# MVInpainter [NeurIPS 2024] MVInpainter: Learning Multi-View Consistent Inpainting to Bridge 2D and 3D Editing [[arXiv]](https://arxiv.org/pdf/2408.08000) [[Project Page]](https://ewrfcas.github.io/MVInpainter/) ## Preparation ### Setup repository and environment ``` git clone https://github.com/ewrfcas/MVInpainter.git cd MVInpainter conda create -n mvinpainter python=3.8 conda activate mvinpainter pip install -r requirements.txt mim install mmcv-full pip install mmflow # We need to replace the new decoder py of mmflow for faster flow estimation cp ./check_points/mmflow/raft_decoder.py /usr/local/conda/envs/mvinpainter/lib/python3.8/site-packages/mmflow/models/decoders/ ``` ### Dataset preparation (training) 1. Downloading [Co3dv2](https://github.com/facebookresearch/co3d), [MVImgNet](https://github.com/GAP-LAB-CUHK-SZ/MVImgNet) for MVInpainter-O. Downloading [Real10k](https://google.github.io/realestate10k/download.html), [DL3DV](https://github.com/DL3DV-10K/Dataset), [Scannet++](https://kaldir.vc.in.tum.de/scannetpp) for MVInpainter-F. 2. Downloading information of indices, masking formats, and captions from [Link](). Put them to `./data`. Note that we remove some dirty samples from aforementioned datasets. Since Co3dv2 data contains object masks but MVImgNet does not, we additionally provide complete [foreground masks]() for MVImgNet through `CarveKit`. Please put the MVImgNet masks to `./data/mvimagenet/masks`. ### Pretrained weights 1. [RAFT weights]() (put it to `./check_points/mmflow/`). 2. [SD1.5-inpainting]() (put it to `./check_points/`). 3. [AnimateDiff weights](). We revise the key name for easier `peft` usages (put it to `./check_points/`). ## Training Training with fixed nframe=12: ``` CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 accelerate launch --mixed_precision="fp16" --num_processes=8 --num_machines 1 --main_process_port 29502 \ --config_file configs/deepspeed/acc_zero2.yaml train.py \ --config_file="configs/mvinpainter_{o,f}.yaml" \ --output_dir="check_points/mvinpainter_{o,f}_256" \ --train_log_interval=250 \ --val_interval=2000 \ --val_cfg=7.5 \ --img_size=256 ``` Finetuning with dynamic frames (8~24): ``` CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 accelerate launch --mixed_precision="fp16" --num_processes=8 --num_machines 1 --main_process_port 29502 \ --config_file configs/deepspeed/acc_zero2.yaml train.py \ --config_file="configs/mvinpainter_{o,f}.yaml" \ --output_dir="check_points/mvinpainter_{o,f}_256" \ --train_log_interval=250 \ --val_interval=2000 \ --val_cfg=7.5 \ --img_size=256 \ --resume_from_checkpoint="latest" \ --dynamic_nframe \ --low_nframe 8 \ --high_nframe 24 ``` Please use `mvinpainter_{o,f}_512.yaml` to train 512x512 models. ## Inference ### Model weights 1. [MVSInpainter-O]() (Novel view synthesis, put it to `./check_points/`). 2. [MVSInpainter-F]() (Removal, put it to `./check_points/`). ### Pipeline 1. Removing or synthesis foreground of the first view through 2D-inpainting. We recommend using [Fooocus-inpainting](https://github.com/lllyasviel/Fooocus) to accomplish this. Getting tracking masks through [Track-Anything](https://github.com/gaomingqi/Track-Anything). Some examples are provided in `./demo`. ``` - - images # input images with foregrounds - inpainted # inpainted result of the first view - masks # masks for images ``` 2. (Optional) removing foregrounds from all other views through `MVInpainter-F`: ``` CUDA_VISIBLE_DEVICES=0 python test_removal.py \ --load_path="check_points/mvinpainter_f_256" \ --dataset_root="./demo/removal" \ --output_path="demo_removal" \ --resume_from_checkpoint="best" \ --val_cfg=5.0 \ --img_size=256 \ --sampling_interval=1.0 \ --dataset_names realworld \ --reference_path="inpainted" \ --nframe=24 \ --save_images # (whether to save samples respectively) ``` ![removal](assets/kitchen_DSCF0676_removal_seq_0.jpg) 3. Achieving 3d bbox of the object generated from 2D-inpainting through `python draw_bbox.py`. Put the image `000x.png` and `000x.json` from `./bbox` to `obj_bbox` of the target folder. ![draw_bbox_demo](assets/draw_bbox.gif) 4. Mask adaption to achieve `warp_masks`. If the basic plane where the foreground placed on enjoys a small percentage of the whole image, please use methods like [Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything) to get `plane_masks`. ``` CUDA_VISIBLE_DEVICES=0 python mask_adaption.py --input_path="demo/nvs/kitchen" --edited_index=0 ``` You can also use `--no_irregular_mask` to disable irregular mask for more precise warped masks. ![warp_bbox](assets/0000_bbox.jpg) Make sure the final folder looks like: ``` - - obj_bbox # inpainted 2d images with new foreground and bbox json - removal # images without foregrounds - warp_masks # masks from adaption for the removal folder - plane_masks # (optional, only for mask_adaption) masks of basic plane where the foreground is placed on ``` 5. Run `MVInpainter-O` for novel view synthesis: ``` CUDA_VISIBLE_DEVICES=0 python test_nvs.py \ --load_path="check_points/mvinpainter_o_256" \ --dataset_root="./demo/nvs" \ --output_path="demo_nvs" \ --edited_index=0 \ --resume_from_checkpoint="best" \ --val_cfg=7.5 \ --img_height=256 \ --img_width=256 \ --sampling_interval=1.0 \ --nframe=24 \ --prompt="a red apple with circle and round shape on the table." \ --limit_frame=24 ``` ![nvs_result](assets/kitchen_0000_seq_0.jpg) 6. 3D reconstruction: See [Dust3R](https://github.com/naver/dust3r), [MVSFormer++](https://github.com/maybeLx/MVSFormerPlusPlus), and [3DGS](https://github.com/graphdeco-inria/gaussian-splatting) for more details. ## Cite If you found our project helpful, please consider citing: ``` @article{cao2024mvinpainter, title={MVInpainter: Learning Multi-View Consistent Inpainting to Bridge 2D and 3D Editing}, author={Cao, Chenjie and Yu, Chaohui and Fu, Yanwei and Wang, Fan and Xue, Xiangyang}, journal={arXiv preprint arXiv:2408.08000}, year={2024} } ```