fawern's picture
End of training
da49600 verified
|
raw
history blame
2.79 kB
metadata
base_model: medicalai/ClinicalBERT
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: ClinicalBERT-medical-text-classification
    results: []

ClinicalBERT-medical-text-classification

This model is a fine-tuned version of medicalai/ClinicalBERT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4453
  • Accuracy: 0.284
  • Precision: 0.1812
  • Recall: 0.284
  • F1: 0.2132

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
2.9605 1.0 250 2.9477 0.221 0.0488 0.221 0.0800
2.5952 2.0 500 2.5658 0.341 0.1400 0.341 0.1958
2.5191 3.0 750 2.4897 0.355 0.1531 0.355 0.2046
2.414 4.0 1000 2.5463 0.323 0.1913 0.323 0.1902
2.2946 5.0 1250 2.4793 0.347 0.1461 0.347 0.2023
2.4065 6.0 1500 2.4471 0.349 0.1684 0.349 0.2198
2.3267 7.0 1750 2.4408 0.344 0.1672 0.344 0.2193
2.3173 8.0 2000 2.4214 0.358 0.1748 0.358 0.2286
2.1692 9.0 2250 2.4358 0.339 0.1638 0.339 0.2147
2.029 10.0 2500 2.4074 0.338 0.1658 0.338 0.2178
2.125 11.0 2750 2.3605 0.334 0.1756 0.334 0.2239
1.9541 12.0 3000 2.3997 0.326 0.1623 0.326 0.2123
2.1619 13.0 3250 2.4450 0.321 0.1765 0.321 0.2127
2.101 14.0 3500 2.4453 0.284 0.1812 0.284 0.2132

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2