--- license: apache-2.0 tags: - generated_from_trainer datasets: - emo metrics: - accuracy model-index: - name: finetuning-sentiment-model-emo-4 results: - task: name: Text Classification type: text-classification dataset: name: emo type: emo config: emo2019 split: test args: emo2019 metrics: - name: Accuracy type: accuracy value: 0.882 --- # finetuning-sentiment-model-emo-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emo dataset. It achieves the following results on the evaluation set: - Loss: 0.3929 - Accuracy: 0.882 - F1 Score: 0.8928 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3