--- library_name: transformers base_model: bert-base-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9433962264150944 - name: Recall type: recall value: 0.9508582968697409 - name: F1 type: f1 value: 0.9471125639091443 - name: Accuracy type: accuracy value: 0.9912970678711888 --- # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0424 - Precision: 0.9434 - Recall: 0.9509 - F1: 0.9471 - Accuracy: 0.9913 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.052 | 1.0 | 1756 | 0.0455 | 0.9190 | 0.9342 | 0.9266 | 0.9883 | | 0.0227 | 2.0 | 3512 | 0.0442 | 0.9446 | 0.9492 | 0.9469 | 0.9908 | | 0.0125 | 3.0 | 5268 | 0.0424 | 0.9434 | 0.9509 | 0.9471 | 0.9913 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu124 - Datasets 3.0.1 - Tokenizers 0.20.0