--- license: other tags: - generated_from_trainer datasets: - scene_parse_150 model-index: - name: segformer-b0-scene-parse-150 results: [] --- # segformer-b0-scene-parse-150 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset. It achieves the following results on the evaluation set: - Loss: 4.9388 - Mean Iou: 0.0077 - Mean Accuracy: 0.0304 - Overall Accuracy: 0.1400 - Per Category Iou: [0.24806356529539922, 0.013146457715783072, 0.5651421416142604, 0.00044333002822057814, 0.015522014422561894, 3.8342382135517314e-05, 0.0, 0.0, 0.0, 0.00035659279379073315, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.005306015969291258, 0.001087533665564206, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.021716755866611773, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0003517720517104916, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.06394611209208031, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0] - Per Category Accuracy: [0.3347803978677994, 0.01496345206730473, 0.9016463925397143, 0.00044840238569355314, 0.01803200303917523, 4.056367279718975e-05, 0.0, 0.0, 0.0, 0.00046576156971558816, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.13008222932846047, 0.0011137754366654874, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.082421875, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.00036738255239028274, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.06752202856116897, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 4.9242 | 1.0 | 20 | 4.9388 | 0.0077 | 0.0304 | 0.1400 | [0.24806356529539922, 0.013146457715783072, 0.5651421416142604, 0.00044333002822057814, 0.015522014422561894, 3.8342382135517314e-05, 0.0, 0.0, 0.0, 0.00035659279379073315, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.005306015969291258, 0.001087533665564206, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.021716755866611773, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0003517720517104916, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.06394611209208031, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0] | [0.3347803978677994, 0.01496345206730473, 0.9016463925397143, 0.00044840238569355314, 0.01803200303917523, 4.056367279718975e-05, 0.0, 0.0, 0.0, 0.00046576156971558816, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.13008222932846047, 0.0011137754366654874, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.082421875, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.00036738255239028274, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.06752202856116897, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3