--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-mnist results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8308823529411765 --- # vit-base-mnist This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6891 - Accuracy: 0.8309 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9053 | 1.0 | 289 | 1.3241 | 0.7108 | | 1.3293 | 2.0 | 578 | 0.9333 | 0.7892 | | 1.1251 | 3.0 | 867 | 0.7989 | 0.7843 | | 0.9837 | 4.0 | 1156 | 0.6956 | 0.8186 | | 0.999 | 5.0 | 1445 | 0.6891 | 0.8309 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.11.0a0+17540c5 - Datasets 2.4.0 - Tokenizers 0.12.1