--- language: - id library_name: transformers tags: - indobert - indonlu - indobenchmark datasets: - fahrendrakhoirul/ecommerce-reviews-multilabel-dataset metrics: - f1 - precision - recall --- This model leverages IndoBERT for understanding language and a Long Short-Term Memory (LSTM) network to capture sequential information in customer reviews. It's designed for multi-label classification of e-commerce reviews, focusing on: - Produk (Product): Customer satisfaction with product quality, performance, and description accuracy. - Layanan Pelanggan (Customer Service): Interaction with sellers, their responsiveness, and complaint handling. - Pengiriman (Shipping/Delivery): Speed of delivery, item condition upon arrival, and timeliness. **How to import in PyTorch:** ```python import torch.nn as nn from huggingface_hub import PyTorchModelHubMixin from transformers import BertModel, AutoTokenizer class IndoBertLSTMEcommerceReview(nn.Module, PyTorchModelHubMixin):     def __init__(self, bert):       super().__init__()       self.bert = bert       self.lstm = nn.LSTM(bert.config.hidden_size, 128)       self.linear = nn.Linear(128, 3)       self.sigmoid = nn.Sigmoid()     def forward(self, input_ids, attention_mask):       outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)       last_hidden_state = outputs.last_hidden_state       lstm_out, _ = self.lstm(last_hidden_state)       pooled = lstm_out[:, -1, :]       logits = self.linear(pooled)       probabilities = self.sigmoid(logits)       return probabilities bert = BertModel.from_pretrained("indobenchmark/indobert-base-p1") tokenizer = AutoTokenizer.from_pretrained("fahrendrakhoirul/indobert-lstm-finetuned-ecommerce-reviews") model = IndoBertLSTMEcommerceReview.from_pretrained("fahrendrakhoirul/indobert-lstm-finetuned-ecommerce-reviews", bert=bert) ```