--- license: apache-2.0 base_model: facebook/wav2vec2-large-lv60 tags: - generated_from_trainer model-index: - name: wav2vec2-large-lv60_phoneme-timit_english_timit-4k_002 results: [] datasets: - timit-asr/timit_asr language: - en metrics: - wer library_name: transformers pipeline_tag: automatic-speech-recognition --- # wav2vec2-large-lv60_phoneme-timit_english_timit-4k_002 This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the [TIMIT dataset](https://huggingface.co/datasets/timit-asr/timit_asr). It achieves the following results on the evaluation set: - Loss: 0.3354 - PER: 0.1053 - So far the highest peforming model among my models ## Intended uses & limitations - Phoneme recognition based on the TIMIT phoneme set ## Phoneme-wise errors ### Vowel Phonemes ![Vowel confusion matrix](img/vowel_confusion_matrix.png) ### Stop Phonemes ![Stop_consonant confusion matrix](img/stop_confusion_matrix.png) ### Affricate Phonemes ![Affricate_consonant confusion matrix](img/affricate_confusion_matrix.png) ### Fricative Phonemes ![Fricative_consonant confusion matrix](img/fricative_confusion_matrix.png) ### Nasal Phonemes ![Nasal_consonant confusion matrix](img/nasal_confusion_matrix.png) ### Semivowels/Glide Phonemes ![Vowel confusion matrix](img/semivowel_glide_confusion_matrix.png) ## Training and evaluation data - Train: TIMIT train dataset (4620 samples) - Test: TIMIT test dataset (1680 samples) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | PER | |:-------------:|:-----:|:----:|:---------------:|:------:| | 7.9352 | 1.04 | 300 | 3.7710 | 0.9617 | | 2.7874 | 2.08 | 600 | 0.9080 | 0.1929 | | 0.8205 | 3.11 | 900 | 0.4670 | 0.1492 | | 0.5504 | 4.15 | 1200 | 0.4025 | 0.1408 | | 0.4632 | 5.19 | 1500 | 0.3696 | 0.1374 | | 0.4148 | 6.23 | 1800 | 0.3519 | 0.1343 | | 0.3873 | 7.27 | 2100 | 0.3419 | 0.1329 | | 0.3695 | 8.3 | 2400 | 0.3368 | 0.1317 | | 0.3531 | 9.34 | 2700 | 0.3406 | 0.1320 | | 0.3507 | 10.38 | 3000 | 0.3354 | 0.1315 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.0.1 - Datasets 2.16.1 - Tokenizers 0.15.2