import torch import torch.nn.functional as F from torch import nn from einops import rearrange from torchvision.transforms.v2 import ( Compose, Resize, InterpolationMode, ToImage, ToDtype, Normalize, ) class Attention(nn.Module): def __init__(self, dim, num_heads=16): super().__init__() assert dim % num_heads == 0, "dim should be divisible by num_heads" self.num_heads = num_heads self.head_dim = dim // num_heads self.qkv = nn.Linear(dim, dim * 3) self.proj = nn.Linear(dim, dim) torch.nn.init.kaiming_normal_( self.qkv.weight, mode="fan_in", nonlinearity="relu" ) torch.nn.init.kaiming_normal_( self.proj.weight, mode="fan_in", nonlinearity="relu" ) def forward(self, x: torch.Tensor) -> torch.Tensor: B, N, C = x.shape qkv = ( self.qkv(x) .reshape(B, N, 3, self.num_heads, self.head_dim) .permute(2, 0, 3, 1, 4) ) q, k, v = qkv.unbind(0) x = F.scaled_dot_product_attention(q, k, v) x = x.transpose(1, 2).reshape(B, N, C) x = self.proj(x) return x class VitBlock(nn.Module): def __init__(self, embed_dim): super().__init__() self.attn = Attention(embed_dim) self.mlp = MLP(embed_dim, 4304) self.norm1 = nn.LayerNorm(embed_dim) self.norm2 = nn.LayerNorm(embed_dim) def forward(self, x): x = x + self.attn(self.norm1(x)) x = x + self.mlp(self.norm2(x)) return x class VisionTransformer(nn.Module): def __init__(self): super().__init__() embed_len = 729 embed_dim = 1152 self.patch_embed = LinearPatchEmbedding() self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * 0.02) self.blocks = nn.Sequential(*[VitBlock(embed_dim) for _ in range(27)]) self.norm = nn.LayerNorm(embed_dim) def forward(self, x): x = self.patch_embed(x) x = x + self.pos_embed for block in self.blocks: x = block(x) return self.norm(x) class EncoderWrapper(nn.Module): def __init__(self): super().__init__() self.model = nn.ModuleDict({"visual": VisionTransformer()}) def forward(self, x): return self.model["visual"](x) class LinearPatchEmbedding(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(588, 1152) def forward(self, x): return self.linear(x) class MLP(nn.Module): def __init__( self, in_features: int, hidden_features: int = None, out_features: int = None, ) -> None: super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = nn.GELU(approximate="tanh") self.fc2 = nn.Linear(hidden_features, out_features) torch.nn.init.kaiming_normal_( self.fc1.weight, mode="fan_in", nonlinearity="relu" ) torch.nn.init.kaiming_normal_( self.fc2.weight, mode="fan_in", nonlinearity="relu" ) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.fc1(x) x = self.act(x) x = self.fc2(x) return x class VisionProjection(nn.Module): def __init__(self): super().__init__() image_embedding_dim = 1152 model_dim = 2048 hidden_dim = model_dim * 4 self.mlp = MLP(image_embedding_dim, hidden_dim, model_dim) @property def device(self): return self.mlp.fc1.weight.device def forward(self, x): return self.mlp(x) class VisionEncoder(nn.Module): def __init__(self) -> None: super().__init__() self.encoder = EncoderWrapper() self.projection = VisionProjection() self.preprocess = Compose( [ Resize(size=(378, 378), interpolation=InterpolationMode.BICUBIC), ToImage(), ToDtype(torch.float32, scale=True), Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), ] ) @property def device(self): return self.projection.mlp.fc1.weight.device @property def dtype(self): return self.projection.mlp.fc1.weight.dtype def __call__(self, images) -> torch.Tensor: if not isinstance(images, list): images = [images] with torch.no_grad(): x = torch.stack( [self.preprocess(image.convert("RGB")) for image in images] ).to(self.device, dtype=self.dtype) x = rearrange(x, "b c (h p1) (w p2) -> b (h w) (c p1 p2)", p1=14, p2=14) x = self.encoder(x) x = self.projection(x) return x