# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # All contributions by Andy Brock: # Copyright (c) 2019 Andy Brock # # MIT License """ Layers This file contains various layers for the BigGAN models. """ import os import numpy as np import torch import torch.nn as nn from torch.nn import init import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter as P import sys sys.path.insert(1, os.path.join(sys.path[0], "..")) from BigGAN_PyTorch.sync_batchnorm import SynchronizedBatchNorm2d as SyncBN2d # Projection of x onto y def proj(x, y): return torch.mm(y, x.t()) * y / torch.mm(y, y.t()) # Orthogonalize x wrt list of vectors ys def gram_schmidt(x, ys): for y in ys: x = x - proj(x, y) return x # Apply num_itrs steps of the power method to estimate top N singular values. def power_iteration(W, u_, update=True, eps=1e-12): # Lists holding singular vectors and values us, vs, svs = [], [], [] for i, u in enumerate(u_): # Run one step of the power iteration with torch.no_grad(): v = torch.matmul(u, W) # Run Gram-Schmidt to subtract components of all other singular vectors v = F.normalize(gram_schmidt(v, vs), eps=eps) # Add to the list vs += [v] # Update the other singular vector u = torch.matmul(v, W.t()) # Run Gram-Schmidt to subtract components of all other singular vectors u = F.normalize(gram_schmidt(u, us), eps=eps) # Add to the list us += [u] if update: u_[i][:] = u # Compute this singular value and add it to the list svs += [torch.squeeze(torch.matmul(torch.matmul(v, W.t()), u.t()))] # svs += [torch.sum(F.linear(u, W.transpose(0, 1)) * v)] return svs, us, vs # Convenience passthrough function class identity(nn.Module): def forward(self, input): return input # Spectral normalization base class class SN(object): def __init__(self, num_svs, num_itrs, num_outputs, transpose=False, eps=1e-12): # Number of power iterations per step self.num_itrs = num_itrs # Number of singular values self.num_svs = num_svs # Transposed? self.transpose = transpose # Epsilon value for avoiding divide-by-0 self.eps = eps # Register a singular vector for each sv for i in range(self.num_svs): self.register_buffer("u%d" % i, torch.randn(1, num_outputs)) self.register_buffer("sv%d" % i, torch.ones(1)) # Singular vectors (u side) @property def u(self): return [getattr(self, "u%d" % i) for i in range(self.num_svs)] # Singular values; # note that these buffers are just for logging and are not used in training. @property def sv(self): return [getattr(self, "sv%d" % i) for i in range(self.num_svs)] # Compute the spectrally-normalized weight def W_(self): W_mat = self.weight.view(self.weight.size(0), -1) if self.transpose: W_mat = W_mat.t() # Apply num_itrs power iterations for _ in range(self.num_itrs): svs, us, vs = power_iteration( W_mat, self.u, update=self.training, eps=self.eps ) # Update the svs if self.training: with torch.no_grad(): # Make sure to do this in a no_grad() context or you'll get memory leaks! for i, sv in enumerate(svs): self.sv[i][:] = sv return self.weight / svs[0] # 2D Conv layer with spectral norm class SNConv2d(nn.Conv2d, SN): def __init__( self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, num_svs=1, num_itrs=1, eps=1e-12, ): nn.Conv2d.__init__( self, in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, ) SN.__init__(self, num_svs, num_itrs, out_channels, eps=eps) def forward(self, x): return F.conv2d( x, self.W_(), self.bias, self.stride, self.padding, self.dilation, self.groups, ) # Linear layer with spectral norm class SNLinear(nn.Linear, SN): def __init__( self, in_features, out_features, bias=True, num_svs=1, num_itrs=1, eps=1e-12 ): nn.Linear.__init__(self, in_features, out_features, bias) SN.__init__(self, num_svs, num_itrs, out_features, eps=eps) def forward(self, x): return F.linear(x, self.W_(), self.bias) # Embedding layer with spectral norm # We use num_embeddings as the dim instead of embedding_dim here # for convenience sake class SNEmbedding(nn.Embedding, SN): def __init__( self, num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2, scale_grad_by_freq=False, sparse=False, _weight=None, num_svs=1, num_itrs=1, eps=1e-12, ): nn.Embedding.__init__( self, num_embeddings, embedding_dim, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse, _weight, ) SN.__init__(self, num_svs, num_itrs, num_embeddings, eps=eps) def forward(self, x): return F.embedding(x, self.W_()) # A non-local block as used in SA-GAN # Note that the implementation as described in the paper is largely incorrect; # refer to the released code for the actual implementation. class Attention(nn.Module): def __init__(self, ch, which_conv=SNConv2d, name="attention"): super(Attention, self).__init__() # Channel multiplier self.ch = ch self.which_conv = which_conv self.theta = self.which_conv( self.ch, self.ch // 8, kernel_size=1, padding=0, bias=False ) self.phi = self.which_conv( self.ch, self.ch // 8, kernel_size=1, padding=0, bias=False ) self.g = self.which_conv( self.ch, self.ch // 2, kernel_size=1, padding=0, bias=False ) self.o = self.which_conv( self.ch // 2, self.ch, kernel_size=1, padding=0, bias=False ) # Learnable gain parameter self.gamma = P(torch.tensor(0.0), requires_grad=True) def forward(self, x, y=None): # Apply convs theta = self.theta(x) phi = F.max_pool2d(self.phi(x), [2, 2]) g = F.max_pool2d(self.g(x), [2, 2]) # Perform reshapes theta = theta.view(-1, self.ch // 8, x.shape[2] * x.shape[3]) phi = phi.view(-1, self.ch // 8, x.shape[2] * x.shape[3] // 4) g = g.view(-1, self.ch // 2, x.shape[2] * x.shape[3] // 4) # Matmul and softmax to get attention maps beta = F.softmax(torch.bmm(theta.transpose(1, 2), phi), -1) # Attention map times g path o = self.o( torch.bmm(g, beta.transpose(1, 2)).view( -1, self.ch // 2, x.shape[2], x.shape[3] ) ) return self.gamma * o + x # Fused batchnorm op def fused_bn(x, mean, var, gain=None, bias=None, eps=1e-5): # Apply scale and shift--if gain and bias are provided, fuse them here # Prepare scale scale = torch.rsqrt(var + eps) # If a gain is provided, use it if gain is not None: scale = scale * gain # Prepare shift shift = mean * scale # If bias is provided, use it if bias is not None: shift = shift - bias return x * scale - shift # return ((x - mean) / ((var + eps) ** 0.5)) * gain + bias # The unfused way. # Manual BN # Calculate means and variances using mean-of-squares minus mean-squared def manual_bn(x, gain=None, bias=None, return_mean_var=False, eps=1e-5): # Cast x to float32 if necessary float_x = x.float() # Calculate expected value of x (m) and expected value of x**2 (m2) # Mean of x m = torch.mean(float_x, [0, 2, 3], keepdim=True) # Mean of x squared m2 = torch.mean(float_x ** 2, [0, 2, 3], keepdim=True) # Calculate variance as mean of squared minus mean squared. var = m2 - m ** 2 # Cast back to float 16 if necessary var = var.type(x.type()) m = m.type(x.type()) # Return mean and variance for updating stored mean/var if requested if return_mean_var: return fused_bn(x, m, var, gain, bias, eps), m.squeeze(), var.squeeze() else: return fused_bn(x, m, var, gain, bias, eps) # My batchnorm, supports standing stats class myBN(nn.Module): def __init__(self, num_channels, eps=1e-5, momentum=0.1): super(myBN, self).__init__() # momentum for updating running stats self.momentum = momentum # epsilon to avoid dividing by 0 self.eps = eps # Momentum self.momentum = momentum # Register buffers self.register_buffer("stored_mean", torch.zeros(num_channels)) self.register_buffer("stored_var", torch.ones(num_channels)) self.register_buffer("accumulation_counter", torch.zeros(1)) # Accumulate running means and vars self.accumulate_standing = False # reset standing stats def reset_stats(self): self.stored_mean[:] = 0 self.stored_var[:] = 0 self.accumulation_counter[:] = 0 def forward(self, x, gain, bias): if self.training: out, mean, var = manual_bn( x, gain, bias, return_mean_var=True, eps=self.eps ) # If accumulating standing stats, increment them if self.accumulate_standing: self.stored_mean[:] = self.stored_mean + mean.data self.stored_var[:] = self.stored_var + var.data self.accumulation_counter += 1.0 # If not accumulating standing stats, take running averages else: self.stored_mean[:] = ( self.stored_mean * (1 - self.momentum) + mean * self.momentum ) self.stored_var[:] = ( self.stored_var * (1 - self.momentum) + var * self.momentum ) return out # If not in training mode, use the stored statistics else: mean = self.stored_mean.view(1, -1, 1, 1) var = self.stored_var.view(1, -1, 1, 1) # If using standing stats, divide them by the accumulation counter if self.accumulate_standing: mean = mean / self.accumulation_counter var = var / self.accumulation_counter return fused_bn(x, mean, var, gain, bias, self.eps) # Simple function to handle groupnorm norm stylization def groupnorm(x, norm_style): # If number of channels specified in norm_style: if "ch" in norm_style: ch = int(norm_style.split("_")[-1]) groups = max(int(x.shape[1]) // ch, 1) # If number of groups specified in norm style elif "grp" in norm_style: groups = int(norm_style.split("_")[-1]) # If neither, default to groups = 16 else: groups = 16 return F.group_norm(x, groups) # Class-conditional bn # output size is the number of channels, input size is for the linear layers # Andy's Note: this class feels messy but I'm not really sure how to clean it up # Suggestions welcome! (By which I mean, refactor this and make a pull request # if you want to make this more readable/usable). class ccbn(nn.Module): def __init__( self, output_size, input_size, which_linear, eps=1e-5, momentum=0.1, cross_replica=False, mybn=False, norm_style="bn", ): super(ccbn, self).__init__() self.output_size, self.input_size = output_size, input_size # Prepare gain and bias layers self.gain = which_linear(input_size, output_size) self.bias = which_linear(input_size, output_size) # epsilon to avoid dividing by 0 self.eps = eps # Momentum self.momentum = momentum # Use cross-replica batchnorm? self.cross_replica = cross_replica # Use my batchnorm? self.mybn = mybn # Norm style? self.norm_style = norm_style if self.cross_replica: # self.bn = SyncBN2d(output_size, eps=self.eps, momentum=self.momentum, affine=False) self.bn = nn.BatchNorm2d( output_size, eps=self.eps, momentum=self.momentum, affine=False ) elif self.mybn: self.bn = myBN(output_size, self.eps, self.momentum) elif self.norm_style in ["bn", "in"]: self.register_buffer("stored_mean", torch.zeros(output_size)) self.register_buffer("stored_var", torch.ones(output_size)) def forward(self, x, y): # Calculate class-conditional gains and biases gain = (1 + self.gain(y)).view(y.size(0), -1, 1, 1) bias = self.bias(y).view(y.size(0), -1, 1, 1) # If using my batchnorm if self.cross_replica: out = self.bn(x) out = out * gain + bias return out elif self.mybn: return self.bn(x, gain=gain, bias=bias) else: if self.norm_style == "bn": out = F.batch_norm( x, self.stored_mean, self.stored_var, None, None, self.training, 0.1, self.eps, ) elif self.norm_style == "in": out = F.instance_norm( x, self.stored_mean, self.stored_var, None, None, self.training, 0.1, self.eps, ) elif self.norm_style == "gn": out = groupnorm(x, self.normstyle) elif self.norm_style == "nonorm": out = x return out * gain + bias def extra_repr(self): s = "out: {output_size}, in: {input_size}," s += " cross_replica={cross_replica}" return s.format(**self.__dict__) # Normal, non-class-conditional BN class bn(nn.Module): def __init__( self, output_size, eps=1e-5, momentum=0.1, cross_replica=False, mybn=False, **kwargs ): super(bn, self).__init__() self.output_size = output_size # epsilon to avoid dividing by 0 self.eps = eps # Momentum self.momentum = momentum # Use cross-replica batchnorm? self.cross_replica = cross_replica # Use my batchnorm? self.mybn = mybn if self.cross_replica: # self.bn = SyncBN2d(output_size, eps=self.eps, momentum=self.momentum, affine=False) self.bn = nn.BatchNorm2d( output_size, eps=self.eps, momentum=self.momentum, affine=True ) elif mybn: # Prepare gain and bias layers self.bn = myBN(output_size, self.eps, self.momentum) # Register buffers if neither of the above else: self.register_buffer("stored_mean", torch.zeros(output_size)) self.register_buffer("stored_var", torch.ones(output_size)) if not self.cross_replica: self.gain = P(torch.ones(output_size), requires_grad=True) self.bias = P(torch.zeros(output_size), requires_grad=True) def forward(self, x, y=None): if self.cross_replica: out = self.bn(x) return out elif self.mybn: gain = self.gain.view(1, -1, 1, 1) bias = self.bias.view(1, -1, 1, 1) return self.bn(x, gain=gain, bias=bias) else: return F.batch_norm( x, self.stored_mean, self.stored_var, self.gain, self.bias, self.training, self.momentum, self.eps, ) # Generator blocks # Note that this class assumes the kernel size and padding (and any other # settings) have been selected in the main generator module and passed in # through the which_conv arg. Similar rules apply with which_bn (the input # size [which is actually the number of channels of the conditional info] must # be preselected) class GBlock(nn.Module): def __init__( self, in_channels, out_channels, which_conv=nn.Conv2d, which_bn=bn, activation=None, upsample=None, ): super(GBlock, self).__init__() self.in_channels, self.out_channels = in_channels, out_channels self.which_conv, self.which_bn = which_conv, which_bn self.activation = activation self.upsample = upsample # Conv layers self.conv1 = self.which_conv(self.in_channels, self.out_channels) self.conv2 = self.which_conv(self.out_channels, self.out_channels) self.learnable_sc = in_channels != out_channels or upsample if self.learnable_sc: self.conv_sc = self.which_conv( in_channels, out_channels, kernel_size=1, padding=0 ) # Batchnorm layers self.bn1 = self.which_bn(in_channels) self.bn2 = self.which_bn(out_channels) # upsample layers self.upsample = upsample def forward(self, x, y): h = self.activation(self.bn1(x, y)) if self.upsample: h = self.upsample(h) x = self.upsample(x) h = self.conv1(h) h = self.activation(self.bn2(h, y)) h = self.conv2(h) if self.learnable_sc: x = self.conv_sc(x) return h + x # Residual block for the discriminator class DBlock(nn.Module): def __init__( self, in_channels, out_channels, which_conv=SNConv2d, wide=True, preactivation=False, activation=None, downsample=None, ): super(DBlock, self).__init__() self.in_channels, self.out_channels = in_channels, out_channels # If using wide D (as in SA-GAN and BigGAN), change the channel pattern self.hidden_channels = self.out_channels if wide else self.in_channels self.which_conv = which_conv self.preactivation = preactivation self.activation = activation self.downsample = downsample # Conv layers self.conv1 = self.which_conv(self.in_channels, self.hidden_channels) self.conv2 = self.which_conv(self.hidden_channels, self.out_channels) self.learnable_sc = ( True if (in_channels != out_channels) or downsample else False ) if self.learnable_sc: self.conv_sc = self.which_conv( in_channels, out_channels, kernel_size=1, padding=0 ) def shortcut(self, x): if self.preactivation: if self.learnable_sc: x = self.conv_sc(x) if self.downsample: x = self.downsample(x) else: if self.downsample: x = self.downsample(x) if self.learnable_sc: x = self.conv_sc(x) return x def forward(self, x): if self.preactivation: # h = self.activation(x) # NOT TODAY SATAN # Andy's note: This line *must* be an out-of-place ReLU or it # will negatively affect the shortcut connection. h = F.relu(x) else: h = x h = self.conv1(h) h = self.conv2(self.activation(h)) if self.downsample: h = self.downsample(h) return h + self.shortcut(x) # dogball