--- language: - en - de - fr - it - pt - hi - es - th license: llama3.2 library_name: transformers tags: - autoround - intel - gptq - woq - meta - pytorch - llama - llama-3 - intel-autoround model_name: Llama 3.2 1B base_model: meta-llama/Llama-3.2-1B inference: false model_creator: meta-llama pipeline_tag: text-generation prompt_template: '{prompt} ' quantized_by: fbaldassarri --- ## Model Information Quantized version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) using torch.float32 for quantization tuning. - 8 bits (INT8) - group size = 128 - Asymmetrical Quantization - Method WoQ (AutoRound format) Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) Note: this INT8 version of Llama-3.2-1B has been quantized to run inference through CPU. ## Replication Recipe ### Step 1 Install Requirements I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment. ``` wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.3.tar.gz tar -xvzf v0.4.3.tar.gz cd auto-round-0.4.3 pip install -r requirements-cpu.txt --upgrade ``` ### Step 2 Build Intel AutoRound wheel from sources ``` pip install -vvv --no-build-isolation -e .[cpu] ``` ### Step 3 Script for Quantization ``` from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "meta-llama/Llama-3.2-1B" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) from auto_round import AutoRound bits, group_size, sym, device, amp = 8, 128, False, 'cpu', False autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp) autoround.quantize() output_dir = "./AutoRound/meta-llama_Llama-3.2-1B-auto_round-int8-gs128-asym" autoround.save_quantized(output_dir, format='auto_round', inplace=True) ``` ## License [Llama 3.2 Community License](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE) ## Disclaimer This quantized model comes with no warrenty. It has been developed only for research purposes.