--- tags: - image-classification - vision - generated_from_trainer datasets: - AI-Lab-Makerere/beans metrics: - accuracy model-index: - name: resnet-50-base-beans-demo results: - task: type: image-classification name: Image Classification dataset: name: beans type: beans args: default metrics: - type: accuracy value: 0.9022556390977443 name: Accuracy --- # resnet-50-base-beans-demo This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.2188 - Accuracy: 0.9023 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5679 | 1.0 | 130 | 0.2188 | 0.9023 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1