--- license: apache-2.0 tags: - generated_from_trainer datasets: - xlsum metrics: - rouge model-index: - name: bart-base-finetuned-xlsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xlsum type: xlsum args: english metrics: - name: Rouge1 type: rouge value: 36.7016 --- # bart-base-finetuned-xlsum This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 1.8367 - Rouge1: 36.7016 - Rouge2: 15.3377 - Rougel: 29.8655 - Rougelsum: 29.9287 - Gen Len: 19.571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.0991 | 1.0 | 19158 | 1.8367 | 36.7016 | 15.3377 | 29.8655 | 29.9287 | 19.571 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.10.3