# Adapted from https://github.com/openai/jukebox import math import torch.nn as nn import modules_vqvae.dist as dist class ResConvBlock(nn.Module): def __init__(self, n_in, n_state): super().__init__() self.model = nn.Sequential( nn.ReLU(), nn.Conv2d(n_in, n_state, 3, 1, 1), nn.ReLU(), nn.Conv2d(n_state, n_in, 1, 1, 0), ) def forward(self, x): return x + self.model(x) class Resnet(nn.Module): def __init__(self, n_in, n_depth, m_conv=1.0): super().__init__() self.model = nn.Sequential(*[ResConvBlock(n_in, int(m_conv * n_in)) for _ in range(n_depth)]) def forward(self, x): return self.model(x) class ResConv1DBlock(nn.Module): def __init__(self, n_in, n_state, dilation=1, zero_out=False, res_scale=1.0): super().__init__() padding = dilation self.model = nn.Sequential( nn.ReLU(), nn.Conv1d(n_in, n_state, 3, 1, padding, dilation), nn.ReLU(), nn.Conv1d(n_state, n_in, 1, 1, 0), ) if zero_out: out = self.model[-1] nn.init.zeros_(out.weight) nn.init.zeros_(out.bias) self.res_scale = res_scale def forward(self, x): return x + self.res_scale * self.model(x) class Resnet1D(nn.Module): def __init__(self, n_in, n_depth, m_conv=1.0, dilation_growth_rate=1, dilation_cycle=None, zero_out=False, res_scale=False, reverse_dilation=False, checkpoint_res=False): super().__init__() def _get_depth(depth): if dilation_cycle is None: return depth else: return depth % dilation_cycle blocks = [ResConv1DBlock(n_in, int(m_conv * n_in), dilation=dilation_growth_rate ** _get_depth(depth), zero_out=zero_out, res_scale=1.0 if not res_scale else 1.0 / math.sqrt(n_depth)) for depth in range(n_depth)] if reverse_dilation: blocks = blocks[::-1] self.checkpoint_res = checkpoint_res if self.checkpoint_res == 1: if dist.get_rank() == 0: print("Checkpointing convs") self.blocks = nn.ModuleList(blocks) else: self.model = nn.Sequential(*blocks) def forward(self, x): if self.checkpoint_res == 1: raise NotImplementedError("Checkpoint not implemented") else: return self.model(x)