: batch_size, _, max_im_h, max_im_w = pixel_values.shape patch_embeds = self.patch_embedding(pixel_values) embeddings = patch_embeds.flatten(2).transpose(1, 2) max_nb_patches_h, max_nb_patches_w = max_im_h // self.patch_size, max_im_w // self.patch_size boundaries = torch.arange(1 / self.num_patches_per_side, 1.0, 1 / self.num_patches_per_side) position_ids = torch.full(size=(batch_size, max_nb_patches_h * max_nb_patches_w), fill_value=0) for batch_idx, p_attn_mask in enumerate(patch_attention_mask): nb_patches_h = p_attn_mask[:, 0].sum() nb_patches_w = p_attn_mask[0].sum() fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h) fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w) bucket_coords_h = torch.bucketize(fractional_coords_h, boundaries, right=True) bucket_coords_w = torch.bucketize(fractional_coords_w, boundaries, right=True) pos_ids = (bucket_coords_h[:, None] * self.num_patches_per_side + bucket_coords_w).flatten() position_ids[batch_idx][p_attn_mask.view(-1).cpu()] = pos_ids position_ids = position_ids.to(self.position_embedding.weight.device) embeddings = embeddings + self.position_embedding(position_ids) return embeddings class Idefics2VisionTransformer(PreTrainedModel): _auto_class = 'AutoModel' config_class = Idefics2VisionConfig supports_gradient_checkpointing = True def __init__(self, config: Idefics2VisionConfig): super().__init__(config) embed_dim = config.hidden_size config._attn_implementation = "flash_attention_2" self._use_flash_attention_2 = True self.config = config self.embeddings = Idefics2VisionEmbeddings(config) self.encoder = Idefics2Encoder(config) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings = value def forward( self, pixel_values, patch_attention_mask: Optional[torch.BoolTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: pixel_values = pixel_values.to(torch.bfloat16) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict batch_size = pixel_values.size(0) if patch_attention_mask is None: patch_size = self.config.patch_size patch_attention_mask = torch.ones( ( batch_size, pixel_values.size(2) // patch_size, pixel_values.size(3) // patch_size, ) ) patch_attention_mask = patch_attention_mask.to(dtype=torch.bool, device=pixel_values.device) hidden_states = self.embeddings(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask) patch_attention_mask = patch_attention_mask.view(batch_size, -1) # The call to `_upad_input` in `_flash_attention_forward` is expensive # So when the `patch_attention_mask` is full of 1s (i.e. attending to the whole sequence), # avoiding passing the attention_mask, which is equivalent to attending to the full sequence if not torch.any(~patch_attention_mask): patch_attention_mask = None elif not self._use_flash_attention_2: patch_attention_mask = _prepare_4d_attention_mask(patch_attention_mask, hidden_states.dtype) encoder_outputs = self.encoder( inputs_embeds=hidden_states, attention_mask=patch_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.post_layernorm(last_hidden_state) if not return_dict: return (last_hidden_state,) + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=last_hidden_state, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) """ @classmethod def from_pretrained(self, config_path="/mnt/csp/mmvision/home/arrayyang/idefics2-8b/idefics2_vision_model"): config = Idefics2VisionConfig.from_pretrained(f'{config_path}/config.json') cls = Idefics2VisionTransformer(config=config) state_dict = torch.load(f'{config_path}/vision_model.pth', map_location='cpu') ret = cls.load_state_dict(state_dict, strict=False) print("Loading idefics2 Vision Model: {}".format(config_path)) return cls """