# Example inference code from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model tokenizer = AutoTokenizer.from_pretrained("exaler/aaa-2-sql-2") model = AutoModelForCausalLM.from_pretrained("exaler/aaa-2-sql-2") def generate_sql(instruction, input_text): # Format prompt prompt = f"[INST] {instruction}\n\n{input_text} [/INST]" # Generate inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate( inputs=inputs.input_ids, max_new_tokens=512, temperature=0.0, do_sample=False ) response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True) return response