# bai-3.0 Epilepsy (45851parametre) ## "bai-3.0 Epilepsy" modeli, hastanın epilepsi nöbeti durumunu tespit eder. #### NOT: Gerçek zamanlı EEG veri takibi uygulamasına modeli entegre ederseniz, gerçek zamanlı olarak nöbet durumu tahmini yapabilmektedir. Uygulamaya erişebilmek için: https://github.com/neurazum/Realtime-EEG-Monitoring ## ----------------------------------------------------------------------------------- # bai-3.0 Epilepsy (45851 parameters) ## The "bai-3.0 Epilepsy" model detects the patient's epileptic seizure status. #### NOTE: If you integrate the model into a real-time EEG data tracking application, it can predict epilepsy seizure state in real time. To access the application: https://github.com/neurazum/Realtime-EEG-Monitoring **Doğruluk/Accuracy: %68,90829694323143** [![bai-3.0](https://img.youtube.com/vi/qUkId3S9W94/0.jpg)](https://www.youtube.com/watch?v=qUkId3S9W94) # Kullanım / Usage ```python import pandas as pd import numpy as np import ast from tensorflow.keras.models import load_model, Sequential from sklearn.metrics import accuracy_score model_path = 'model/path' model = load_model(model_path) test_data_path = 'epilepsy/dataset' test_data = pd.read_csv(test_data_path) test_data['sample'] = test_data['sample'].apply(ast.literal_eval) X_test = np.array(test_data['sample'].tolist()) y_test = test_data['label'].values.astype(int) timesteps = 10 X_test_reshaped = [] for i in range(len(X_test) - timesteps): X_test_reshaped.append(X_test[i:i + timesteps]) X_test_reshaped = np.array(X_test_reshaped) y_pred = model.predict(X_test_reshaped) y_pred_classes = (y_pred > 0.77).astype(int) # En kararlı sonuçlar -> 0.78 ve 0.77. Eşik değeri: çıkan sonucun yuvarlama değerini artırıp azaltma. # Örn. Olasılık < 0.77 ise "0", olasılık >= 0.77 ise "1" tahminini yap. accuracy = accuracy_score(y_test[timesteps:], y_pred_classes) print("Gerçek Değerler (1: Nöbet, 0: Nöbet Değil) ve Tahminler:") for i in range(len(y_pred_classes)): print(f"Gerçek: {y_test[i + timesteps]}, Tahmin: {y_pred_classes[i][0]}") print(f"Modelin doğruluk oranı: %{accuracy * 100}") model.summary() ``` # Python Sürümü / Python Version ### 3.9 <=> 3.13 # Modüller / Modules ```bash matplotlib==3.8.0 matplotlib-inline==0.1.6 numpy==1.26.4 pandas==2.2.2 scikit-learn==1.3.1 tensorflow==2.15.0 ```