--- language: - en license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - speech_command_v0_02 metrics: - wer model-index: - name: Whisper Small command - fatipd results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: speech command v02 type: speech_command_v0_02 config: null split: None args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 0.3861003861003861 --- # Whisper Small command - fatipd This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the speech command v02 dataset. It achieves the following results on the evaluation set: - Loss: 0.0021 - Wer: 0.3861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - training_steps: 3000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0095 | 0.2 | 250 | 0.0042 | 0.7239 | | 0.0068 | 0.4 | 500 | 0.0051 | 1.0135 | | 0.0045 | 0.6 | 750 | 0.0021 | 0.3861 | | 0.0056 | 0.8 | 1000 | 0.0018 | 1.5927 | | 0.0021 | 1.0 | 1250 | 0.0023 | 8.8803 | | 0.0081 | 1.2 | 1500 | 0.0033 | 2.0270 | | 0.0056 | 1.4 | 1750 | 0.0023 | 6.1293 | | 0.0028 | 1.6 | 2000 | 0.0017 | 0.8687 | | 0.0064 | 1.81 | 2250 | 0.0011 | 0.8687 | | 0.0005 | 2.01 | 2500 | 0.0014 | 2.0270 | | 0.0015 | 2.21 | 2750 | 0.0013 | 1.4961 | | 0.0012 | 2.41 | 3000 | 0.0014 | 1.8822 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3