--- tags: - mms language: - ab - af - ak - am - ar - as - av - ay - az - ba - bm - be - bn - bi - bo - sh - br - bg - ca - cs - ce - cv - ku - cy - da - de - dv - dz - el - en - eo - et - eu - ee - fo - fa - fj - fi - fr - fy - ff - ga - gl - gn - gu - zh - ht - ha - he - hi - sh - hu - hy - ig - ia - ms - is - it - jv - ja - kn - ka - kk - kr - km - ki - rw - ky - ko - kv - lo - la - lv - ln - lt - lb - lg - mh - ml - mr - ms - mk - mg - mt - mn - mi - my - zh - nl - 'no' - 'no' - ne - ny - oc - om - or - os - pa - pl - pt - ms - ps - qu - qu - qu - qu - qu - qu - qu - qu - qu - qu - qu - qu - qu - qu - qu - qu - qu - qu - qu - qu - qu - qu - ro - rn - ru - sg - sk - sl - sm - sn - sd - so - es - sq - su - sv - sw - ta - tt - te - tg - tl - th - ti - ts - tr - uk - ms - vi - wo - xh - ms - yo - ms - zu - za license: cc-by-sa-4.0 datasets: - google/fleurs metrics: - wer --- # Massively Multilingual Speech (MMS) - Finetuned ASR - ALL This checkpoint is a model fine-tuned for multi-lingual ASR and part of Facebook's [Massive Multilingual Speech project](https://research.facebook.com/publications/scaling-speech-technology-to-1000-languages/). This checkpoint is based on the [Wav2Vec2 architecture](https://huggingface.co/docs/transformers/model_doc/wav2vec2) and makes use of adapter models to transcribe 100+ languages. The checkpoint consists of **1 billion parameters** and has been fine-tuned from [facebook/mms-1b](https://huggingface.co/facebook/mms-1b) on 102 languages of [Fleurs](https://huggingface.co/datasets/google/fleurs). ## Table Of Content - [Example](#example) - [Supported Languages](#supported-languages) - [Model details](#model-details) - [Additional links](#additional-links) ## Example This MMS checkpoint can be used with [Transformers](https://github.com/huggingface/transformers) to transcribe audio of 1107 different languages. Let's look at a simple example. First, we install transformers and some other libraries ``` pip install torch accelerate torchaudio datasets pip install --upgrade transformers ```` **Note**: In order to use MMS you need to have at least `transformers >= 4.30` installed. If the `4.30` version is not yet available [on PyPI](https://pypi.org/project/transformers/) make sure to install `transformers` from source: ``` pip install git+https://github.com/huggingface/transformers.git ``` Next, we load a couple of audio samples via `datasets`. Make sure that the audio data is sampled to 16000 kHz. ```py from datasets import load_dataset, Audio # English stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "en", split="test", streaming=True) stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000)) en_sample = next(iter(stream_data))["audio"]["array"] # French stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "fr", split="test", streaming=True) stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000)) fr_sample = next(iter(stream_data))["audio"]["array"] ``` Next, we load the model and processor ```py from transformers import Wav2Vec2ForCTC, AutoProcessor import torch model_id = "facebook/mms-1b-fl102" processor = AutoProcessor.from_pretrained(model_id) model = Wav2Vec2ForCTC.from_pretrained(model_id) ``` Now we process the audio data, pass the processed audio data to the model and transcribe the model output, just like we usually do for Wav2Vec2 models such as [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) ```py inputs = processor(en_sample, sampling_rate=16_000, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs).logits ids = torch.argmax(outputs, dim=-1)[0] transcription = processor.decode(ids) # 'joe keton disapproved of films and buster also had reservations about the media' ``` We can now keep the same model in memory and simply switch out the language adapters by calling the convenient [`load_adapter()`]() function for the model and [`set_target_lang()`]() for the tokenizer. We pass the target language as an input - "fra" for French. ```py processor.tokenizer.set_target_lang("fra") model.load_adapter("fra") inputs = processor(fr_sample, sampling_rate=16_000, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs).logits ids = torch.argmax(outputs, dim=-1)[0] transcription = processor.decode(ids) # "ce dernier est volé tout au long de l'histoire romaine" ``` In the same way the language can be switched out for all other supported languages. Please have a look at: ```py processor.tokenizer.vocab.keys() ``` For more details, please have a look at [the official docs](https://huggingface.co/docs/transformers/main/en/model_doc/mms). ## Supported Languages This model supports 102 languages. Unclick the following to toogle all supported languages of this checkpoint in [ISO 639-3 code](https://en.wikipedia.org/wiki/ISO_639-3). You can find more details about the languages and their ISO 649-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html).
Click to toggle - afr - amh - ara - asm - ast - azj-script_latin - bel - ben - bos - bul - cat - ceb - ces - ckb - cmn-script_simplified - cym - dan - deu - ell - eng - est - fas - fin - fra - ful - gle - glg - guj - hau - heb - hin - hrv - hun - hye - ibo - ind - isl - ita - jav - jpn - kam - kan - kat - kaz - kea - khm - kir - kor - lao - lav - lin - lit - ltz - lug - luo - mal - mar - mkd - mlt - mon - mri - mya - nld - nob - npi - nso - nya - oci - orm - ory - pan - pol - por - pus - ron - rus - slk - slv - sna - snd - som - spa - srp-script_latin - swe - swh - tam - tel - tgk - tgl - tha - tur - ukr - umb - urd-script_arabic - uzb-script_latin - vie - wol - xho - yor - yue-script_traditional - zlm - zul
## Model details - **Developed by:** Vineel Pratap et al. - **Model type:** Multi-Lingual Automatic Speech Recognition model - **Language(s):** 100+ languages, see [supported languages](#supported-languages) - **License:** CC-BY-NC 4.0 license - **Num parameters**: 1 billion - **Audio sampling rate**: 16,000 kHz - **Cite as:** @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ## Additional Links - [Blog post](https://ai.facebook.com/blog/multilingual-model-speech-recognition/) - [Transformers documentation](https://huggingface.co/docs/transformers/main/en/model_doc/mms). - [Paper](https://arxiv.org/abs/2305.13516) - [GitHub Repository](https://github.com/facebookresearch/fairseq/tree/main/examples/mms#asr) - [Other **MMS** checkpoints](https://huggingface.co/models?other=mms) - MMS base checkpoints: - [facebook/mms-1b](https://huggingface.co/facebook/mms-1b) - [facebook/mms-300m](https://huggingface.co/facebook/mms-300m) - [Official Space](https://huggingface.co/spaces/facebook/MMS)