--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-finetuned-xlsum-with-multi-news-10-epoch results: [] --- # t5-small-finetuned-xlsum-with-multi-news-10-epoch This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2332 - Rouge1: 31.4802 - Rouge2: 9.9475 - Rougel: 24.6687 - Rougelsum: 24.7013 - Gen Len: 18.8025 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.7314 | 1.0 | 20543 | 2.3867 | 29.3997 | 8.2875 | 22.8406 | 22.8871 | 18.8204 | | 2.6652 | 2.0 | 41086 | 2.3323 | 30.3992 | 8.9058 | 23.6168 | 23.6626 | 18.8447 | | 2.632 | 3.0 | 61629 | 2.3002 | 30.8662 | 9.2869 | 24.0683 | 24.11 | 18.8122 | | 2.6221 | 4.0 | 82172 | 2.2785 | 31.143 | 9.5737 | 24.3473 | 24.381 | 18.7911 | | 2.5925 | 5.0 | 102715 | 2.2631 | 31.2144 | 9.6904 | 24.4419 | 24.4796 | 18.8133 | | 2.5812 | 6.0 | 123258 | 2.2507 | 31.3371 | 9.7959 | 24.5801 | 24.6166 | 18.7836 | | 2.5853 | 7.0 | 143801 | 2.2437 | 31.3593 | 9.8156 | 24.5533 | 24.5852 | 18.8103 | | 2.5467 | 8.0 | 164344 | 2.2377 | 31.368 | 9.8807 | 24.6226 | 24.6518 | 18.799 | | 2.5571 | 9.0 | 184887 | 2.2337 | 31.4356 | 9.9092 | 24.6543 | 24.6891 | 18.8075 | | 2.5563 | 10.0 | 205430 | 2.2332 | 31.4802 | 9.9475 | 24.6687 | 24.7013 | 18.8025 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.13.1+cpu - Datasets 2.8.0 - Tokenizers 0.10.3