{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7856e8392980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710736941265826235, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObKqL17FqW6ZRxvPPmIjTwfVW83VUt2vQAAAAAAAIA/eidhPkSFNz8tJ32+AAa3vve3RD62p26+AAAAAAAAAADzCYo9RB2FP6s1mT1q8OC+muoAPmVQkbsAAAAAAAAAAGYasz2MBao+dqzRvpdhg74Z2p6+VjFGvgAAAAAAAAAAU3gaPjNmHz/N2T2+d/6ovsAUoT3Wsyi+AAAAAAAAAAAzxSE8rv2dusxPJLe8GQSy48xnOurRPTYAAIA/AACAPwBQxjwpoHa6x+ultlrTcLH7VEK7wCTGNQAAgD8AAIA/ZlbBOhztGz3/GZE9dAONvvzg6j3rn1i+AAAAAAAAAACmL7E9Qht6PnZsF74n8Ym+4ArZOrKm27wAAAAAAAAAAGZ1k7yWszw/VbAePQs26b5juNg83fBLvAAAAAAAAAAAc+AvvtD66j5Zuyk//FK+vgKY87m7Y/E+AAAAAAAAAABNhhg92KqPPVjdcLzgt3y+xWfvPZJpET0AAAAAAAAAAM1qYDyYNIs95HM/PjoZnr7PnZc+3UNJvgAAAAAAAAAALZQcvuhWsD++piG/dluyvtsz973rsq6+AAAAAAAAAAAApLM7KM+VP3bVhDzByQG/oKrNPF5gIDwAAAAAAAAAAGZ6XDwwGqw/BWR8PrzVHr9Swv46hp4tPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVEgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHArr9ETg2uMAWyUTS0BjAF0lEdAka0+QZGayHV9lChoBkdAcUDnAqNIb2gHTQ4BaAhHQJGtZL6DXe51fZQoaAZHQHMFW47Rv3toB00BAWgIR0CRrXNj9XLedX2UKGgGR0Bx9bZh8YygaAdL+2gIR0CRrnXJo0yhdX2UKGgGR0Bw9v9fkWAPaAdNGQFoCEdAka7cHryDqXV9lChoBkdAcNv0vGp++mgHTQwBaAhHQJGvv3RG+bp1fZQoaAZHQBYCJTER8MNoB0u8aAhHQJGv0m5UcXF1fZQoaAZHQHL/0rf+CK9oB00CAWgIR0CRsFFkxyn2dX2UKGgGR0ByBCcG1QZXaAdNIQFoCEdAkbCYOQQtjHV9lChoBkdAdFLJtix3V2gHTQoBaAhHQJGwlqL0jC51fZQoaAZHQHLPBJul41RoB00DAWgIR0CRsYXmvGIbdX2UKGgGR0Bwauynk1dgaAdNFwFoCEdAkbI4nndO7HV9lChoBkdAb67ATqSowWgHTR0BaAhHQJGyb225QP91fZQoaAZHQHDVyeZof0VoB00YAWgIR0CRssmIj4YadX2UKGgGR0BxZDf3vhIfaAdNAwFoCEdAkbP4R28qWnV9lChoBkdAcUO5qdpZfWgHTR4BaAhHQJG0G0jTrmh1fZQoaAZHQHJ2ApBomHBoB0v1aAhHQJG0G4mTkhl1fZQoaAZHQHGCr92ovSNoB0vdaAhHQJG0xKkEcKh1fZQoaAZHQHJ0X6InBtVoB00JAWgIR0CRtM9sabWmdX2UKGgGR0BvtHE87p3YaAdNKgFoCEdAkbWw+MZP23V9lChoBkdAbxYdPtUn5WgHS+1oCEdAkbc2eMAFPnV9lChoBkdAcn9DiOvMbGgHTT4BaAhHQJG4A1P3ztl1fZQoaAZHQG9SW8AaNuNoB00cAWgIR0CRt/tF8XvZdX2UKGgGR0Bwq2RuCPIXaAdNJAFoCEdAkbgop+c6NnV9lChoBkdAcfYmDUVi4WgHTRgBaAhHQJG4og0TDfp1fZQoaAZHQHH/Ga2F36hoB0vsaAhHQJG5Ldl/Yrd1fZQoaAZHQHHgwPd2xIJoB01VAWgIR0CRuh9IwudxdX2UKGgGR0BxlCnAIppfaAdNFQFoCEdAkboq5sj3VXV9lChoBkdAboJ7Ikqto2gHTTgBaAhHQJG6iKGcnVp1fZQoaAZHQHEStV7x/d9oB00YAWgIR0CRutattALRdX2UKGgGR0BvL7nX/YJ3aAdL9WgIR0CRuw12q1gIdX2UKGgGR0BxJE/fO2RaaAdL9WgIR0CRuyifg75mdX2UKGgGR0BuAX8ZUDMeaAdNAAFoCEdAkbtsasIVunV9lChoBkdAcQVYXO4XoGgHS/JoCEdAkbusEFGG23V9lChoBkdAcB59G7SRbWgHTQsBaAhHQJG8MNvwVj91fZQoaAZHQHPkO2uxKQJoB0v5aAhHQJHOVoPCl8B1fZQoaAZHQHD5Y7vG6wtoB0vvaAhHQJHPS7z06HV1fZQoaAZHQHKD5I+W4VhoB0vtaAhHQJHP1Nj9XLh1fZQoaAZHQHJDy4Wk8A9oB0vvaAhHQJHP7RD1Gsp1fZQoaAZHQHIzvCIk7fZoB00PAWgIR0CR0Ogv114gdX2UKGgGR0BwcMwL3K0VaAdNBQFoCEdAkdEKqfe1r3V9lChoBkdAcn74gieNDWgHS9xoCEdAkdKkIomXxHV9lChoBkdAbzcyu6mO2mgHTTgBaAhHQJHS+WMS9M91fZQoaAZHQHHMInv2GqRoB0v4aAhHQJHTAokRjBl1fZQoaAZHQHEYrjtG/etoB00bAWgIR0CR0x/hESdwdX2UKGgGR0BzFx+CsfaIaAdL52gIR0CR00w97ngYdX2UKGgGR0BynhJg9eQdaAdNFQFoCEdAkdNKJZW7v3V9lChoBkdAcat5zo2XLWgHTTgBaAhHQJHTzg4wRGt1fZQoaAZHQHIYDfvWpZRoB00hAWgIR0CR09eoDPnkdX2UKGgGR0Bw/o9kjHGTaAdNFQFoCEdAkdPbAUL2H3V9lChoBkdAb7JeE7GNrGgHS+hoCEdAkdRKX8fmtHV9lChoBkdAcQLyIYWLxmgHTREBaAhHQJHUw2R7qpt1fZQoaAZHQHEKrmITGo9oB0vfaAhHQJHVBHvttyh1fZQoaAZHQHMFBC2MKkVoB0vyaAhHQJHWVVxS5y51fZQoaAZHQG7kfACW/rVoB00MAWgIR0CR12EkjX4CdX2UKGgGR0BwDhK5CngpaAdL7GgIR0CR1716E8JVdX2UKGgGR0BwwcSyt3fRaAdNGgFoCEdAkdlEIkZ75XV9lChoBkdAcPBu3+dbxGgHS95oCEdAkdltbX6InHV9lChoBkdAcFTm16Vt42gHS+xoCEdAkdrp8fFJhHV9lChoBkdAcfSQq7ROUWgHS9poCEdAkdsG96C17nV9lChoBkdAblsbb1yvLWgHS/1oCEdAkdscjZ+QVHV9lChoBkdAchmgBtDUmWgHS/9oCEdAkdtlqveP73V9lChoBkdAckxwNsnAqWgHS/FoCEdAkdv8r7O3UnV9lChoBkdAbsGnXumaY2gHS/FoCEdAkdwJ9RaX8nV9lChoBkdAccjrxRVIZ2gHTSABaAhHQJHchGNJe3R1fZQoaAZHQHESQGjbi6xoB0vnaAhHQJHdRO9FnZl1fZQoaAZHQHHuo+fRNRFoB00qAWgIR0CR3UwyqMm4dX2UKGgGR0BueuQbMotuaAdNCAFoCEdAkd2FdonKGXV9lChoBkdAchvI4lyBCmgHS+doCEdAkd1+ZssQNHV9lChoBkdAcj++w1R+B2gHS+VoCEdAkd5QVj7Q9nV9lChoBkdAcMWF8XvYvmgHS+FoCEdAkd7nEdeY2XV9lChoBkdAcdyecQRPGmgHTRMBaAhHQJHgXR1HOKR1fZQoaAZHQEVJIqbz9TBoB0vCaAhHQJHgerGR3eN1fZQoaAZHQHKH7kwN9YxoB0vqaAhHQJHgfOObRWt1fZQoaAZHQHCnovexfOVoB00MAWgIR0CR4UYm9g4PdX2UKGgGR0BzKF35eqrBaAdL7GgIR0CR4Y1MdtEYdX2UKGgGR0Bwqp86V+qjaAdL5GgIR0CR4hEmplz2dX2UKGgGR0BwGVxsEaESaAdNBwFoCEdAkeJvpyIYWXV9lChoBkdAcSZCW/rSmmgHS/5oCEdAkeLYS6DoQnV9lChoBkdAb/iCf6Ggz2gHS99oCEdAkeLrI91U2nV9lChoBkdAcUJEaESM+GgHS+FoCEdAkeLyTUy57XV9lChoBkdAcjA85CF9KGgHTRUBaAhHQJHjDm/336B1fZQoaAZHQHEUTc/MW45oB0vlaAhHQJHjUK2KEWZ1fZQoaAZHQHBw7aqS5iFoB00GAWgIR0CR42erMkhSdX2UKGgGR0BuKsg4ffXPaAdL72gIR0CR44QLeANHdX2UKGgGR0Bw1hF2FFlTaAdL82gIR0CR5HABT4tZdX2UKGgGR0Bu4AydnTRZaAdL9mgIR0CR5STrE9+xdX2UKGgGR0ByPRsWO6uoaAdL8WgIR0CR5pxri2lVdX2UKGgGR0BFis3qAz55aAdL2GgIR0CR5tz5XU6QdX2UKGgGR0BxvhIczZYgaAdL/GgIR0CR5w6Ae7tidX2UKGgGR0BQAncpLEk0aAdLrWgIR0CR53T72tdSdX2UKGgGR0BuIPuiN83NaAdNEQFoCEdAkeeuiBXjl3V9lChoBkdAcTQz6ab4J2gHS/ZoCEdAkegCXt0FKXV9lChoBkdAcgYrB0p3HWgHS/1oCEdAkei1nuiN83V9lChoBkdAcUf6MBIWg2gHS9ZoCEdAkej00Nz8xnV9lChoBkdAcka7UXpGF2gHS/ZoCEdAkek79deIEnV9lChoBkdAc24KfWcz7GgHTRgBaAhHQJHpx9qk/KR1fZQoaAZHQHE6GlVLi/BoB00fAWgIR0CR6mOhCdBjdX2UKGgGR0BzB8gMc6vJaAdNIAFoCEdAkepwXMyJsXV9lChoBkdAc1gRplBhQWgHTRcBaAhHQJHqzh/Aj6h1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}