--- base_model: medicalai/ClinicalBERT tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: ClinicalBERT-medical-text-classification results: [] --- # ClinicalBERT-medical-text-classification This model is a fine-tuned version of [medicalai/ClinicalBERT](https://huggingface.co/medicalai/ClinicalBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0223 - Accuracy: 0.273 - Precision: 0.2079 - Recall: 0.273 - F1: 0.2270 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 2.5449 | 1.0 | 250 | 2.5124 | 0.377 | 0.1879 | 0.377 | 0.2437 | | 2.0748 | 2.0 | 500 | 2.0375 | 0.372 | 0.3107 | 0.372 | 0.2994 | | 1.766 | 3.0 | 750 | 1.8367 | 0.351 | 0.3350 | 0.351 | 0.3148 | | 1.6599 | 4.0 | 1000 | 1.8015 | 0.303 | 0.2597 | 0.303 | 0.2703 | | 1.4441 | 5.0 | 1250 | 1.9012 | 0.308 | 0.2483 | 0.308 | 0.2634 | | 1.4366 | 6.0 | 1500 | 1.9159 | 0.253 | 0.2412 | 0.253 | 0.2390 | | 1.1871 | 7.0 | 1750 | 2.0223 | 0.273 | 0.2079 | 0.273 | 0.2270 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2